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Abstract
We performed RNA sequencing (RNAseq) on peripheral blood mononuclear cells (PBMCs)

to identify differentially expressed gene transcripts (DEGs) after kidney transplantation and

after the start of immunosuppressive drugs. RNAseq is superior to microarray to determine

DEGs because it’s not limited to available probes, has increased sensitivity, and detects

alternative and previously unknown transcripts. DEGs were determined in 32 adult kidney

recipients, without clinical acute rejection (AR), treated with antibody induction, calcineurin

inhibitor, mycophenolate, with and without steroids. Blood was obtained pre-transplant

(baseline), week 1, months 3 and 6 post-transplant. PBMCs were isolated, RNA extracted

and gene expression measured using RNAseq. Principal components (PCs) were comput-

ed using a surrogate variable approach. DEGs post-transplant were identified by controlling

false discovery rate (FDR) at < 0.01 with at least a 2 fold change in expression from pre-

transplant. The top 5 DEGs with higher levels of transcripts in blood at week 1 were

TOMM40L, TMEM205,OLFM4,MMP8, andOSBPL9 compared to baseline. The top 5

DEGs with lower levels at week 1 post-transplant were IL7R, KLRC3, CD3E, CD3D, and
KLRC2 (Striking Image) compared to baseline. The top pathways from genes with lower lev-

els at 1 week post-transplant compared to baseline, were T cell receptor signaling and

iCOS-iCOSL signaling while the top pathways from genes with higher levels than baseline

were axonal guidance signaling and LXR/RXR activation. Gene expression signatures at

month 3 were similar to week 1. DEGs at 6 months post-transplant create a different gene

signature than week 1 or month 3 post-transplant. RNAseq analysis identified more DEGs
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with lower than higher levels in blood compared to baseline at week 1 and month 3. The

number of DEGs decreased with time post-transplant. Further investigations to determine

the specific lymphocyte(s) responsible for differential gene expression may be important in

selecting and personalizing immune suppressant drugs and may lead to targeted therapies.

Introduction
Kidney allograft transplantation is the most cost-effective treatment for end stage renal disease
[1,2,3]. Unfortunately, the long-term success of transplantation is often threatened by acute re-
jection (AR) and chronic allograft dysfunction (CGD), which are common adverse outcomes
in kidney allograft recipients despite modern immunosuppression [4]. Acute rejection occurs
early post-transplant and may be antibody [5] or T-cell mediated [6]. Chronic allograft dys-
function is irreversible [4] with no effective treatments [7,8]. Thus, highly effective prophylactic
immunosuppressive therapy is critical in preventing AR and CGD. Despite the use of better
immunosuppressive regimens today than 15 years ago, lymphocytes, the primary targets of im-
munosuppressive drugs, still find ways to evade the immune suppression. This may be due to
altered genetic mechanisms and cellular pathways that lead to insufficient T and/or B-cell sup-
pression. To address if genetic mechanisms may be related to drug related immunosuppression
we investigated if gene expression changes occur before and after the start of immune suppres-
sant therapy and over time as therapy changes. We believe that eventually gene signatures can
be used to personally tailor immune suppression therapies and predict clinical outcomes.

This study is the first to describe DEGs over time using whole transcriptome sequencing of
PBMCs from kidney allograft recipients who have not developed AR within the first 7 months
post-transplant. Previous microarray studies have focused on individuals with rejection events
and have identified genes associated with AR by analyzing RNA isolated from donor kidney al-
lograft biopsies [9,10,11]. PBMCs have also been used to identify DEGs in kidney transplant re-
cipients using gene sets [12], or microarrays [11,12,13,14] to identify AR signatures. These
previous studies have allowed for a better understanding of the biology of transplant rejection.
However, RNAseq is a new and superior method to identify DEGs and associated molecular
cellular pathways since it is not limited to available probes, has increased sensitivity [15], and
detects alternative splice variants, can detect low level expression [16] and previously unknown
transcripts.

Most studies using microarrays showed gene expression changes at the time of a rejection
event. However, other factors, such as the immunosuppression drug regimen, are also likely as-
sociated with changes in transcript expression. Most transplant centers reduce immunosup-
pression at 2 to 3 months post-transplant and it is likely that these changes in maintenance
immune suppression alter expression. We report here gene expression changes in the blood of
patients without AR or CGD; therefore the observed DEGs are not those associated with clini-
cally evident rejection events. This analysis is the first step identifying gene signatures that cor-
relate with favorable immune suppression. The ultimate goal is to identify an optimal immune
genetic signature and ultimately personalize immunosuppressant drugs regimens to achieve
that signature. Our hypothesis is that PBMC transcripts vary after the initiation of immunosup-
pression and at different times following kidney allograft transplantation. To identify these
DEGs, we performed RNAseq analysis on PBMCs to identify gene expression patterns prior to
transplant, 1 week, 3 months, and 6 months post-transplant in kidney allograft recipients. We
identified DEGs that will further our understanding of the physiological, cellular and molecular
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mechanisms of favorable immune suppression and kidney transplantation. Ideally, these ex-
pression patterns will lead to extending allograft survival and in turn improve the quality and
longevity of kidney recipient lives.

Methods

Patients
Thirty-two adults receiving living donor kidney allografts were studied. Patients received thy-
moglobulin induction and maintenance therapy with tacrolimus or cyclosporine, with myco-
phenolate and short course steroids to days 5–7 post-transplant. Four of the patients received
tacrolimus or cyclosporine prior to transplantation. Five patients were receiving steroids and 9
were receiving mycophenolate at baseline for underlying disease. The subjects had no rejection
or any previous rejection at time of each sample collection. Sequential whole blood samples for
isolation of PBMCs were collected at baseline (pre-transplant, n = 32), week 1 (n = 31), month
3 (n = 18) and month 6 (n = 15) post-transplant. Some samples were not obtained because pa-
tients did not return to the transplant clinic for follow-up center visits and clinical follow ups
were performed by referring physician. All patients in this study provided written informed
consent following protocol that was approved by the institutional review board of the Universi-
ty of Minnesota.

RNA Sequencing
Blood was collected into BD Vacutainer EDTA coated tubes. RNA was isolated from approxi-
mately 12 mLs of whole blood PBMCs using the Qiagen QIAamp RNA Blood Mini kit (Ger-
mantown, MD) within 2 hours of blood draw. RNA was quantitated with a Nanodrop 800
spectrophotometer. One μg of each RNA sample was used to prepare RNAseq libraries based
on the method as outlined by Zhong and colleagues [17] with modifications and added quality
checks. Sample quantity and integrity was checked using RiboGreen analysis and an Agilent
2100 Bioanalyzer or Caliper equivalent. Each sample passing quality control (RNA
mass> 1 μg and RNA Integrity Number> 6) was used to create a polyA+ stranded barcoded
RNAseq library using standard protocols. Five samples were pooled for each lane for Illumina
Hi-seq 2000 sequencing to generate 20–40 million mapped paired-end reads per sample.

Data Analysis
Quality control of fastq data was performed using FastQC:Read QC [18]. The 170 bp paired-
end reads were then aligned to human genome (GRCh37/hg19 assembly) via Tophat2 using
the iGenome human UCSC reference annotation [19,20,21] to align and quantitate the tran-
scripts. Transcript assembly and transcript abundance was determined using Cufflinks pro-
gram [20] where the hg19_genes_2012-03-09.gtf file was used as reference annotation guide to
determine fragments per kilobase per million reads (FPKM) for each transcript. The raw
FPKM values were normalized following a previously described procedure [22]. Principal com-
ponents (PCs) were computed using the surrogate variable approach [23]. We analyzed the log
transformed normalized FPKM values using a linear mixed effects model adjusting for age,
gender and the first two PCs. We tested for gene effect using the Kenward-Roger approximate
F-test to account for the potential impact of small sample size [24]. DEGs were identified by
controlling false discovery rate (FDR) at<0.01 accounting for 15,669 genes. These genes were
in the top 75% of variation of expression and this was done to remove genes with low levels of
variation. DEGs were those with a 2 or greater fold change (up or down) in expression, com-
pared to pre-transplant expression. DEGs were further investigated for function and pathway
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enrichment using Ingenuity Pathway Analysis by analyzing genes with higher levels than base-
line, lower levels, or combined higher and lower level genes at each time point.

Results

Transcripts expression over time after transplant
Patient characteristics are described in Table 1.

Alignment and mapping of RNA sequencing reads
Fastq files of all 96 samples passed FastQC report with good per base sequence quality, per base
sequence quality score, per base N content and good sequence length distribution. RNA se-
quencing paired-end reads of approximately 170 bp were aligned to the reference human ge-
nome using the TopHat2 algorithm with results summarized in Table 2. In total, there were 96
paired-end reads aligned with an average overall alignment rate of 89.9%. There were 23,177
genes with FPKM greater than zero and of these 7,567 genes had an average FPKM greater
than 5.

Compared to pre-transplant, the number of DEGs declined over time as 500 DEGs were
present at week 1, 268 at month 3 and 87 at month 6 (Table 3). Additionally, at month 3 post-
transplant there were more genes with lower levels than higher levels compred to baseline
(Table 3). At month 6, there were more DEGs with higher levels than DEGs with lower levels
compared to baseline (Table 3).

Table 4 lists the top DEGs at each time post-transplant and Fig 1 shows selected genes with
expression over time. Tables with genes names, FDR, p-values and fold changes at each time
post-transplant are in supplementary data (S1–S6 Tables). Some of the genes with lower levels
than baseline, with the smallest FDR values and highest fold change in levels were not in well
annotated genes because RNAseq identified previously unknown transcripts such as micro-
RNA 650 and open reading frames such as C1orf204 or C10orf105. However, the majority of
the identified DEGs had known functions. Additionally, the majority of micro RNAs were not
captured due to polyA stranded RNAseq library construction.

Functional annotation of DEGs and Ingenuity Pathway Analysis
One week post-transplant. Functional annotation of DEGs with higher and lower levels

with FDR< 0.01 and 2 or greater fold change compared to baseline, indicated that the top
transcripts were in T-cell related pathways (Table 5). This may be related to patients receiving
T-cell depletion induction with thymoglobulin and a calcineurin inhibitor in the immediate
peritransplant period. Specifically, the top altered pathway was T-cell receptor signaling
(Table 5) based on 18 genes with lower levels than at baseline (S7A Table). This pathway pri-
marily contained the CD3D, CD3E, and CD3G genes for T-cell receptor signaling components.
When all significantly higher and lower level DEGs compared to baseline were analyzed to-
gether no pathways based on higher level genes were identified due to a masking of the effect
by the greater number of lower level genes (309 DEGs) compared to higher level genes (191
DEGs). Thus, we investigated only the DEGs that had increased levels in blood compared to
baseline, separately with pathway analysis and identified the axonal guidance signaling path-
way containing 12 genes (Table 5 and S7A Table). Interestingly, matrix metalloprotease
(MMP) genes, were involved in all three of the top identified pathways at week 1 (S7A Table
and S8 Table), indicating that the MMP9 (S7A Table and S8 Table) and MMP8 (Table 4) are
likely important in kidney transplants without rejection.
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Table 1. Kidney Recipient and Donor Characteristics.

Characteristic Frequency, n Percent

Recipients

Age years (mean +/- Standard Deviation) 48.2 +/- 14.4 years

Gender

Female 9 28.1

Male 23 71.9

Primary Disease

Diabetes 7 21.9

Glomerular Disease 8 25.0

Hypertension 3 9.3

Polycystic Disease 6 18.8

Other 8 25.0

Race

Native American or Alaskan Decent 3 9.4

African Decent 2 6.2

European Decent 27 84.4

Transplant Type

Kidney 31 96.9

Simultaneous Pancreas and Kidney 1 3.1

Immunosuppression at week 1

Tacrolimus 21 65.6

Cyclosporine 11 34.4

Mycophenolate 31 96.9

Steroids at week 1

Yes 6 18.8

No 26 81.2

Steroids at baseline

Yes 5 15.6

No 27 84.4

Immunosuppression at Baseline

Tacrolimus 2 6.3

Cyclosporine 2 6.3

Mycophenolate 9 28.1

Donors

Age years (mean +/- Standard Deviation) 41.1+/- 11.7 years

Gender

Female 18 56.2

Male 14 43.8

Type

Living Unrelated Donor 14 43.8

Living Relative Donor 18 56.2

Race

Native American or Alaskan Decent 1 3.1

African Decent 3 9.4

European Decent 28 87.5

CMV status

Negative Recipient, Negative Donor 9 28.1

Negative Recipient, Positive Donor 5 15.6

Positive Recipient 18 56.3

doi:10.1371/journal.pone.0125045.t001
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Three months post-transplant. Compared to 1 week post-transplant, similar genes were
altered at month 3 (Table 4). However, the number of DEGs at month 3 was substantially
lower than at 1 week with 94 genes with increased levels compared to baseline and 174 genes
with decreased levels (Table 3). T-cell receptor signaling remained the top pathway altered
with 16 involved genes (Table 5). However, the fold changes in gene expression were much
lower than at week 1 (Table 4). For instance, the CD3D gene was -14.39 fold change at week 1
compared to -4.65 fold change at month 3 (Table 4). This suggests that the expression of some
of the genes in the early affected pathways may be gradually returning to pre-transplant expres-
sion levels. The second pathway with lower levels than baseline was iCOS-iCOSL signaling in
T-helper cells with 16 genes involved. The upregulated pathways at month 3 were slightly dif-
ferent than compared to week 1. The expression pattern indicates that the complement system
was activated as well as IL-8 signaling. The genes MMP8 and MMP9 remained at higher levels
at month 3 compared to baseline. Interestingly, pathway analysis also identified both the gran-
ulocyte adhesion and diapedesis and the agranulocyte adhesion and diapedesis pathways at
month 3 among genes with higher levels compared to baseline (S4 Table). This suggests that
perhaps by month 3, leukocytes were leaving the blood vessels and potentially extravasating
into kidney allograft as part of the immune response.

Six months post-transplant. By 6 months post-transplant, the numbers of DEGs com-
pared to baseline were severely reduced compared to week 1 or month 3 post-transplant. At
month 6, only 87 genes were differentially expressed compared to baseline with 50 at higher
levels and 37 at lower levels. Remarkably, at month 6, the top pathways have changed and now
granulocyte adhesion and diapedesis and the agranulocyte adhesion and diapedesis pathways
were among genes with lower levels compared to baseline (Table 5). This pathway was primari-
ly composed of chemokines genes (S7C Table and S8 Table).

Gene expression changes over time in representative genes are shown in Fig 1. In most
cases, genes at higher levels than baseline remained that way or were moving back to baseline

Table 2. Alignment of paired end RNAseq reads with Reference Genome, n = 96.

Overall Alignment Aligned pairs

Average 89.9% 31,496,089

Standard deviation 0.02 7,691,470

Median 90.2% 30,123,106

RNA sequencing reads were aligned to human genome (GRCh37/hg19 assembly) via Tophat2.

doi:10.1371/journal.pone.0125045.t002

Table 3. Differentially expressed genes (DEG) after transplant compared to baseline at pre-transplant.

Gene Expression Post-Transplant DEGs compared to baseline
(FDR< 0.01)

1 Week
(n = 31)

3 Months
(n = 18)

6 Months
(n = 15)

No. genes with higher levels (2 or greater fold
change)

191 94 50

No. genes with lower levels (2 or greater fold
change)

309 174 37

All genes with higher and lower levels (2 or
greater fold change)

500 268 87

n = number of subjects per time point.

doi:10.1371/journal.pone.0125045.t003
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Table 4. Top Differentially Expressed Genes Post-transplant Following Kidney Transplant compared to baseline with FDR < 0.01 and 2 or greater
fold change.

Week 1 Month 3 Month 6

Gene ID Entrez gene name Fold
change

Gene ID Entrez gene name Fold
change

Gene ID Entrez gene name Fold
change

Higher Levels Than at Baseline

TOMM40L translocase of outer
mitochondrial membrane
40 homolog (yeast)-like

18.20 TOMM40L translocase of outer
mitochondrial membrane
40 homolog (yeast)-like

10.64 OSBPL9 oxysterol binding
protein-like 9

4.63

TMEM205 transmembrane protein
205

14.37 TMEM205 transmembrane protein
205

6.48 CD300LD CD300 molecule-like
family member d

4.22

OLFM4 olfactomedin 4 10.73 OSBPL9 oxysterol binding protein-
like 9

6.38 HBB hemoglobin, beta 4.09

MMP8 matrix metallopeptidase
8 (neutrophil
collagenase)

9.24 UBXN11 UBX domain protein 11 5.36 NREP neuronal regeneration
related protein

3.91

OSBPL9 oxysterol binding protein-
like 9

8.55 MMP8 matrix metallopeptidase
8

4.69 HBA2 hemoglobin, alpha 1 3.90

LTF Lactotransferrin 7.93 NREP neuronal regeneration
related protein

4.60 BMP6 bone morphogenetic
protein 6

3.82

AZU1 azurocidin 1 7.88 CD177 CD177 molecule 4.20 HBA1 hemoglobin, alpha 1 3.82

CRISP3 cysteine-rich secretory
protein 1

7.85 OLFM4 olfactomedin 4 3.95 MNF1 Ubiquinol-cytochorome
C reductase complex
assembly factor 2

3.71

BPI bactericidal/permeability-
increasing protein

7.73 HP haptoglobin 3.87 TBC1D8 TBC1 domain family,
member 8 (with GRAM
domain)

3.20

UBXN11 UBX domain protein 11 7.58 CRISP3 cysteine-rich secretory
protein 1

3.80 SYVN1 synovial apoptosis
inhibitor 1, synoviolin

3.15

Lower Levels than at Baseline

IL7R interleukin 7 receptor -17.73 C1orf204 chromosome 1 open
reading frame 204

-14.13 ELK2AP ELK2A, member of ETS
oncogene family,
pseudogene

-12.25

KLRC3 killer cell lectin-like
receptor subfamily C,
member 3

-16.61 VSIG8 V-set and
immunoglobulin domain
containing 8

-14.13 PIK3IP1 phosphoinositide-
3-kinase interacting
protein 1

-11.41

CD3E CD3e molecule, epsilon
(CD3-TCR complex)

-14.99 PIK3IP1 phosphoinositide-
3-kinase interacting
protein 1

-7.67 C1orf204 chromosome 1 open
reading frame 204

-10.21

CD3D CD3d molecule, delta
(CD3-TCR complex)

-14.39 C10orf105 chromosome 10 open
reading frame 105

-5.37 VSIG8 V-set and
immunoglobulin domain
containing 8

-10.21

KLRC2 killer cell lectin-like
receptor subfamily C,
member 2

-14.27 IL7R interleukin 7 receptor -5.29 STAG3 stromal antigen 3 -6.49

KLRB1 killer cell lectin-like
receptor subfamily B,
member 1

-13.78 LEF1 lymphoid enhancer-
binding factor 1

-5.16 MIR650 microRNA 650 -5.38

KLRC1 killer cell lectin-like
receptor subfamily C,
member 1

-13.51 MAL mal, T-cell differentiation
protein

-4.94 C10orf105 chromosome 10 open
reading frame 105

-4.93

CD3G CD3g molecule, gamma
(CD3-TCR complex)

-11.94 CD3E CD3e molecule, epsilon
(CD3-TCR complex)

-4.65 EPHB1 EPH receptor B1 -4.87

LEF1 lymphoid enhancer-
binding factor 1

-11.71 TCF7 transcription factor 7 (T-
cell specific, HMG-box)

-4.60 IGLL5 immunoglobulin
lambda-like polypeptide
1

-4.81

ITK IL2-inducible T-cell
kinase

-10.82 CD3D CD3d molecule, delta
(CD3-TCR complex)

-4.60 IL8 chemokine,ligand 8 -4.31

doi:10.1371/journal.pone.0125045.t004
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Fig 1. Expression of representative genes over time in kidney transplant recipients. Representative time series of fold expression changes relative to
baseline (time 0) of some top genes with higher and lower level compared to baseline. Each line on each graph represents the expression of the particular
gene in a separate kidney allograft recipient. Note that all patients do not have data all the time points. CD3E = CD3 Epsilon TCR complex; CD3D = CD3
Delta TCR complex; MMP8 = Matrix Metallopeptidase 8; IL7R = Interleukin 7 Receptor; OLFM4 = Olfactomedin 4; KLRC3 = Killer Cell Lectin-like Receptor
subfamily C, member 3.

doi:10.1371/journal.pone.0125045.g001

Table 5. Top altered pathways from blood following kidney transplant.

Week 1 Month 3 Month 6

Higher Levels Than at Baseline

Axonal Guidance Signaling (12) IL-8 Signaling (6) Antiproliferative Role of Somatostatin Receptor 2
(2)

LXR/RXR Activation (6) Complement System (3) Spermine and Spermidine Degradation I (1)

Airway Pathology in Chronic Obstructive
Pulmonary Disease (2)

Airway Pathology in Chronic Obstructive
Pulmonary Disease (2)

Melatonin Degradation II (1)

Lower Levels Than at Baseline

T Cell Receptor Signaling (18) T Cell Receptor Signaling (16) Granulocyte Adhesion and Diapedesis (8)

iCOS-iCOSL Signaling in T Helper Cells (17) iCOS-iCOSL Signaling in T Helper Cells (16) Agranulocyte Adhesion and Diapedesis (8)

CTLA4 Signaling in Cytotoxic T Lymphocytes
(13)

CTLA4 Signaling in Cytotoxic T Lymphocytes
(12)

Communication between Innate and Adaptive
Immune Cells (6)

Higher and Lower Levels, Combined

T Cell Receptor Signaling (18) T Cell Receptor Signaling (16) Granulocyte Adhesion and Diapedesis (17)

iCOS-iCOSL Signaling in T Helper Cells (17) iCOS-iCOSL Signaling in T Helper Cells (16) Agranulocyte Adhesion and Diapedesis (14)

CTLA4 Signaling in Cytotoxic T Lymphocytes
(14)

CTLA4 Signaling in Cytotoxic T Lymphocytes
(12)

Macropinocytosis Signaling (8)

Top canonical gene pathways altered at week 1, months 3 and 6 compared to baseline using Ingenuity Pathway Analysis of DEGs with false discovery

rate (FDR) < 0.01 and 2 or greater fold change. The number of DEGs in the pathway is shown in parentheses.

DEG = Differentially Expressed Gene.

Baseline = prior to transplant.

doi:10.1371/journal.pone.0125045.t005

Differentially Expressed Genes after Kidney Transplant

PLOS ONE | DOI:10.1371/journal.pone.0125045 May 6, 2015 8 / 14



transcript levels. However, some genes showed different patterns of expression over time. For
example the granulocyte and agranulocyte adhesion, and diapedesis pathways were at higher
levels at month 3 (S8 Table) and then at lower levels at month 6 (S7C Table and S8 Table). This
was unusual in our study where a pathway was at higher levels after transplant compared to
baseline and then at lower levels at the next time point. Thus, the data indicate gene expression
and pathways can change as a function of time following transplant and this is visualized in
Fig 1. At month 6, we also observed lower levels of genes involved in T-cell signaling pathways
which were possibly due to the standard reduction in immune suppressant drugs that occurs
after month 3 and a gradual T-cell recovery which occurs as induction therapy effects wane.

Discussion
This is the first study to conduct whole transcriptome sequencing in PBMCs and characterize
changes in expression at multiple times post-transplant. This research design is distinctly
unique compared to other studies using microarray of kidney biopsies or blood at one time
point following transplant usually at the time of a rejection event. As we hypothesized, PBMC
transcripts vary after the initiation of immunosuppression and at different times following
kidney allograft transplantation. We showed that many genes had altered expression levels
at week 1 and then slowly move towards baseline expression levels as time passes post-trans-
plant (Fig 1). Of major importance, our data show there are substantial transcript expression
changes in the blood of patients not experiencing rejection events. For instance, the T-cell sig-
naling components CD3D, CD3E, and CD3G had decreased levels at week 1 post-transplant
(Table 4), but levels increase towards pre-transplant levels at months 3 and 6 in the blood (Fig
1). Speculatively, thymoglobulin induction therapy may be depleting T-cells in the blood that
typically express CD3E, CD3G and CD3D. Most pathways among genes with lower levels com-
pared to baseline were T-cell related possibly due to T-cell depleting induction agents or calci-
neurin inhibitor therapy early after transplant, but the up regulated pathways involve genes in
axonal guidance or complement activation. It is possible that axonal guidance genes are in-
volved in signaling the leukocytes or as a cross talk mechanism with the nervous system. How-
ever, since our patients did not have rejection, this pathway may represent an allograft
tolerance mechanism. Many genes with lower levels compared to baseline, such as killer cell
lectin receptors or CD3 signaling components at week 1 (Table 4), or genes with higher levels,
such as MMP8 at week 1 or chemokines at month 6 (Table 4) could be expressed by specific
cell types. Therefore, it is possible that the expression we observed are due to changes in the
abundance of certain lymphocyte subtypes in the blood which express these transcripts. It is
important that in the future we understand which lymphocytes are responsible for the altered
transcripts and their relative frequency in the blood.

It is difficult to directly compare our results to published gene expression data since ours is
the first study using RNAseq longitudinally in non-rejecting kidney patients’ blood. Many pa-
tients at baseline were not on immunosuppression (Table 1). Comparison of gene expression
among the baseline patients on immunosuppression (n = 13) versus those not on immunosup-
pression (n = 19) did not show any significantly different genes at FDR< 0.01 (data not
shown). One previous study did investigate, longitudinally (years 1, 2, 3, and 4 post-transplant)
RNA expression by microarray in biopsy and blood [25], but it is not directly comparable as
the study used experimental donor hematopoietic stem cells to induce tolerance in HLA-iden-
tical transplants. Another study by Sarwaal and colleagues used microarray and qRT-PCR to
detect a set of genes for AR called a kSORT assay [5,12,26]. Not surprising, significant genes in
our study were not the same as those identified in their analysis. However, they identified the
gene IL7R to be associated with AR [26,27] which we identified as one of the genes with lower
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levelsat week 1 and then increased levels at month 3 post-transplant, compared to baseline.
IL7R is a cytokine receptor expressed by naïve and memory T-cells. This is consistent with
down regulation in T-cell signaling pathways due to immune suppression induced depletion of
T-cells. Another study conducted on leukocytes and biopsies of kidney transplant recipients
identified some of the same genes we identified (CD3D, CCL5, LTF, LCN) but they used a mi-
croarray platform [11]. CD3D was found to have increased levels in the biopsies of AR patients
[11] possibly indicating cells that express CD3D invade the kidney during an AR event. Addi-
tionally, Halloran and colleagues conducted microarray studies on kidney biopsies to deter-
mine which cells are present in the allograft at the time of AR. Five transcripts identified in the
kidney biopsies were T-cell specific including CD3D, TCRA, CXCR6, GPR171 and NELL2
[28]. Specifically, the T-cell related transcripts were present in kidney biopsies with T-cell me-
diated rejection. Thus, both studies [11,28] indicate CD3D expressing cells are present in the
kidney during an AR event. However, in our study, CD3D levels were lower in the blood (Fig 1,
Table 4) of our transplant recipients without rejection, which may mean the CD3D expression,
is lower in blood during optimum immune suppression. Thus, CD3D is likely an important
biomarker of immunosuppression in kidney allograft patients.

Like us, Halloran also identified LTF and OLFM4 to have increased levels after transplant,
but they found these genes in biopsy tissue, and associated them with injury repair response
transcripts [29]. They also identified LCK, a T-cell restricted kinase [30], MMP9 and RNASE3
[31]. Interestingly, MMP9 is associated with the previously undescribed axonal guidance sig-
naling pathway that we identified at increased levels following transplant, compared to base-
line. Genes involved in the axonal guidance signaling pathway at week 1 post-transplant
include ABLIM3, ADAM15, BMP6, GNG11, MMP8, MMP9, MYL9, PLXNB2, PRKAR2B,
TUBB1, TUBB6, WNT5B (S7A Table). The axonal guidance signaling pathway suggests that
even in the presence of immunosuppression, the immune cells were still attempting to migrate
into the allograft and possibly investigate the new allograft antigens. Calcineurin based immu-
nosuppression targets T cell receptor signaling and may have less effect on axonal guidance sig-
naling pathways. Thus, the sensitivity and time series analysis using RNAseq has led us to the
identification of pathways and genetic signatures previously not reported.

Our study has several limitations. This study was conducted in a single center, while a multi-
center approach would be more generalizable. Additionally, we only have non-rejecting kidney
recipients in our study up to 7 months post-transplant, and it is possible some of the patients
had AR or CGD at a later time point when their immunosuppression is lowered. Future studies
should compare our findings in patients without rejection to those with kidney AR or CGD.
Nonetheless, our study does establish a possible gene expression profile in kidney transplant
patients with apparent optimal immune suppression. Some patients did not have gene expres-
sion at all the 3 time points of baseline, 1 week, and 3 months post-transplant. However, for the
top genes, the gene expression profile for patients with all three time points did not appear dif-
ferent (S1 Fig). An additional limitation of this study is that we used polyA stranded RNAseq
libraries which do not account for most microRNAs and other non-polyA transcripts. Also, we
use a standard annotated genome that does not specifically account for alternative splice vari-
ants. We also did not validate our results with qRT-PCR due to the limited sample of RNA
from the patients. Furthermore, our study uses PBMCs isolated from whole blood to determine
DEGs following kidney transplant. However we did not determine the cell types present in
PBMCs and distinguish what cell types in the PBMCs were responsible for the changing abun-
dance of transcripts in the blood. It is possible that the cells that express the particular tran-
scripts are in lower abundance in the peripheral blood leading to lower levels of the cell-
specific RNAs. In contrast, RNAs that appear at higher levels in the PBMCs could indicate that
cells, that expressed those specific RNAs, are proliferating leading to increased cell-specific
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transcript abundance. It is thus important in the future to determine what cells are most re-
sponsible for alterations in transcript abundance in the blood so that we can identify cell type
specific gene expression signatures and molecular cellular mechanisms of kidney allograft
transplantation. Lastly, we did not account for all baseline clinical factors in a multivariate
model due to the small sample size, some of which could confound our findings. Alternatively,
we used a surrogate variable approach to approximate potential confounders.

We report the first use of RNAseq, to detect the transcriptional changes in PBMCs at multi-
ple time points following kidney transplantation. RNAseq is superior to microarray to deter-
mine DEGs because it’s not limited to available probes and has increased sensitivity to detect
low level transcript expression [16]. This is important because the majority of the transcripts
early post-transplant with at least a 2 fold change in expression were in lower levels compared
to baseline. Also, RNAseq can identify transcripts that may not have a probe on a microarray
chip. Therefore, RNAseq is a more precise method of characterizing gene expression in trans-
plantation than microarray. This study leads to better understanding of the molecular genetic
and cellular pathways that are associated with kidney transplantation without clinical rejection.
We also show that genetic signatures change as a function of time following transplant. This
study also establishes the feasibility of RNAseq in PBMCs, a new protocol which is more sensi-
tive than microarray and less invasive than biopsy, to understand the genetic signatures of
kidney transplantation.

Supporting Information
S1 Fig. Expression of representative genes over time in kidney transplant recipients. Repre-
sentative time series of fold expression changes relative to baseline (time 0) of genes. Each line
on each graph represents the expression of the particular gene in a separate kidney allograft re-
cipient. This figure only shows patients that have expression data for all 3 time points: baseline,
week 1 and month 3 post-transplant. Some of the patients also have month 6 time point.
(TIF)

S1 Table. Genes with higher levels at week 1 post-transplant compared to pre-transplant.
Table shows gene ID, fold change expression compared to baseline, false discovery rate (FDR)
and p-value.
(XLSX)

S2 Table. Genes with lower levels at week 1 post-transplant compared to pre-transplant.
Table shows gene ID, fold change expression compared to baseline, false discovery rate (FDR)
and p-value.
(XLSX)

S3 Table. Genes with higher levels at 3 months post-transplant compared to pre-transplant.
Table shows gene ID, fold change expression compared to baseline, false discovery rate (FDR)
and p-value.
(XLSX)

S4 Table. Genes with lower levels at 3 months post-transplant compared to pre-transplant.
Table shows gene ID, fold change expression compared to baseline, false discovery rate (FDR)
and p-value.
(XLSX)

S5 Table. Genes with higher levels at 6 months post-transplant compared to pre-transplant.
Table shows gene ID, fold change expression compared to baseline, false discovery rate (FDR)
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and p-value.
(XLSX)

S6 Table. Genes with lower levels at 6 months post-transplant compared to pre-transplant.
Table shows gene ID, fold change expression compared to baseline, false discovery rate (FDR)
and p-value.
(XLSX)

S7 Table. Differentially expressed genes in pathways. (a) At week 1, (b) at 3 months, (c) at
6 months.
(XLSX)

S8 Table. Ingenuity Pathway Analysis of Pathways.Molecular Cellular Pathways associated
with kidney transplantation when analyzing the genes with higher levels compared to baseline,
genes with lower levels or genes with higher and lower levels, combined.
(DOCX)
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