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The past years have shown a revolution in the way scientific workloads are being

executed thanks to the wide adoption of software containers. These containers run

largely isolated from the host system, ensuring that the development and execution

environments are the same everywhere. This enables full reproducibility of the workloads

and therefore also the associated scientific analyses performed. However, as the research

software used becomes increasingly complex, the software images grow easily to sizes of

multiple gigabytes. Downloading the full image onto every single compute node on which

the containers are executed becomes unpractical. In this paper, we describe a novel way

of distributing software images on the Kubernetes platform, with which the container can

start before the entire image contents become available locally (so-called “lazy pulling”).

Each file required for the execution is fetched individually and subsequently cached

on-demand using the CernVM file system (CVMFS), enabling the execution of very large

software images on potentially thousands of Kubernetes nodes with very little overhead.

We present several performance benchmarks making use of typical high-energy physics

analysis workloads.

Keywords: Kubernetes, CVMFS, containers, Docker, workloads, high-energy physics

1. INTRODUCTION

A software container is a packaged unit of software that contains all dependencies required to
run the software independently of the environment in which the container is executed. Since the
virtualization of the environment takes place at the operating-system (OS) level, the overall resource
overhead is small, in particular compared to virtual machines that virtualize at the hardware level.
Nevertheless, the containers run as isolated processes. Software containers are therefore widely used
in industry but also in scientific high-throughput computing.

In the context of reproducible scientific analysis workflows, containers play a very important
role. In this study, we in particular focus on high-energy physics (HEP) applications. For example,
the physics experiments at the Large Hadron Collider (LHC) (Evans and Bryant, 2008) particle
accelerator at CERN have been running for more than a decade. Scientific Linux CERN 5 (Scientific
Linux CERN, 2021), the OS used at the beginning of data-taking campaigns in 2009, has reached its
end-of-life years ago and thus does not receive security updates anymore. Even the OS used for last
data-taking campaign in 2015–2018, Scientific Linux CERN 6, is not maintained since December
2020. Therefore, no large-scale installations running these systems exist anymore, and software
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not ported to a more recent OS can only be executed at scale
using containers. Furthermore, central data set production jobs
using the Worldwide LHC computing grid (The Worldwide
LHC Computing Grid, 2021) are largely running using software
containers by now, for example for the CMS experiment (CMS
Collaboration, 2008).

One recurring issue with the execution of containerized
workloads is the slow startup time of a container compared to
directly running from the file system of the computing node.
The container image, which usually contains a complete Linux
distribution, the actual application binaries of interest and further
package dependencies, first needs to be downloaded to the node’s
file system. The size of such an image typically ranges from tens
of megabytes for a base OS image to several gigabytes for complex
applications, therefore also causing a significant network load.
There are effectively two ways to mitigate this issue: one can
provide a pull-through cache or local registry (Registry as a pull
through cache, 2021) to store the container images on machines
in the local network close to the execution node, or one can
“lazy-pull” (Harter et al., 2016) the images. Lazy-pulling means
that image data gets downloaded only as necessary. In this
paper, we effectively combine these two approaches, quantifying
performance gains for typical HEP workloads. In section 2
the methodology and overall setup are described. Results are
presented in section 3, followed by a discussion in section 4.

2. METHODS

The goal of our study is to evaluate the feasibility of executing
arbitrary containerized workloads using a novel lazy container
pulling approach that makes use of a caching system that is
by now commonly used for software distribution in HEP and
related areas. The tools and methodology used for that purpose
are described in the following.

2.1. Container Workloads Analyzed
We analyze a range of different workloads ranging from a
base OS image over programming language images to typical
HEP analysis images. All these images are available on Docker
Hub (Docker Hub, 2021) and summarized in Table 1. The
CentOS 7 Linux distribution is currently the default OS for
computing clusters at CERN (Linux @ CERN, 2021). This image
is therefore commonly used for simple containerized workloads
that only need access to a shell. At the time of writing, most HEP
software is written in C++ and/or Python, which is why these
images reflect a realistic use case for experiment-independent
software needs. This is similarly the case for the ROOT image,
which effectively builds on top of the C++ and Python images:
ROOT is an open-source data analysis framework (Brun and
Rademakers, 1997), which includes a C++ interpreter as well as
Python bindings, and constitutes the basis for a vast number of
HEP software frameworks. For all four images, the “workload”
is to print “hello” onto the console. For the CentOS image, the
echo command is used, while in case of the Python image the
Python interpreter is used for printing. For the gcc image, a
C file is created on the fly, compiled, and the resulting binary
executed. For the ROOT image, the integrated C++ interpreter

TABLE 1 | Container images used in the analysis.

Image name Size [MB] Description

centos:7.9.2009 76 CentOS 7.9 base image

python:3.9 338 Python 3.9 base image

gcc:10.2.0 427 GNU Compiler Collection

10.2.0 base image

rootproject/root:6.22.06-ubuntu20.04 551 ROOT 6.22.06 based on

Ubuntu 20.04

clelange/cms-higgs-4l-full:latest 4,519 CMS Higgs boson analysis

example

The string after the colon in the image name indicates the image version/tag. The size

corresponds to the compressed image size in the container registry.

is used. In addition to the base images discussed, an additional
image that contains parts of a realistic Higgs boson physics
analysis (Jomhari et al., 2017) is used. This image contains a
full CMS software (CMSSW) (CMSSW Software, 2021) release,
version CMSSW_5_3_32. The C++ analysis code is already
compiled, since it would typically be used to run over thousands
of input files in parallel. For the benchmarking purposes here,
the code analyzes a single file in a CMS-specific format, which
has previously been copied to the computing node for local file
system access.

2.2. Kubernetes
The current de-facto standard to leverage and manage a large
number of containers is the Kubernetes container-management
system (Burns et al., 2016). Kubernetes exposes an API for
this purpose, which can also be used to monitor events in the
computing cluster. For the purpose of this study, we set up a
Kubernetes cluster consisting of one control-plane node and four
worker nodes. We then create Jobs using the batch/v1 API
to create the container workloads described in section 2.1 on
selected worker nodes. The Kubernetes version used is v1.20.2.
One of the main reasons we opted for a Kubernetes cluster is
that this approach is easily scalable to larger workflows and would
also be applicable to public compute clouds. Furthermore, several
WLCG sites are in the process of moving to Kubernetes, or have
already done so.

2.3. The CernVM File System and the
WLCG
The caching mechanism used in the following is based on
the CernVM file system (CVMFS) (Blomer et al., 2011, 2020).
CVMFS is a distributed file system, designed to distribute HEP
experiment software onto virtual machines and batch-compute
worker nodes. It features a read-only client that allows different
machines to access the software installed in CVMFS using an on-
demand downloadmechanism, with which only the files required
are downloaded and consequently cached on the machine until
the machine’s cache size limit is reached. For the distribution
of files, a standard HTTP transport is employed, which allows
exploitation of a variety of web caches such as a local squid proxy
cache (2020b). CVMFS moreover features content-addressable
storage for files, which enables the deduplication of files at both
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storage and cache level, allowing different workloads to benefit
from a single shared cache.

CVMFS is widely deployed on the WLCG and is therefore
accessible on all major WLCG sites. This implies that any
software distributed via CVMFS is also accessible by the whole
WLCG, which significantly simplifies software distribution.
CVMFS has been one of the cornerstones of software distribution
inside theWLCG for several years, and at this point is a hardened
and very reliable way to distribute files to the WLCG sites.

2.4. The CVMFS Image Snapshotter
While Kubernetes can be used to manage containers, it does
not spawn containers itself. For pulling and running container
images, it relies on the so-called container runtime. One of
those containers runtimes is containerd (2020a). The containerd
runtime has a plugin mechanism that allows different plugins
to modify containerd’s internal working mechanisms. Among
thosemodifiable components, the so-called snapshotter is the one
that mounts the layers of a container image and thus makes the
container’s file system available to the container runtime.

In this work, we make use of a novel containerd plugin, the
CVMFS snapshotter (CVMFS containerd snapshotter, 2021), to
provide image layers previously ingested into CVMFS to the
container runtime. Using CVMFS, the CVMFS snapshotter can
mount the layers without downloading any content, only making
use of the file metadata provided by CVMFS as opposed to the
actual file data.

Once all the layers have been mounted, the container runtime
has access to the full file system of the container image. Only
when the container runtime starts to access and load files, for
instance the bash executable, the CVMFS client fetches the
actual files. The CVMFS client will hereby first attempt to load
the files from the local cache. If the file is not present, the file is
downloaded via the network.

The containerd snapshotter plugin interface that is used by the
CVMFS snapshotter has originally been developed in connection
with the Stargz Snapshotter (2021). The Stargz snapshotter
introduces a backwards-compatible change to the OCI image
format (Open Container Initiative, 2021) that facilitates lazy
pulling. However, we did not use the Stargz approach here
directly, because at the time of writingmost container images had
not yet been migrated to the new image format. Furthermore,
the Stargz snapshotter is not designed to use third-party
caches for content distribution. Instead, all clients have to fetch
content directly from a centrally managed source. This limits its
scalability in federated infrastructures that are typically deployed
for scientific collaborations.

2.5. DUCC – The Daemon that Unpacks
Container Images into CVMFS
The CVMFS containerd plugin relies on a defined
structure of a particular CVMFS repository, which is called
unpacked.cern.ch. This CVMFS repository is devoted
to providing container images to the WLCG. Using the
CVMFS service DUCC, “the Daemon that Unpacks Container
Images into CVMFS” (Working with DUCC and Docker

Images (Experimental), 2021), container images of interest
are automatically downloaded and unpacked into a local
file system. The container images are then provided in the
unpacked.cern.ch repository in two different formats:
as a flat file system, which can be used by the Singularity
container platform, which is widely used on the WLCG, or as a
set of layers, to be used by the containerd snapshotter or other
OCI-compliant runtimes.

In the latter case, each layer is unpacked into a specific
directory, referred to as the layer digest. This ensures that lower
layers of a container image are not overwritten by higher (more
recent) layers, and thus enables sharing of layers between images.
This is particularly relevant when the same base images are used
or changes to container images are only incremental. Moreover,
this file system structure allows for an immediate lookup of the
layer location given only its digest.

2.6. Compute Cluster Setup
The compute cluster used in this work consists of six virtual
machines (VMs), each equipped with four-core Intel Xeon
Skylake processors with 2.3 GHz clock, 7.1 GB RAM, and
local 40 GB SSD storage. The VMs are deployed in the same
networking zone within the CERN network to minimize possible
effects caused by network latency (the ping response time is
usually below 0.5 ms). As described in section 2.2, five of
the machines make up the Kubernetes cluster. These machines
run Ubuntu Linux 20.04.2 LTS (Ubuntu Linux, 2021) with
Kubernetes installed on top with the Calico container network
interface v3.17.2.

The sixth VM runs CentOS Linux 8.2 and serves as both
the local squid proxy cache server and the local container
registry (registry:2.7.2 on Docker Hub). Both services
are containerized and deployed using podman v2.0.5 (Podman,
2021). The images described in section 2.1 used for the
benchmarks are pushed into the local container registry so
that bandwidth limitations only have minor effects. For the
same reason, files in CVMFS required for the execution of the
benchmarking jobs are pre-cached on the squid server. The
bandwidth between the Kubernetes nodes and this VM was
measured to be around 6.5 Gbits/s.

Two of the Kubernetes worker nodes are configured to
use vanilla containerd v2.4.2 and set to pull the container
images from the local container registry. We refer to these
machines as “legacy” in the following. The other two worker
nodes use the some containerd version, but additionally have
the CVMFS unpacked.cern.ch repository mounted with
a proxy configuration pointing to the squid proxy cache
server. Furthermore, containerd is configured to use the
CVMFS snapshotter v0.1.1 and we refer to the machines as
“snapshotter” machines.

2.7. Benchmarking Procedure
Benchmarking is performed accessing the Kubernetes API
via the Kubernetes Golang client library, which allows us
to observe the pod (i.e., the container) life-cycle details
and transitions in the cluster. For each image and worker
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FIGURE 1 | Summary of the overall run time of the CentOS (Left) and Python (Right) workloads analyzed split into the container image pull time, the time to start the

job after the container is ready as well as the time for the actual workload comparing the legacy and the snapshotter approaches.

node combination, ten measurements are performed. For each
run, we evaluate the image pull time, the time for the
pod to be ready after pulling, and the overall run time.
Furthermore, we extract the amount of data downloaded to
the node.

Before starting each measurement, the node’s image cache
as well as the CVMFS cache for the snapshotter machines is
wiped. For the legacy machines, the container image of interest
therefore has to be downloaded from the local registry each
time. Similarly, for the snapshotter machines, the container
manifest needs to be downloaded each time and the node’s
CVMFS cache be populated accordingly. The measurement is
started as soon as the pod is successfully scheduled on the
respective node. We record the time again once the pod starts
executing the actual workload and stop the time when the pod
is succeeded, which means that execution of the workload has
completed successfully. Failed runs are discarded. We found
that the reason runs failed was that we hit the Docker Hub
download rate limit when obtaining the image manifest, which
means that in the future other/dedicated container registries
should be used instead. The data downloaded is taken as the
compressed image size for the legacy machines, and for the
snapshotter machines we determine the data downloaded from
the squid proxy using the cvmfs_talk command, which is part
of the CVMFS client installation. Furthermore, measurements
without deleting the image cache are performed to evaluate
possible overhead.

3. RESULTS

Results are presented separately for container startup time and
the measured data transfer.

3.1. Container Startup and Run Times
The pull time when using the CVMFS snapshotter is found to
be a few seconds for all images, increasing with image size. The
largest image, the Higgs boson analysis image, takes 18 s to start
(see Figure 3). When using the legacy machines, the pull time
scales linearly with the image size, as expected. The container
creation time is negligible for both approaches. The workload
execution time is a few seconds or less for the simple workloads
(CentOS, Python, gcc, see Figures 1, 2 left) and just below 30 s for
the Higgs boson analysis with no significant differences between
legacy and snapshotter. However, for the ROOT image (see
Figure 2 right), we observe that the workload execution time
is about a factor five shorter for the legacy machines than for
the snapshotter ones. In this case, a large number of additional
files required for the workload that were, however, not needed
for the container startup, are downloaded during execution. The
container startup and run times are summarized in Figures 1–
3. When executing the jobs with a pre-populated cache on the
worker nodes, the pull time is found to be around 1 s or less for
both approaches.

3.2. Data Transferred
The amount of data downloaded from the local container registry
when using the legacy machines and the data downloaded from
the proxy cache server when using the CVMFS snapshotter
machines is shown for the container images analyzed in Figure 4.
The data downloaded to the legacy machines corresponds to
the respective compressed image sizes given in Table 1, since
the complete image needs to be downloaded before the job
can start. In contrast to that, for the snapshotter machines,
only the actual required data to execute the workload has
to be downloaded. We observe that the data actually used
is typically at level of a few percent, but increases up to
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FIGURE 2 | Summary of the overall run time of the gcc (Left) and ROOT (Right) workloads analyzed split into the container image pull time, the time to start the job

after the container is ready as well as the time for the actual workload comparing the legacy and the snapshotter approaches. For the ROOT workload, a large fraction

of the image data is required and downloaded during the execution stage, significantly increasing the execution time.

FIGURE 3 | Summary of the overall run time of the CMS Higgs boson analysis

workload analyzed split into the container image pull time, the time to start the

job after the container is ready as well as the time for the actual workload

comparing the legacy and the snapshotter approaches.

30% for the ROOT image. When running the jobs without
deleting the image cache, the amount of data transferred
is at the kilobyte level, because only the image manifest
is downloaded.

4. DISCUSSION

Our studies show that the snapshotter approach using lazy
image-pulling in combination with aggressive caching using
CVMFS is significantly faster than the legacy approach of
completely downloading the container image before execution
for all evaluated workloads. The time for the container to start
is reduced by at least a factor two for the smallest CentOS image
(see Figure 1 left), and this factor increases as a function of
the image size. Furthermore, the amount of data downloaded is
reduced dramatically, since in most cases only a fraction of the
image’s data is needed for workload execution. This is particularly
important for HEP workloads, which often consist of a large
number of jobs that are run in parallel on a large number
of nodes. Provisioning a quasi-local cache such as CVMFS is
therefore mandatory to avoid bandwidth problems.

For images that use a large fraction of the image data, i.e., in
our analysis the ROOT image (see Figure 4), an increase in the
workload execution time is found when using the snapshotter
(see Figure 2 right), which downloads the required data on the
fly during the execution stage as opposed to having the full
image available already. While this is somewhat a worst-case
scenario for the snapshotter approach, the overall run time is
still significantly shorter. We think this can be addressed by pre-
fetching bundles of files in the CVMFS client. Such file bundles
can be automatically created by tracking the files needed to
start a container, and possibly also executing the image’s main
binary. The implementation and evaluation of a CVMFS pre-
fetch capability is subject to future work.

If one optimized the container image by reducing the size
overhead and thus increased the fraction of data used, the
performance gains of the snapshotter compared to the legacy
approach could decrease. However, this would make each
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FIGURE 4 | Data downloaded from the container registry and CVMFS for the

legacy and snapshotter machines, respectively, in megabytes for the container

images analyzed. The percentages indicate the fraction of data downloaded

when using the CVMFS snapshotter compared to the full compressed image

in the registry.

image very use-case specific and would also require additional
work when creating the image. An alternative approach could
be to schedule jobs with the same base layers on the same
execution nodes. However, due to the high variety and large
number of workloads, this could be challenging to achieve and
would need more work on the job scheduler side. Overall, the

snapshotter approach presented in this work performs and scales
significantly better than previous approaches, would not require
any changes to current standard container image build processes,
and integrates with modern compute platforms. At the time
of writing, the CVMFS snapshotter is actively used for smaller
Kubernetes installations at CERN. Furthermore, several WLCG
sites are evaluating the use of Kubernetes on-premise as well as
on public compute clouds for scalability, for which the CVMFS
snapshotter will be an attractive tool.
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