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Abstract: This paper reviews applications of machine learning (ML) predictive models in the diagnosis
of chronic diseases. Chronic diseases (CDs) are responsible for a major portion of global health costs.
Patients who suffer from these diseases need lifelong treatment. Nowadays, predictive models are
frequently applied in the diagnosis and forecasting of these diseases. In this study, we reviewed the
state-of-the-art approaches that encompass ML models in the primary diagnosis of CD. This analysis
covers 453 papers published between 2015 and 2019, and our document search was conducted
from PubMed (Medline), and Cumulative Index to Nursing and Allied Health Literature (CINAHL)
libraries. Ultimately, 22 studies were selected to present all modeling methods in a precise way that
explains CD diagnosis and usage models of individual pathologies with associated strengths and
limitations. Our outcomes suggest that there are no standard methods to determine the best approach
in real-time clinical practice since each method has its advantages and disadvantages. Among the
methods considered, support vector machines (SVM), logistic regression (LR), clustering were the
most commonly used. These models are highly applicable in classification, and diagnosis of CD and
are expected to become more important in medical practice in the near future.
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1. Introduction

Artificial intelligence (AI) is defined as the technology that uses computer knowledge to represent
intelligent behavior with nominal human involvement, and machine learning (ML) is considered as a
subset of AI techniques. Usually, this kind of intelligence is commonly acknowledged as having begun
with the innovation of robotics [1]. With the rapid growth of electronic speeds and programming,
computers may display intelligent behavior similar to that of humans in the near future. This is because
of the large advancements happening in contemporary ideas in the development of AI [2]. Artificial
intelligence can be defined as human intelligence which is performed by machines. In computer
science, it is defined as the machine’s capacity to emulate intelligent behavior by itself, using nothing
but ML [3].

The applications of AI in medicine are developing quickly. In 2016, AI projects coupled with
medicine drew in more speculation from the global economy than other projects [4]. In medicine,
AI refers to the utilization of automated diagnosis processes and the treatment of patients who require
care. Increased AI utilization in prescription will allow a considerable amount of the role to be
automated, opening up medicinal experts’ time to be used in performing different obligations, ones
that cannot be automated. As such, this technology promises progressively significant utilization in
the field of human resources (HR).
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In general, ML is categorized as supervised (i.e., consists of output variables that are predicted
from input variables) [5] or unsupervised (i.e., deals with clustering of different groups for a particular
intervention). ML is used to determine complex models, and extract medical knowledge, exposing
novel ideas to practitioners, and specialists [2]. In clinical practice, ML predictive models can
highlight enhanced rules in the decision-making regarding individual patient care. These are also
capable of autonomous diagnosis of different diseases under clinical regulations [4,6–8]. In [9], the
incorporation of these models in drug prescription can save doctors and offer new medical opportunities
in pathology identification.

With ML models, it can also be possible to improve quality of medical data, reduce fluctuations in
patient rates, and save in medical costs. Therefore, these models are frequently used to investigate
diagnostic analysis when compared with other conventional methods [10]. To reduce the death rates
caused by chronic diseases (CDs), early detection and effective treatments are the only solutions [11].
Therefore, most medical scientists are attracted to the new technologies of predictive models in disease
forecasting [12]. These new advancements in medical care have been expanding the accessibility of
electronic data and opening new doors for decision support and productivity improvements [13]. ML
methods have been effectively utilized in the computerized interpretation of pneumonic capacity tests
for the differential analysis of CDs. It is expected that the models with the highest accuracies could
gain large importance in medical diagnosis.

Due to the low-progress nature of CDs, it is important to make an early prediction and provide
effective medication. Therefore, it is essential to propose a decision model which can help to diagnose
chronic diseases and predict future patient outcomes. While there are many ways to approach this in
the field of AI, the present study focuses distinctly on ML predictive models used in the diagnosis
of CDs, which highlights the importance of this study. In this study, we conducted a systematic
literature review of different state-of-art of predictive models, and our significant contribution in this
paper is to develop comparative model analysis to propose model optimization. In comparison to
the conventional data analysis techniques, this review article will able to find promising results that
enhance the quality of patient data and analysis of specific items that are related to ML algorithms in
medical care.

2. Methods

2.1. Search Strategy

The systematic literature search was conducted through the libraries of PubMed (Medline) and
Cumulative Index to Nursing and Allied Health Literature (CINAHL). Keywords like ‘chronic diseases’,
‘predictive models’, ‘ML in CD diagnosis’, and ‘model classifiers’ were used during the document
search. The search was conducted in January 2020 and resulted in 453 documents. The documents
were filtered based on its publication dates ranging from 2015 to 2019 to evaluate the latest literature
on ML classifiers in CD prediction.

2.2. Selection Criteria

The title and abstract of the individual articles were retrieved based on the mentioned search
terms. Finally, a few of the items were found to be eligible to fulfill the research objectives. This
research only describes predictive models used to perform CD diagnosis and does not concentrate on
overall trends in AI medicine. Further article revision was conducted to filter the duplicates between
the two databases. Moreover, the inclusion and exclusion criteria of our review were based on time,
methodological quality and language. Reports and other studies published before 2015 were excluded
as outside the limitations on the timeframe of this study. The inclusion criteria used in Pub Med and
CINAHL are as follows: free full text, English, original papers and research outcomes. We excluded
276 items among the total search documents because of duplication. The remaining 177 were screened
to match the methodologies related to the current research topic.
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2.3. Data Extraction

Data evaluation was conducted in two phases. In the first phase, depending on the inclusion
criteria, 55 documents were identified for extended revisions. In the second phase, two individual
researchers (GB and GGS) were equally distributed for quality check. As discussed, the proposal of a
precise model in CD diagnosis was considered as the main focus of this paper. Therefore, articles were
extracted based on the authors’ information, the study design of sampling pattern and method types,
and diagnostic criteria. The analysis of each article was individually revised and recorded.

2.4. Quality Evaluation

Quality assessment check was accomplished by the adoption of the Newcastle–Ottawa Scale
(NOS), which is a renowned method in the assessment of study relevance and research interest [14].
The quality of each published article was evaluated as weak (0–4), moderate (5–6), or strong (7–9).
Each selected study score was recorded in separate excel sheets to compute whether an individual
paper was suitable or not for this review. Ultimately, 22 studies were selected, which are in line with
the predictive models in the CD diagnosis (Figure 1). Based on their content, the selected papers were
tabled into predictive models used in CD identification (Table 1) and pathologies with model usage,
along with their strengths and limitations (Table 2).
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Table 1. Machine learning (ML) algorithms on different pathologies along with input features and
outcomes measures.

CD Diagnosis Study Type Input Features Outcomes Models Reference

Hepatic fibrosis Cross-sectional Age, sex and RTE
images

Accuracy,
Sensitivity, and

Specificity

NB, RF, KNN,
SVM, and NN [16–18]

Chronic hepatitis
B stages Case study Gene expressions Precision and

AU-ROC RF, KNN, SVM [19]

COPD
exacerbation

events
Retrospective COPD symptoms TP, FP, ROC BN [20]

Aggravating event
identification of

COPD
Longitudinal EDGE digital

health system AU-ROC LR [21]

Exacerbations of
COPD patients Case-control Equi-ripple

bandpass (BP)

Sensitivity,
specificity,

accuracy, PPV,
NPV

PCA coupled
SVM [22]

Diabetes
classification Case study Age and clinical

data

Sensitivity,
specificity,
accuracy,
AU-ROC

LR, ANN, NB,
KNN, and RF [23]

Glomerulus
filtration rate

estimation

Retrospective
cohort study

(RCT)

Age, sex, and
serum creatinine

99mTc-DTPA
imaging

Accuracy ANN, SVM [24]

Asthma
exacerbations

events
Case-control Telemonitoring

data

Sensitivity,
specificity,
accuracy

NB, adaptive
Bayesian

network, and
SVM

[25]

Stage of lung
cancer

Prospective
cohort study

Cyrano’s 320
sensor device,

age

Accuracy,
sensitivity, and

specificity
SVM [26]

Pulmonary
function tests RCT Blood analysis,

lung images Accuracy DT [27]

Dementia
prediction Case-control MRI

Accuracy,
precision, and

specificity
SVM [28]

Identification of
ischemic stroke

lesions
Cross-sectional MRI Accuracy NB [29]

Course of
depression Case study

A shortened
version of the

IDS (QIDS)
Accuracy LR [30]

Late-life dementia
assessment

Prospective
cohort

MRI/CT, Blood
Tests

ROC, AUC and,
MCA SVM [31]

Degenerative
movement
disorders

Cross-sectional Pathological Not defined
Hierarchical

clustering
analyses

[32]

Checking CT
imaging

effectiveness
Case study CT images, Age,

and sex
Accuracy,
AU-ROC NN [33]

Discriminatory
peptide

identification of
heart failures

Experimental Age, sex, and
renal function

Sensitivity,
specificity SVM [34]
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Table 1. Cont.

CD Diagnosis Study Type Input Features Outcomes Models Reference

Classification of
chronic

periodontitis
patients

Case-control Age and PH
subjects

Accuracy,
Sensitivity,
Specificity

SVM [35]

Classification of
fibromyalgia Case Study ICD-9 codes Mean K-means

clustering [36]

Chronic diseases
assessment

Prospective
Cohort

Community
question answers Accuracy NB, SVM, and

RNN [37]

Table 2. Pathology types with used models and their strengths and weakness.

Pathology
Type Name Models Accuracy

(%) Strengths Limitations Future
Developments

Liver

Hepatic fibrosis
stage[16], and

chronic
hepatitis-B [19]

NB, RF, KNN,
SVM, and NN 78.1–82.7

Liver related
diseases produce

large patient
information,

metabolomics
analyses, and

EHR. Deep
learning

algorithms help in
the prediction of
liver therapeutic

discovery.

There is
currently no
complete AI

system that can
able to detect a

couple of
abnormalities

overall through
the human
body [38].

Further studies
are needed to

develop an
advanced deep

learning algorithm
to remedy greater

complicated
medical imaging
troubles, along

with ultrasound or
Positron-emission

tomography
(PET) [18].

Pulmonary

COPD
exacerbation,

asthma
exacerbation[25],

lung cancer
stages [26]

Bayesian
Network, LR,
SVM, NB, and

PCA

62.3–76.1

Studies proposed
a data-driven

methodology that
can help to

produce COPD
predictive models

and asthma
exacerbations. It

would be useful to
support both
patients and

physicians [39].

Even it is less
cost of devices

like spirometers
to check lung

functionality but
it is not likely to

replaced by
quantified
computed

tomography.

It is highly
recommended in
future studies to
incorporate ML
models in the

predictive
analysis [40].

Nervous
system

Dementia,
Ischemic stroke

lesions
identification [29],

late-life
dementia [31],
degenerative

moment
disorders [32]

SVM, LR, NB,
RF,

Hierarchical
clustering

analyses, and
DSI

69–80

ML studies in
Nervous systems

can help to
improve the
diagnosis of

Nerve system
conditions

AI-based
behavioral

systems are still
in early to

understand the
discrete

behavior of
patient chronic

conditions

Future AI might
be able to

represent these
features into one

cognitive
reinforcement-

mastering
model [41].

Diabetes Type 2 Diabetes
Mellitus [23]

LR, ANN, NB,
KNN, and RF 73.2–91.6

These techniques
in diabetic studies
can be helpful in

symptoms
recognition, and

disease forecasting

Technological
advancements
in AI need to
more effective

with large data
sets in diabetes
prediction [42]

ML applications
need to produce
facts on big data

mining of medical
data sets [42,43].

Kidney
Diseases

Glomerular
filtration rate

estimation [24]

ANN, SVM,
Regression

and ensemble
learning

73.1–76.0

Risk prediction
can highly

effective in kidney
diseases

The research gap
in the artificial

kidney
implantation
needs to be

addressed [44].

Many demanding
situations need to
be a success before
it becomes a fact

and a part of
medical practice
in nephrology.
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Table 2. Cont.

Pathology
Type Name Models Accuracy

(%) Strengths Limitations Future
Developments

Disease-
related to

muscle pains

Fibromyalgia
(FM) [36] KNN -

In FM class
division, K-means

clusters can
helpful for

categorization of
pain, clinical

procedure usage,
and symptom

severity

KNN is a
self-learner in
trained data

classification [45].

Future studies are
needed to propose

feasible
algorithms to
forecast FM

causes.

Heart
diseases

peptides for
heart

failure [34]
NB, and SVM 84–91

Optimized
data-driven ML
techniques are

helped to predict
heart diseases that

improve total
research and

preventive care.
Also, it will make

sure that many
people can

happily lead a
healthy lifestyle

To predict the
risk quality of

the heart dataset
is needed in

clinical practice
to support

high-quality
datasets of heart

patients.

Scientists’ are
needed to propose
precise models to
predict the risk of
heart failures [46]

Infections Periodontitis [35] SVM, NN Not defined

NN and SVM
algorithms are
useful in the

diagnosis and
prediction of
periodontal

diseases

Lack of optimal
datasets and

model
improvements

A computer-aided
classification
system can be

expected to
become an

efficient and
effective

procedure for
these inflectional

diseases [47]

3. Results

3.1. Predictive Models Applied in Diagnosis of CD

From Table 1, it is evident that about 45% of studies used SVM models, 23% of the studies used
K-Nearest Neighbor (KNN), and Naïve Bayes (NB) models, 18% of studies applied LR, and 14% of
studies applied random forest (RF) models in the CD diagnosis. Regression-based ML models were
largely used to predict liver, gas chromatography, and pathological changes. Two studies successfully
implemented the random forest (RF) model to do a prediction of the liver fibrosis stages [16,19]. These
studies also applied the linear regression (LR) statistical analysis to understand the relationship of
image parameter and liver fibrosis stages. The results highlight that RF models are better at identifying
the liver fibrosis index (LFI) degree than other statistical approaches [16]. A review of 427 patients
on hepatitis-C produced better predictions through the decision trees [17], and multilayer perceptron
(MLP) neural networks were best in predicting late-stage liver fibrosis.

In [20], COPD patient’s data were analyzed by Bayesian network models. The usage of support
vector machines (SVM), LR, Bayesian network, and K-Nearest Neighbor (KNN) models is useful in
forecasting the aggravating events of COPD patients [20–22]. Among them, SVM models show better
accuracy in predicting exacerbations and COPD detection. In addition, artificial neural networks (ANN)
and LR models can effectively be used to understand whether a patient is diabetic or not [23]. In [24],
scholars estimated the glomerular filtration rate of the kidney can be done through ensemble models.

3.2. Model Accuracies along with advantages and limitations

Model accuracy is defined as a percentage of true predictions from total predictions. From Table 2,
it is evident that diabetic predictions show an accuracy of 73.1–91.6% [23]. Cardiac diseases produce a
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prediction accuracy of 84–91% [34], while in the prediction of liver diseases, NB, RF, KNN, SVM, and
NN models produce an accuracy in a range of 78.1–82.7%. In particular, RF and NN models are found
to have the highest accuracy. In nervous system pathologies, the LR model with feature extraction
techniques has identified reasons for depression with accuracy between 72% and 80% [48]. KNN
models could be better used to identify disease patterns [49]. In Fibromyalgia, these have the capability
to classify pain, clinical usage, and symptom severity [36]. In pulmonary diseases, Bayesian models
produced low accuracy range in between 62.3% and 76.1%, because these are not recommended in
high dimensional data sets. In contrast, ANN models produced the highest accuracy of 76% in kidney
diseases, since they can detect the possible connection between classification variables [50].

Despite the above results, it is still debatable matter on the existence of particular microbial profiles
for distinct periodontal conditions. Studies conducted on the ML model development in classifying
patient data based on bacterial species [35] have shown that SVM with kernel methods are more
helpful. At the same time, dementia is one of the chronic diseases that happen in older people, and,
in particular, Alzheimer’s is associated with 60–70% of dementia cases. AD prediction through ML
models concluded that prediction accuracy depends on the data type and model input [28,31]. These
studies with the Disease State Index (DSI) technique produced an accuracy of 79%. All the mentioned
studies found that age, cognition, subjective memory complaints, and vascular factors were input
features, which can affect the chances of dementia. Therefore, it is understandable that dataset type,
input features, and user outcomes can differ by individual study and no model can predict diseases
with 100% accuracy.

4. Discussion

The present study analyses the distinct prediction models of machine learning in the diagnosis
of chronic diseases. Sometimes, it could be hard to propose the best learning method in disease
predictions since it depends on dataset size and user access. Supervised machine learning (SML)
approaches are followed in the highest number of studies, with the integration of easy and simple
predictive modeling. The implementation of these models in clinical practice certainly can help to
provide better health services and enhance specialist decision-making.

It is rudimentary to confirm the different algorithms based on a specific problem, and review
studies could help to analyze the performance and determine optimal machine learning models. Before
machine learning, recommendations for practice in medicine development depended on individual
studies. Therefore, it is affecting the data science because all this medical information is coming from
different platforms and people. Due to contemporary trends in computational models, healthcare
services are quickly transformed by having the ability to record large amounts of patient data. However,
it is highly impossible to analyze huge medical records with human knowledge. On the other hand,
with the evolvement of big data in biomedical and medicinal service networks, accurate analysis of
medical data becomes possible that could improve patient care [51]; if there is an unavailability of
quality medical data, it could result in poor decision-making. Eventually, machine-learning techniques
can able to find clear data patterns that can empower health experts in clinical care such as precision
medicine. As mentioned in Table 1, different studies have used different predictive models coupled
with their results. However, a proper interpretation of medical data will not only help to recommend
suitable machine learning models, but also for physicians in the provision of immediate medication.

Aging is one of the significant difficulties facing in the western world, meaning that lowering
the weight of continuous infection and enhancing life span is necessary [52,53]. Few researchers have
anticipated the safety of each aging compound with a collection of deep neural network classifiers [53].
In addition, predictive models can help in active decision support, in particular if a couple of identical
cases are accessible, or where diagnostic symptom knowledge is not precisely available [54]. In this
study, we compared and discussed the recent advancements in ML methods used for disease predictions.
Studies like pulmonary patient data classification demand the algorithm to anticipate discrete values
by distinguishing the patient information either as an individual, or group [27]. The final clinical
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diagnosis depended on the integration of a full pulmonary function identification decided by medical
expert choice. In the end, clinical diagnosis was classified into ten individual groups, which were
validated by experts in the panel. Medical imaging data such as MRI, CT scans, and RTE images
follow the classification type SVM models. In contrast, regression problems look at continuous data,
and most of the adopted studies followed these model examples of pathologies in [16,30,33,48] gene
expression [19], and others.

On the other hand, unsupervised ML deals with a deep learning model containing a medical
data set that it can handle without having a clear direction regarding what and how to proceed. The
neural network attempts automatic detection of structured data and performs key feature extraction.
Depending on the pathology type, it can follow different patterns like clusters that involve a group of
particular information [37]. However, some models in machine learning can make immediate decisions
on chronic diseases thanks to recent developments in AI. Our findings suggest that stimulating
the power of these predictive models in the CDs diagnosis and in structuring medical data will
empower medical experts or physicians that will result in a significant tendency decision making at
medical centers.

It is also evident that SVM and LR models significantly implemented in the large number of
studies to do CD diagnosis. Sixteen studies were adopted these models especially for hepatitis B,
COPD, diabetes, and others. An SVM model is popular among others to identify COPD from the
beginning, and it could be greatly assisted in the relationship between doctor and patient. Bayesian
networks and NB models help to forecast the diagnosis of asthma problems. These models encompass
old patient records to look up clinical symptoms and footing on Bayesian networks to present the
relationship individual case and diagnose future possible symptoms. The KNN algorithm is associated
with five studies for diagnosis, forecasting, and to critically follow the CD’s stages with the help of
different primary and secondary data.

The main limitation of the present study is most of the adopted literature on disease prediction
or classification was adopted with supervised models, and it is important to adopt unsupervised
(clustering) and deep learning (neural networks) models as well in future works.

5. Conclusions

The present study evaluated the studies associated with the diagnosis of chronic diseases.
However, the implementation of correct methods or selection of the right models is a prerequisite to
perform ideal decisions, as modern researchers are claiming that some ML models are compromised
by enlarging contained datasets with malicious data that can have severe consequences. On the other
hand, diagnosis limitations may lead to life-threatening attacks, and sometimes it might be a driving
factor of fatality. In contrast, the wrong diagnosis prompts the skepticism in machine learning use, that
can lead policy makers to avoid predictive model usage. Therefore, reviews on predictive models can
provide evidence to propose excellent methods for the CDs diagnosis.

In the future, AI techniques like ML, cognitive computing and deep learning may play a critical
role in the interpretation of chronic diseases. However, researchers are progressively attracted by
predictive model techniques in the advancement of health care. As new advancements in medical care
are being established and are expanding the access to electronic data, this opens new doors to decision
support and productivity improvements. These models are designed to emphasize the responsibility
of patient care quality and cut down medical costs.
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Acronyms

ML: Machine Learning; AI: Artificial Intelligence; SML: Supervised Machine Learning; DSS:
Decision-support systems; CVD: Cardio Vascular Diseases; RTE: Real-Time Electrographs; CHB:
Chronic Hepatitis B; NB: Naïve Bayes; RF: Random Forest; ANN: Artificial Neural Networks; RNN:
Recurrent neural networks; KNN: K-Nearest Neighborhood; SVM: Support Vector Machine; NN:
Neural networks; LR: Logistic Regression; PCA: Principal Component Analysis. DSI: Discrete Smooth
Interpolation; FP: False positives; TP: True positives; FN: False negatives; TN: True negatives; AU-ROC:
Area under receiver operating characteristics; COPD: chronic obstructive pulmonary disease; PPV:
Positive Predictive Value; NPV: Negative Predictive Value. QIDS: Quick Inventory of Depressive
Symptomatology; CT: Computerized Tomography; MRI: Magnetic Resonance Imaging; MCA:
Multiple Correspondence Analysis; DTPA: Diethylene Thiamine Penta acetate; PET: Positron-emission
tomography; EHR: Electronic Health Record.
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