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Abstract

In the field of evolutionary game theory, network reciprocity has become an important

means to promote the level of promotion within the population system. Recently, the interde-

pendency provides a novel perspective to understand the widespread cooperation behavior

in many real-world systems. In previous works, interdependency is often built from the direct

or indirect connections between two networks through the one-to-one mapping mode. How-

ever, under many realistic scenarios, players may need much more information from many

neighboring agents so as to make a more rational decision. Thus, beyond the one-to-one

mapping mode, we investigate the cooperation behavior on two interdependent lattices, in

which the utility evaluation of a focal player on one lattice may not only concern himself, but

also integrate the payoff information of several corresponding players on the other lattice.

Large quantities of simulations indicate that the cooperation can be substantially promoted

when compared to the traditionally spatial lattices. The cluster formation and phase transi-

tion are also analyzed in order to explore the role of interdependent utility coupling in the col-

lective cooperation. Current results are beneficial to deeply understand various

mechanisms to foster the cooperation exhibited inside natural, social and engineering

systems.

Introduction

The persistence and emergency of cooperation is a widespread phenomenon in the nature and

human being society, ranging from single cellular organisms to vertebrates, mammals, and

even to populations [1, 2]. Yet, according to Darwinian evolutionary theory [3], any behavior

that does not contribute to himself will eventually lead to the extinction of cooperation, which

is rightly contradictory to many real-world situations. Therefore, deeply comprehending the

persuasive cooperation conduct has become a challenging comission, and it is also a long-
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standing pendulum within the scientific communities [4]. To date, many researchers, who

include the scientists coming from biology, physics, management and social sciences, often

resort to the game theory to resolve the dilemma problem regarding the cooperation [5]. In

particular, the evolutionary game theory builds a powerful framework to help to illustrate the

evolution of cooperation [6], and some canonical mechanisms [7] have been identified as the

effective means to enhance the collective cooperation level, such as kin selection [8], direct [9]

or indirect reciprocity [10, 11], group selection [12] and so on.

In the recent years, a large plethora of studies are devoted to the explorations of evolution-

ary game on networks and graphs (see [13–15] for the comprehensive reviews) after the semi-

nal discovery [16] in which the spatial structure, beyond the well-mixing topology, can make

the cooperator survive well even in the most strict prisoner’s dilemma game (PDG) by organiz-

ing into the tightly cooperative clusters to defend the invasion of defectors. Meanwhile, the

great progresses in the field of network science [17–21] further furnish a variety of topological

structure for the games on complex graphs including small-world, scale-free, co-evolving and

hierarchical ones. It has been found that the scale-free networks [22–26] might provide a uni-

fied platform to foster the cooperation for nearly all main social dilemmas, such as PDG, snow-

drift game (SDG), public goods game (PGG) etc, and the evolutionary outcome is also very

robust against the normalization of payoffs. Furthermore, the heterogeneity and diversity [27–

35], which is considered by the individual behavior as well as those concerned in terms of play-

ers having different degree within a network, has been proved to be a very effective manner to

promote the cooperation, and indeed many co-evolutionary rules [36–39] have also been

introduced to spontaneously create the heterogeneous state so as to maintain the surprisingly

high cooperation level (see [40] for a full review).

Very recently, however, it is clearly recognized that real-world systems are not isolated, but

often interconnected or interdependent networks [41]. As an example, on the one hand, the

communication systems (e.g., Mobile communication networks or Internet) are powered by

the power grids; on the other hand, the operation and scheduling of power grids also rely on

the communication systems, and their mutual dependency will lead to the extreme fragility

even under random failures. Thus, the structure of and dynamics on interdependent networks

receive a great deal of concern [42–45], and playing the games on multiple coupled networks

also becomes an active topic in the realm of evolutionary game theory [46]. Among them, sev-

eral methods are proposed to characterize the impact of coupled systems on the cooperation

dynamics. One approach is to be considered in Refs. [47, 48] that the total networked popula-

tion consists of two sub-populations (one layer of networks) including a different set of agents,

in which they will play the games both with immediate neighbors on the same network and

with those placed on the other one, the results reveal that the game types, density of intercon-

nection links and topology of each sub-population will influence the final evolutionary results,

even creating the polarized states. A second kind of work resolves the evolutionary dynamics

between coupled networks via the multiplex modeling [49], where each agent can participate

in multiple networks or layers and may possess different strategy states in different ones,

meanwhile the individual strategy update at each layer is not based on the payoff accumulated

only at that layer, but on the average payoff within all layers, and the authors find that, in the

prisoner’s dilemma game, the cooperation is enhanced for a larger temptation parameter, but

impaired at a smaller value for the temptation to defect. The third class of works devoting to

the evolutionary games on coupled networks resort to the utility coupling or fitness evaluation

between interdependent ones [50–56], in which the payoff calculation and update of the strat-

egy for each agent will be confined at the same network, but the probability of strategy update

will be correlated with the fitness evaluation integrating the payoffs obtained from the other

network; Through this sort of utility coupling, the virtual connection between different
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networks is built and the role of interdependency in the promotion of cooperation is greatly

impacted by the coupling way of utility or fitness assessment.

In previous works, the utility coupling is often implemented between one-to-one mapping

agents on different networks, for example, Ref. [50] introduces the biased utility coupling for

the PGG, in which the individual payoff on one network accounts for α and payoff of corre-

sponding agent on the other networks occupies (1 − α), and finds that the aggregate level of

cooperation on two networks is higher than that obtained on one isolated network; but for the

PDG in Ref. [53], the utility function Ux is formulated as the linear combination of payoffs (Px

and Px0) of corresponding agents: Ux = αPx + (1 − α)Px0, and the results indicate that there

exists a critical interdependent factor αC, where the cooperation symmetry will be kept if α<
αC and spontaneous symmetry breaking of fraction of cooperators presents itself between dif-

ferent networks provided that α> αC. In Ref. [56], this kind of biased utility is not adopted,

but an approach regarding the payoff superposition between different networks is applied, and

it is unarguably uncovered that the cooperation phenomenon becomes richer and richer when

compared to the cooperation behavior on single networks. In reality, the aforementioned

works usually consider the utility computation only between corresponding players on distinct

layers, that is, one-to-to mapping. However, under some real-world circumstances, much

more information on the payoffs of multiple players from other networks will be beneficial for

the focal one to make the decision. Thus, in this study, beyond the one-to-one mapping mode,

we present an improved utility evaluation covering the combination of payoffs from corre-

sponding partners on interdependent networks, in which the corresponding player and his

nearest neighbors on the other network will be also taken into account when the player’s utility

is calculated, that is, the game concerning a focal agent will be mapped into himself and multi-

ple partners on the other network. The current work will further help to understand the role of

interdependent network reciprocity in the evolution of cooperation within the social and natu-

ral systems.

Methods and Materials

The Monte Carlo Simulation (MCS) is utilized to perform the evolution of cooperation behav-

ior, and the system proceeds from two regular lattices with the linear size L, in which either lat-

tice is satisfied with the conditions of periodic boundary. Initially, all players are allocated on

the intersections of lattices, and designated as a cooperator (sx = C) or a defector (sx = D) with

the equal probability (that is, being a cooperator or defector with the possibility of 50%). Thus,

the system size or total number of players (N) is two times of the square of lattice linear size,

i.e., N = 2 × L2.

After that, starting from a randomly chosen player from any network, the pairwise interac-

tion and payoff computing will be performed according to the prisoner’s dilemma as follows

C D

C
D

R S
T P

� �
ð1Þ

where R and P denote the payoff of reward or punishment when two players take the same

action: cooperation or defection; and the cooperator gets the sucker’s payoff (S), but the defec-

tor cannot resist the temptation and obtain the highest payoff when they choose the different

strategy; Meanwhile, T> R> P> S and 2R> S + T must be satisfied for the standard PDG

model. Since T> R and P> S, it is obvious that to defect is the best option for a player regard-

less of his opponent’s choice, that is, defection becomes the Nash equilibrium of PDG. Without

loss of generality, we adopt a class of weak PDG parameter setup: 1< T = b< 2, R = 1 and
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P = S = 0, which is firstly applied by Nowak & May [16] and nearly captures all PDG’s features

during the strategy game. Henceforth, each player (say x) can calculate his or her payoff (Px)

by playing with 4 nearest neighbors as we can only discuss the typical von-Neumann neighbor-

hood setup in this study. Then, the individual utility or fitness will be assessed for the evolu-

tionary iteration, and the focal agent’s utility evaluation will not only be related with his own

payoff, but also with the average of payoff of players from the other lattice, which include the

corresponding partner (say x0) and his 4 immediate neighbors. Among them, player x0 and his

neighbors will also apply the identical method to compute their payoffs according to Eq (1),

and their average value �P will be calculated as follows,

�P ¼
Px0 þ

P
i02Nx0

Pi0

5
ð2Þ

where Nx0 denotes the von-Neumann neighborhood of player x0 and i0 represents one of mem-

bers in the neighborhood (i.e., one of nearest neighbors of player x0). It is worth mentioning

that each agent’s payoff can be only obtained by playing with 4 nearest neighbors on the same

lattice, not be allowed to directly integrate the interaction between individuals on different lat-

tices. Thus, we consider the focal player’s utility as a linear combination of Px and �P in the fol-

lowing way,

Ux ¼ Px þ a �P ð3Þ

where α is a tunable parameter which means the extent of average payoff integration into the

current utility assessment, without loss of generality, α usually lies between 0 and 1. Different

from previous works [50–56], the utility computation will cover the focal one and multiple

partners on the other network as shown in Fig 1, that is, beyond the usual one-to-one mapping

assumption for the evolution of cooperation on interdependent networks.

Fig 1. Illustration of one-to-N mapping utility evaluation for interdependent networks. In this model,

payoff obtaining and strategy transfer can only take place between players on the same network. The system

consists of two L × L lattices [panel (a) and panel (b)], and the utility or fitness evaluation of the focal agent will

be correlated with her own payoff and those of corresponding partners on the other network. As an example,

the focal player [red circle in panel (a) or yellow circle in panel (b)] will be coupled with those in the other

network [the red-shaded ones in panel (b) or yellow-shaded ones in panel (a)].

doi:10.1371/journal.pone.0167083.g001
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Next, the focal player will try to update his current strategy by comparing the utility

between himself (say x) and one of nearest neighbors picked up at random (say y), in which

player y will acquire his utility in the same method with the focal one according to the above-

mentioned procedure. The strategy (sx) of player x will be changed into the strategy (sy) of

player y with the following probability

Wsx sy
¼

1

1þ e
Ux � Uy

k

ð4Þ

where κ stands for the uncertainty of strategy adoption [57] or the individual irrationality for

an agent to make a decision (κ is usually set to be 0.1 unless stated before), Ux and Uy denote

the utilities of players x and y, respectively.

Finally, one full MCS step will be completed provided that each agent will have a chance to

update his strategy on average. In the following section, the lattice configuration is set to be

2 × 200 × 200, and larger lattice size (e.g., L = 300 or L = 400) is also tested and qualitatively

similar results are obtained. Moreover, all numerical simulation results will be averaged over

20 independent runs for the same parameter setup.

Results and Analysis

Firstly, in order to deeply explore the role of utility coupling, we provide the evolution of frac-

tion of cooperators at each time step for a fixed defection parameter (b = 1.07) in Fig 2, where

the tunable parameter (α) can be set as 0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively. On the one

hand, the simulation results convincingly turned out that the cooperation behavior can be

greatly improved on account of the introduction of utility coupling; On the other hand, we can

observe that the behavior of FC(t) inside two panels [panel (a) and (b)] is fully identical, that is,

the cooperation symmetry always holds for various tunable parameters α. Moreover, for the

first 10 time steps, we divide one MCS time step into 1000 sub-steps so that the evolutionary

process of FC(t) at each time step can be carefully scrutinized. As we can see, the time course of

cooperation can be divided into two evident phases: the enduring (END) period and the

expanding (EXP) period. Initially, in the END period, the fraction of cooperators will gradually

reduced regardless of whether the utility coupling exists, which shows that the defectors will

dominate the population since the Nash equilibrium of PDG is the defection. However, after

several steps, the cooperation exhibits a small bit different scenario and the EXP period

emerges. From this period, the cooperators begin to win the superiority over the defectors for

the utility coupling takes effect. Among them, α = 0 or α = 0.2, the eventual fate of the whole

population is the full defection, which shows that only the spatial reciprocity or the very weak

utility coupling is not enough to support the evolution of cooperation. However, α becomes

larger and larger, for example, α is set to be equal to or higher than 0.4, the fraction of coopera-

tors can be finally maintained at a stable level since the cooperators can organize into compact

clusters to resist the invasion of defectors (which will be further illustrated in the following par-

agraph). In the meantime, the larger the tunable parameter α, the higher the stationary fraction

of cooperators, and the current results are also consistent with those in Fig 3. Thus, the utility

coupling between two interdependent lattices has altered the behavior of cooperation by a

large margin when compared to the traditionally spatial lattice setup (i.e., α = 0).

Next, since the symmetry for the fraction of cooperators can be well kept on two panels

under various α, we will record the average value of cooperator’s density at the stationary state

on two lattices as the fraction of cooperators (FC) among the whole population. Here, we depict

FC as a function of temptation to defect (b) in Fig 3 for various tunable parameters to check the

role of utility coupling under the one-to-N mapping condition. It can be clearly observed that
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the level of cooperation can be generally promoted with the introduction of utility coupling

from the corresponding partners on the other network. Among them, when α is equal to 0, the

focal player’s utility calculation does not refer to any other partner, the current model will be

equivalent to the traditional PDG model and our simulation results are also identical with pre-

vious works. However, when α> 0, the focal player computes his utility by considering the

average value of corresponding partners through the 1-to-N mapping, and the numerical sim-

ulations unamgiguously indicate that FC can be elevated as α increases. Meanwhile, the larger

the adjustable parameter α, the higher the fraction of cooperators FC. As an example, α = 0.,

the fraction of cooperators still arrives at around 60% when b = 1.0375 where the cooperation

becomes extinct in the standard PDG, the maximum defection parameter (bm) leading to the

extinction of cooperation arrives at b = 1.08; Of particular note is that the extinction threshold

Fig 2. Fraction of cooperators [FC(t)] as a function of MCS time step for a fixed temptation to defect

(b = 1.07). Panel (a) and (b) characterize the evolution of cooperation on two independent lattices,

respectively. The system setup is assumed to be L = 200, MCS = 5 × 104 and κ = 0.1, and the tunable

parameter α is set to be 0, 0.2, 0.4, 0.6, 0.8 and 1.0.

doi:10.1371/journal.pone.0167083.g002
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bm can be up to 1.16, which is often extra-ordinarily high as compared to the standard spatial

PDG. From this point, only the spatial reciprocity can be not enough to create this kind of

favorable situations to foster the cooperative individuals. Accordingly, the exterior information

obtained from the other network can be added into the current utility evaluation, the focal

agent will become much more rational for the strategy choice since he can hold the richer

information to aid his decision making. Taking together, FC becomes higher and higher as the

tunable parameter α increases under the identical defection parameter b since the novel utility

coupling has been added into the current model.

Regarding the competition properties between cooperators and defectors during the evolu-

tion of system status, how the cooperators accumulated the advantage over the defectors is still

to be resolved. We make a preliminary attempt to check the formation of cooperative clusters

by providing the snapshots at several different time steps for a specified tunable parameter α =

0.8 in Fig 4. Here, the upper row panels characterize the snapshots on one lattice, and from left

[panel (a)] to right [panel (e)], the time step is set to be MCS = 0, 10, 100, 1000, 50000,

Fig 3. Fraction of cooperators (FC) at the stationary state as a function of temptation to defect (b). The

system setup is assumed to be L = 200, MCS = 5 × 104 and κ = 0.1, and the tunable parameter α is set to be 0,

0.2, 0.4, 0.6, 0.8 and 1.0, respectively.

doi:10.1371/journal.pone.0167083.g003

Fig 4. Characteristic snapshots of cooperators and defectors on two independent lattices for a fixed

temptation to defect (b = 1.07) starting from an initial strategy distribution. In the upper row, from panel

(a) to (e), snapshots are taken from one lattice at the time step 1, 10, 100, 1000, 50000, respectively;

Similarly, in the lower row, we provide the snapshots on the other lattice at the same time step. The orange

dots represent the cooperators, and the light gray dots denote the defectors. The system setup is assumed to

be L = 200, MCS = 5 × 104 and κ = 0.1 and the tunable parameter α = 0.8.

doi:10.1371/journal.pone.0167083.g004
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respectively. It can be shown that the strategy of agents is randomly assigned at the initial time

[panel (a)], hence the cooperators or defectors nearly occupy the equal space and they cannot

be discerned visually. After 9 steps, the defectors obtained the superior position during the

game playing and the light gray dots obviously occupy most of space in panel (b). However,

some compact and cooperative clusters are sporadically organized so that the orange dots still

exist within the population [panel (b)]. In the following steps [from panel (c) to (e)], the coop-

erators gradually accumulate the evolutionary advantage over defectors during the competi-

tion between them and eventually arrive at the stationary state. Accordingly, the

corresponding snapshots on the lower panels depict the distribution of cooperators and defec-

tors on the other lattice, and the identical evolving tendency can be observed. Furthermore,

the similar pattern analysis is performed for another tunable parameter α = 0.2 in Fig 5, where

the snapshots are taken at MCS = 0, 10, 100, 200 and 1000 (since the cooperators are fully

extinct after 1000 steps), and it can be examined that the cooperators will lose the superiority

during the process of game playing since the extent of utility coupling from the other lattice is

not strong enough. At the same time, the cooperation symmetry can be kept substantially well

between the corresponding upper and lower panels, which is also consistent with results dis-

played in Fig 2.

To further account for the origin favoring the cooperation in the current PDG model, Figs

6 and 7 depict the evolution of characteristic snapshots for two different utility coupling

strength α = 0.8 and α = 0.2, where the initial cooperators are preset in the middle of lattice

and defectors are evenly distributed on both sides of lattice. In Fig 6, the coupling strength α is

set to be 0.8, and all other simulation parameters are also wholly same as those in Fig 4. Two

rows denote the setup of two-layered lattices, and 5 columns characterize the snapshots at dif-

ferent MCS time steps which are, from left to right, MCS = 0, 10, 100, 1000, 50000, respectively.

Although the initial distribution of cooperators and defectors is utterly different from that in

Fig 4, the evolutionary process is analogous, and cooperators can gradually organize into the

compact clusters with the help of utility evaluation borrowing from the payoffs of players on

the other lattice, to defend from the exploitation of defectors and lead to the situation in which

two strategies can coexist at the stationary state. Henceforth, the final evolutionary outcome is

identical with the case of randomly initial deployment. Similarly, in Fig 7, α = 0.2 is not enough

to support the persistence of cooperation and free-riding from defectors thrives so that the

cooperators cannot resist the invasion of defectors and the cooperators are finally extinct, the

evolution of snapshot is also akin to Fig 5 where the snapshots are taken at MCS = 0, 10, 100,

Fig 5. Characteristic snapshots of cooperators and defectors on two independent lattices for a fixed

temptation to defect (b = 1.07) starting from an initial strategy distribution. In the upper row, from panel

(a) to (e), snapshots are taken from one lattice at the time step 1, 10, 100, 200, 1000, respectively; Similarly, in

the lower row, we provide the snapshots on the other lattice at the same time step. The orange dots represent

the cooperators, and the light gray dots denote the defectors. The system setup is assumed to be L = 200,

MCS = 5 × 104 and κ = 0.1 and the tunable parameter α = 0.2.

doi:10.1371/journal.pone.0167083.g005
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200 and 1000 (from left to right). In addition, the evolutionary process still maintains the sym-

metry of cooperation between two lattices. Taking together, the collective cooperation evolu-

tion in the whole population is totally independent of their initial setup on two lattices, and the

strength of utility coupling determines their final fate.

The impact of utility coupling between two interdependent lattices can be examined in

depth by checking the full b − κ phase diagram in Fig 8, which fully demonstrates the robust-

ness of cooperation against the noise strength (i.e., the uncertainty of strategy selection κ),

unlike some previous works where the noise may substantially vary the collective cooperation

ratio with the whole population [58]. In Fig 8, and from panel (a) to (d), the tunable parameter

α is set to be 0, 0.4, 0.8 and 1.0, respectively, at the same time the pure cooperating (defecting)

region is denoted by the capital C (D), while C + D characterizes the coexistence region con-

taining cooperators and defectors within systems, and the upper triangle (crossed circle) sym-

bol means the critical value standing for the transition from pure cooperators to mixed

cooperators and defectors (mixed ones to pure defectors). From Fig 8, the general trend is

that, as α increases, the pure defecting regions is greatly compressed, and the mixing or coexis-

tence regions is largely broadened, but the pure cooperating regions is almost kept to be

unchanged. Among them, in panel (a), α is equal to 0, which implies that the system is reduced

Fig 6. Characteristic snapshots of cooperators and defectors on two independent lattices for a fixed

temptation to defect (b = 1.07) starting from a prepared strategy distribution. In the upper row, from

panel (a) to (e), snapshots are taken from one lattice at the time step 1, 10, 100, 1000, 50000, respectively;

Similarly, in the lower row, we provide the snapshots on the other lattice at the same time step. The orange

dots represent the cooperators, and the light gray dots denote the defectors. The system setup is assumed to

be L = 200, MCS = 5 × 104 and κ = 0.1 and the tunable parameter α = 0.8.

doi:10.1371/journal.pone.0167083.g006

Fig 7. Characteristic snapshots of cooperators and defectors on two independent lattices for a fixed

temptation to defect (b = 1.07) starting from a prepared strategy distribution. In the upper row, from

panel (a) to (e), snapshots are taken from one lattice at the time step 1, 10, 100, 1000, 50000, respectively;

Similarly, in the lower row, we provide the snapshots on the other lattice at the same time step. The orange

dots represent the cooperators, and the light gray dots denote the defectors. The system setup is assumed to

be L = 200, MCS = 5 × 104, κ = 0.1 and the tunable parameter α = 0.2.

doi:10.1371/journal.pone.0167083.g007
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to two traditional and independent lattice systems and our results reproduce the classical bell-

shaped ones regarding the phase transition, and current phase diagrams are consistent with

many previous results. However, when α is greater than 0, and the utility evaluation need to

consider the impact of corresponding partners on the other lattice, henceforth render that the

phase diagram differs a little from the classical ones and the bell-shaped curve indicating the

transition between D and C + D disappears, which can be observed from panel (b) to (d).

Meanwhile, as κ lies between 0.01 and 1.0, it is easier for the cooperators and defectors to coex-

ist; while κ> 1.0, the range of temptation b for them to coexist becomes very narrow, and it is

particular for κ> 3.0, the coexistence between cooperators and defectors becomes impossible,

that is, the system could only get into the full defection or cooperation status as b varies. Since

the very large noise strength (κ) leads to the fact that the probability to select the cooperation

or defection is almost not influenced by the utility difference and the system tends to trap into

Fig 8. Full b − κ phase diagram. From panel (a) to (d), the tunable parameter is set to be α = 0, 0.4, 0.8 and 1.0, respectively. Here, the yellow crossed circle

denotes the transition between C + D (coexistence phase) and D (full defection), and the read upper triangle represents the transition between C + D and C

(full cooperation). The system setup is assumed to be L = 200, MCS = 5 × 104.

doi:10.1371/journal.pone.0167083.g008
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one of two states, full cooperation or complete defection. Taking together, introducing the pay-

off coupling into the individual utility evaluation will greatly change the behaviors of phase

transition between the cooperation and defection on the square lattice.

Conclusions and Discussion

In summary, we discuss the evolution of cooperation behavior on two interdependent lattices

through the utility coupling between corresponding players. In many previous works, this type

of utility coupling is often implemented with one-to-one mode, that is, the evaluation of one

player’s utility on one lattice is only correlated with his own payoff and one corresponding

partner’s payoff on the other lattice. In reality, the individual decision may be dependent on

many factors including his own or other individual’s payoffs. Thus, in this paper, beyond one-

to-one pattern, we propose a novel utility coupling way based on himself and several corre-

sponding players on the other networks, that is, one-to-N mapping mode, and the numerical

simulation results indicate that the cooperation behavior on the spatial lattices can be largely

modified. Firstly, the total level of collective cooperation at the stationary state can be greatly

promoted as the extent of payoff integration into the individual utility evaluation (i.e., tunable

parameter α) increases, which means that the larger the tunable parameter α, the higher the

level of stationary state. Secondly, the coupling of utility assessment concerning multiple

agents on the other lattice is beneficial for the focal player to make a rational choice and helps

to create the cooperative clusters to defend the invasion of defectors. Lastly, this novel utility

coupling also alters the properties regarding the phase transition when compared to the classi-

cal spatial lattices. The current results further enrich the understanding of widespread cooper-

ation phenomena within many natural, social and even engineering systems, especially aiding

to illustrate the role of interdependency and network reciprocity in the promotion of

cooperation.

The future works will extend the current one-to-N mapping mode into other spatial game

models (e.g., snowdrift game and public goods game) or other heterogenous topologies (i.e.,

interdependent random graphs and scale free networks), to further explore whether the coop-

eration level can be enhanced within these scenarios by the one-to-N mapping mode. Further-

more, the evolution of cooperation within three or more networks can also deeply investigated

since many real-world systems are often interwoven through multiple subsystems.
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