www.bjcancer.com

Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis

S Tsuji¹, Y Midorikawa^{1,2,3}, T Takahashi⁴, K Yagi¹, T Takayama³, K Yoshida⁴, Y Sugiyama^{*,2} and H Aburatani¹

¹Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan; ²Department of Surgery, Teikyo University School of Medicine University Hospital, Mizonokuchi, Kawasaki, Japan; ³Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan; ⁴Department of Oncologic Surgery, Gifu University, Gifu, Japan

BACKGROUND: Molecular characterisation using gene-expression profiling will undoubtedly improve the prediction of treatment responses, and ultimately, the clinical outcome of cancer patients.

METHODS: To establish the procedures to identify responders to FOLFOX therapy, 83 colorectal cancer (CRC) patients including 42 responders and 41 non-responders were divided into training (54 patients) and test (29 patients) sets. Using Random Forests (RF) algorithm in the training set, predictor genes for FOLFOX therapy were identified, which were applied to test samples and sensitivity, specificity, and out-of-bag classification accuracy were calculated.

RESULTS: In the training set, 22 of 27 responders (81.4% sensitivity) and 23 of 27 non-responders (85.1% specificity) were correctly classified. To improve the prediction model, we removed the outliers determined by RF, and the model could correctly classify 21 of 23 responders (91.3%) and 22 of 23 non-responders (95.6%) in the training set, and 80.0% sensitivity and 92.8% specificity, with an accuracy of 69.2% in 29 independent test samples.

CONCLUSION: Random Forests on gene-expression data for CRC patients was effectively able to stratify responders to FOLFOX therapy with high accuracy, and use of pharmacogenomics in anticancer therapy is the first step in planning personalised therapy. *British Journal of Cancer* (2012) **106**, 126–132. doi:10.1038/bjc.2011.505 www.bjcancer.com

Published online 17 November 2011

© 2012 Cancer Research UK

Keywords: colorectal cancer; FOLFOX therapy; machine learning algorithm; class predictor; personalised therapy

Combinations of oxaliplatin (OHP) combined with various schedules of antimetabolite 5-fluorouracil (5-FU) and leucovorin (LV) are currently the first-line treatments for unresectable colorectal cancer (CRC), and the superiority of the FOLFOX4 regimen has been demonstrated (de Gramont et al, 2000; Giacchetti et al, 2000). A much higher response rate was observed (>50%) with the FOLFOX4 regimen than with 5-FU + LV, and this resulted in survival benefits for patients undergoing FOLFOX4 therapy (de Gramont et al, 2000; Giacchetti et al, 2000), and the modified FOLFOX6 (mFOLFOX6) regimen subsequently showed equivalent efficacy and tolerance (Cheeseman et al, 2002; Braun et al, 2003). Thus, some patients receive the benefits of FOLFOX therapy, while others undergo ineffective chemotherapy for several cycles until the effects are determined, which can often result in detrimental, life-threatening side effects. Stratification of patients for multidrug response based on biological characteristics is thus indispensable for personalised therapy.

Drug sensitivity in chemotherapy is thought to be attributable to variations in underlying genetic characteristics of cancer. Biomarkers were originally used to measure disease progression and as surrogates of treatment efficacy. However, biomarkers can also be used as predictive markers to indicate whether a patient is a good candidate for a specific drug or regimen (Torri et al, 1992; Simon, 2008).

Gene-expression signatures have a great potential both for predicting outcomes in cancer patients, and for predicting response or toxicity with various anticancer drugs (van de Vijver et al, 2002; Gordon et al, 2003; Nutt et al, 2003; Berchuck et al, 2005), and they may be superior to conventional clinical and pathological approaches (Parissenti et al, 2007). Using geneexpression profiles, Dressman et al (2007) were able to identify advanced ovarian cancer patients who were likely to be resistant to platinum-based chemotherapy with more than 80% accuracy. On the other hand, a classifier gene set selected by diagonal linear discriminant analysis predicted pathologic complete response (CR) to paclitaxel and fluorouracil-doxorubicin-cyclophosphamide chemotherapy for breast cancer with high sensitivity in independent cases (Hess et al, 2006). When compared with the estimation of responders to anticancer drugs using expression profiling in breast or ovarian cancers, only a small number of such studies have been performed in CRC (Nannini et al, 2009). Del Rio et al (2007) determined 14 classifier genes for predicting response to combined therapy with LV, 5-FU, and irinotecan (FOLFIRI), although they studied a relatively small number of patients.

In order to maximise the benefits of microarray technology, researchers have attempted to develop several classification algorithms in a reproducible manner (Wu *et al*, 2003; Statnikov *et al*, 2008; Kim *et al*, 2009). Random Forests (RF) is a machine learning algorithm that uses an ensemble of classification trees and is available for microarray data analysis in which the number of

^{*}Correspondence: Dr Y Sugiyama; E-mail: ysugi@med.teikyo-u.ac.jp Received 3 June 2011; revised 27 September 2011; accepted 25 October 2011; published online 17 November 2011

variables is much larger than samples (Breiman, 2001). Random Forests was demonstrated to be a part of the standard method for class prediction and gene selection with microarray data (Diaz-Uriarte and Alvarez de Andres, 2006). In addition to this, RF was able to cluster samples; thus, we applied RF to predicting the efficacy of FOLFOX therapy. Some reports have demonstrated that RF, as with other methods including support vector machines (SVMs) and linear discriminant analysis, outperforms in the classification of several cancers (Wu *et al*, 2003; Statnikov *et al*, 2008; Kim *et al*, 2009). Clinically, using RF, tumour class discovery of renal cell carcinoma based on tissue microarray profiling is possible, and this could not be explained by clinicopathological variables (Shi *et al*, 2005).

In the present study, we used the RF algorithm to identify classifier genes that are able to predict responders to FOLFOX therapy for unresectable CRC. Using these biomarkers, we were able to predict the patients most likely to benefit from selected multiagent chemotherapy with a high degree of accuracy. Our results demonstrated that pharmacogenomic identification of predictor genes for response to chemotherapy will benefit advanced cancer patients, which will aid in the development of personalised therapy.

MATERIALS AND METHODS

Patients and tissue samples

A total of 83 patients with unresectable CRC undergoing FOLFOX therapy from April 2007 to December 2010 in Teikyo University Hospital at Mizonokuchi and Gifu University Hospital were recruited in this study. All CRC samples were obtained before mFOLFOX6 therapy, including 56 primary CRCs and 27 metastatic lesions to the liver (23 tumours), lung (1 tumour) and peritoneum (3 tumours). None of the patients enrolled in this study underwent any chemotherapy or radiotherapy in advance. Samples were divided (approximately 2:1 ratio) into training and test sets. As a result, 54 of 83 samples obtained in the first half of this period were selected for the training set, and the remaining 29 samples in the latter half were selected as the test set. All subjects gave their informed consent for participation in the study. Clinical parameters and tumour status based on histological findings of resected specimens are summarised in Supplementary Tables S1 and S2.

Surgical specimens were immediately cut into small pieces after resection, snap frozen in liquid nitrogen, and stored at -80 °C.

Chemotherapeutic regimen and monitoring of FOLFOX therapy

All patients were treated with mFOLFOX6, as proposed by Cheeseman *et al* (2002); 85 mg m^{-2} OHP, 200 mg m⁻² LV, and 400 mg m⁻² 5-FU bolus on day 1, and 2400 mg m⁻² 5-FU as a 46-h continuous infusion starting on day 1, which is repeated every 2 weeks. After four cycles of mFOLFOX6 therapy, all lesions were assessed by computed tomography, and classified as CR (disappearance of all target lesions), partial response (PR, at least a 10% decrease in the sum of the longest diameter of target lesions), progressive disease (PD, at least a 10% increase in the sum of the longest diameter of target lesions), and stable disease (SD, neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD), according to the Response Evaluation Criteria in Solid Tumors (Therasse *et al*, 2000), with minor modification.

RNA extraction and oligonucleotide microarray for gene-expression studies

After trimming the frozen sample, in order to contain more than 50% tumour nuclei (Yamamoto *et al*, 2010), total RNA was isolated

from tumour samples, as described previously (Midorikawa *et al*, 2003). Experimental procedures for GeneChip were performed in accordance with the GeneChip Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA, USA), using 3 μ g of total RNA. These data are available at NCBI with GEO Accession no. GSE28702.

Normalisation and filtering of gene-expression data

Before further statistical analysis, we normalised and filtered the raw data. The Affymetrix Power Tools (Affymetrix. *Technical notes*. Affymetrix, 2005) was used to summarise the probe intensity of the CEL file by apt-probeset-summarise command with pliermm-skech option. We filtered out the poorly expressed probe sets from the raw data using Gene Pattern (Reich *et al*, 2006) with the following parameter settings: minchange = 3, mindelta = 100, threshold = 20, ceiling = 20 000, and num excl = 2.

Random Forests analysis

The RF algorithm was applied to raw data for tumour samples obtained from expression arrays, as described previously (Breiman, 2001). Briefly, RF is a machine-learning algorithm that builds a class prediction model using class labelled input samples and calculates a ranking of input variables ordered by the extent of association with classification. To create a variety of decision trees in each iteration step, RF divides the input samples into two groups: randomly selected samples with replacement, the size of which is the same as the input; and remaining samples, known as out-of-bag samples, the size of which is stochastically about onethird of the input. The RF repeats the procedure that consists of the following two steps: constructing the decision tree by using the randomly selected samples and validating the tree using the out-of-bag samples.

Identification of predictor genes for responders to FOLFOX therapy

In the RF algorithm, the genes that confer resistance to FOLFOX therapy were ranked by frequency of occurrence in each out-ofbag cross-validation, which was repeated at 200 000 times. The topranking genes were selected as predictors to maximise out-of-bag classification accuracy. Using the genes selected at above step, we conduct a second RF procedure in the training set. Random Forests is not only a learning algorithm for building a class prediction model, but it calculates useful characteristics about samples, such as outlier measurements for each sample or proximity matrixes representing the similarity between all pairs of samples. For subsequent analyses, we used the proximities obtained by a second RF analysis (Figure 1).

In addition to the author (ST), two bioinformaticians independently analysed the data for reproducibility using the same algorithm.

RESULTS

Assessment of clinical response by FOLFOX therapy

The training set was evaluated by computed tomography after four cycles of mFOLFOX6 therapy; CR was achieved in 2 patients (3.7%), and confirmed PR was seen in 25 patients (46.2%). On the other hand, disease remained stable in 15 patients (SD, 27.7%) and 12 patients (22.2%) showed PD. In the test set, a total of 15 patients (51.7%) demonstrated PR, 5 patients (17.2%) showed SD, and 9 patients (31.0%) showed PD. As cancer cells in SD patients are not sensitive due to activation molecules or pathways for drug resistance, SD patients were biologically classified as non-responders in this study. Therefore, the overall clinical response

128

rate for mFOLFOX6 therapy was 50.6% (n=42), which is consistent with results from larger randomised studies using FOLFOX therapy for unresectable CRC (de Gramont *et al*, 2000; Giacchetti *et al*, 2000). Representative images are shown in Supplementary Figure S1.

On univariate analysis including clinical and pathological characteristics, no variables were significantly associated with response to chemotherapy (Table 1).

Figure I Flow diagram for the present study. Random Forests analysis was totally conducted four times. The final model with 15 probe sets was used for predicting the response of the independent 29 samples.

Table I	Clinical and	pathological	characteristics	of patients
---------	--------------	--------------	-----------------	-------------

Gene-expression profiles that reflect and predict response to FOLFOX therapy using Random Forests analysis

Gene-expression data were generated in all the cancer samples followed by mFOLFOX6 therapy. After normalisation by PLIER and filtering of expression score, 17 920 probes were analysed (Therneau and Ballman, 2008). The RF algorithm was then applied in the training set and 1197 informative probe sets were selected in order to distinguish responders from non-responders to FOLFOX therapy (Figure 1).

Using a cutoff of 0.5, which was same as the response rate, 22 of 27 responders (81.4% sensitivity) and 23 of 27 non-responders (85.1% specificity) were correctly identified (Figure 2A). Applying a Kolmogorov–Smirnov test for statistical significance demonstrated the capacity of the predictor to stratify the patient population into two groups according to expression data $(P < 10^{-5})$.

Proximity matrix based on predictor genes

The proximities that form the N × N matrix, where N indicates sample size, is one of the most useful measures to understand sample variability. To visualise and interpret the results, we formed a proximity matrix. Identification of CRC subtypes by proximity matrix is shown in Figure 2B with three subtypes corresponding to responders, non-responders and unclassified clusters. According to the RF website (http://www.stat.berkeley. edu/~breiman/RandomForests/), outlier values are defined as follows:

$$outlier(i) = \frac{n}{\sum_{cl(k)=cl(i)} prox^2(i,k)} (n, \text{ sample size})$$

Patients are classified as outliers when the outlier value is more than 6.0; 23 patients were classified as responders, 23 patients as non-responders, and 8 patients as outliers.

Thus, the proximity matrix gives robust and reproducible clustering, and enables us to classify responders and nonresponders and to extract outliers, which is clinically valuable for selection of candidates for FOLFOX therapy.

Confirmation of predictor genes based on proximity in validation samples

Outliers identified by proximity matrix may adversely affect the selection of predictor genes in RF. To identify predictor genes that better stratify patients, the RF algorithm was applied to the remaining 46 training samples after removing the 8 outlier samples from the 54 training samples (Figure 2C). The top-ranked 50 predictor genes are listed in Table 2. To determine an appropriate number of genes that can predict resnponders to FOLFOX therapy more accurately, out-of-bag classification accuracy was calculated

	Responder (n = 42)	Non-responder (n = 41)	Total (<i>n</i> = 83)	P-value
Age (years)	64.0 ± 10.2	61.8±12.3	62.9±11.3	NS ^a
Gender (male/female)	27/15	27/14	54/29	NS ^b
$CEA (ngml^{-1})$	299.0 ± 772.9	339.9 ± 756.6	319.2 ± 760.5	NS℃
CA19-9 (Uml ⁻¹)	418.6±941.6	536.4 ± 1085.2	476.8 ± 1010.6	NS℃
Differentiation grade (well/mod/por)	32/9/1	30/7/4	62/16/5	NS ^b
Primary lesion (rt/lt)	18/24	18/23	36/47	NS ^b
Metastatic lesion (liver/lung/bone/peritoneum)	32/7/0/3	32/3/2/4	64/10/2/7	NS^{b}

Abbreviations: CA19-9 = carbohydrate antigen 19-9; CEA = carcinoembryonic antigen; It = left; mod = moderately; NS = not significant; por = poorly; rt = right. ^at-test. ^bFisher's test. ^cWilcoxon's test.

Potential responders to FOLFOX therapy S Tsuji et al

Figure 2 Classification accuracy of responders to FOLFOX therapy. (**A** and **B**) Classification accuracy of responders to FOLFOX therapy using 50 topranked genes selected by Random Forests in the training set. (**A**) Probabilities of sensitivity for FOLFOX therapy in out-of-bag cross-validation. Cutoff value was defined as response rate, 0.5. In all, 22 of 27 sensitive patients (81.4% sensitivity) and 23 of 27 resistant patients (85.1% specificity) were correctly classified, with an accuracy of 62.1% (blue square, responder; red triangle, non-responder). (**B**) Proximity matrix by predictor genes for FOLFOX therapy. At the intersection of each column and row in the figure is a pixel, the intensity of which is a measure of the distance (defined as 1–Peason's correlation coefficient) between the centroids named by the intersecting column and row. The red area corresponds to a high degree of co-occurrence, that is, these samples tend to cluster in all clustering runs. Asterisk on the patient numbers indicate outliers. Red, blue, and black boxes below the proximity matrix probes (14 genes) after removing 8 outlier; from the training set. (**C**) Probabilities of sensitivity for FOLFOX therapy in out-of-bag cross-validation after removing 8 outliers. Sensitivity (91.3%), specificity (95.6%), and out-of-bag classification accuracy (80.2%) were markedly improved. (**D**) Proximity matrix by predictor genes for FOLFOX therapy after removing 8 outliers. Outlier scores were calculated again in 46 samples, all of which were < 6.0.

using various top-ranked genes. If several probes corresponding the same gene appeared repeatedly, only one representative probe was selected. Out-of-bag classification accuracy was maximised when the top 15 probes (14 genes) were applied to RF analysis (Figure 1). Using these 14 classifier genes (*SMURF2, MBTD1, AP3M2, RNF141, NPEPPS, BPTF, FAM73A, APPBP2, AMZ2P1, SRGAP1, NMT1, CSPP1, EIF1,* and *CEP290*), RF correctly classified 21 of 23 responders (91.3% sensitivity) and 22 of 23 nonresponders (95.6% specificity), and achieved 80.2% out-of-bag classification accuracy (Figure 2D). Based on a cutoff 0.50, as defined in the training set, such predictor genes worked well to predict response to FOLFOX therapy within the 29 independent validation samples (Figure 1), that is, correctly classfying 12 of 15 (80.0%) responders and 13 of 14 (92.8%) non-responders with an accuracy rate of 69.2% (Figure 3B). The 14 predictor genes were up-regulated in the non-responder groups, and the samples of which the predictor genes were strongly up-regulated tended to be predicted as non-responder with more certainty, that is, low response probability, and *vice versa* (Figure 3A).

S Tsuji et al

 Table 2
 Top 50 classifier genes after exclusion of outliers

227489_at SMURF2 22670F_at MBTD I 203410_at AP3M2 226106_at RNF141 214101_s_at NPEPPS 23193_at BTF 201455_s_at NPEPPS 235125_x_at FAM73A 202630_at APPBP2 23443_s_at SRGAP1 201155_at SRGAP1 201155_at SRGAP1 201165_at CFP30 201767_x_at EF1 205250_s_at CFP290 20384_s_at DOCK7 20394_x_at RBICC1 22715_s_at ZDHHC11 25384_at DOCK7 200390_s_at SYNRG 20441_at MAP3K2 200304_s_at FNTA 200305_s_at CTorf101 21561_at DENND5A 200306_s_at SYNRG 206600_s_at SYNRG 206600_s_at SYNRG 2027064_at ANKRD40 20559_st CT6A5 2027064_at SYNRG 202460_s_at <t< th=""><th>Probe set ID</th><th>Gene symbol</th></t<>	Probe set ID	Gene symbol
226797_at MBTD 1 203410_at AP3M2 226106_at RNF141 214101_s_at NPEPPS 23193_at BTF 201455_s_at NPEPPS 235125_x_at FAM73A 202630_at APPBP2 23443_s_at AMZ2P1 155875_at SRGAP1 201158_at NMT1 227105_at CEP290 2080_s_at CF290 20280_s_at CTH1 25234_x_at ZDHHC11 252384_at DOCK7 200390_s_at STNRG 20641_at MAP3K2 200090_at FNTA 200090_at FNTA 200090_at FNTA 200090_at SNRG 206600_s_at CI7orf101 212561_at DENND5A 20061_at SNRG 202641_at MAP3K2 20061_at SNURF2 203011_at - 202661_at SNURF2 2030211_at HGSNAT 2127064_at ANKRD40 <td>227489_at</td> <td>SMURF2</td>	227489_at	SMURF2
203410_at AP3M2 226410_at RNF141 214101_s_at RNF141 214101_s_at NPEPPS 231953_at BPTF 201455_s_at NPEPPS 231953_at AP7BP2 23443_s_at APPBP2 223443_s_at AMZ2P1 1555875_at SRGAP1 201158_at NMT1 227105_at CFP30 20280_s_at CTTH1 1552283_s_at ZDHHC11 202344_at DOCK7 202034_x_at RBICC1 22715_s_at SYNRG 226441_at MAP3K2 200090_at FNTA 20031_s_at CI7orf101 212556_at CI7orf101 212561_at DENND5A 20081_at CI8P 206600_s_at SMURF2 20351_at SMURF2 20354_at CRBP 206600_s_at SMURF2 20351_at CRBP 20460_s_at MIK 22589_at MIK 22589_at MIK	226797_at	MBTDI
226106_at RNFI41 214101_s_at NPEPPS 231953_at BPTF 201455_s_at RAM73A 202630_at APPBP2 2319153_s_at RAM73A 202630_at APPBP2 2319153_s_at RAM73A 202630_at APPBP2 231915_m_at RAM73A 202630_at APPBP2 231915_m_at NMTT 221105_at CSPP1 211672_m_at EIF1 205250_s_at CP290 202880_s_at CYTH1 1552283_s_at ZDHHC11 25384_at DOCK7 20204_m_at RB1CC1 22715_s_at SYNRG 20264_1_at MAP3K2 240304_s_at CITorfI01 21256_at DENND5A 200811_at CIRP 200601_s_at SMURE2 203651_at SMURE2 203651_at ZPYVE16 22559_at SYNRG 22559_at CREB1 22559_at CREB1 225595_at	203410_at	AP3M2
214101_s_at NPEPPS 231933_at BPTF 201455_s_at NPEPPS 235125_x_at FAM73A 202630_at APPBP2 23443_s_at AM22PI 155875_at SRGAPI 201158_at NMTI 207672_x_at EFI 20520_s_at CEP290 20280_s_at CTHI 152283_s_at ZDHHC11 25384_at DOCK7 200090_at FNTA 22441_at MAP3K2 240304_s_at CI7orfI01 212561_at DENND5A 200090_at FNTA 53071_s_at CI7orfI01 212561_at DENND5A 200811_at CIRBP 20559_s_at SMURF2 230211_at - 225289_at MURF2 230621_at SYNRG 22559_at SYNRG 22559_at SYNRG 22559_at SYNRG 22559_at CREB1 22559_at CREB1 22559_at CREB1 <td>226106_at</td> <td>RNF141</td>	226106_at	RNF141
231953_at BPTF 201455_s_at NPEPPS 235125_x_at FAM73A 20630_at APPBP2 223443_s_at AM22P1 1555875_at SRGAP1 201158_at NMT1 227105_at CSPP1 217672_x_at EIF1 202880_s_at CYTH1 155283_s_at ZDHHC11 25344_at DOCK7 202034_x_at RBICC1 22715_s_at SYNRG 20441_at MAP3K2 240304_s_at CI7orf101 212561_at DENND5A 20090_at FNTA 53071_s_at CI7orf101 212561_at DENND5A 200600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 203651_at ZFYVE16 22589_at NLK 225595_at CHHC11 212395_at CHHC11 212445_s_at HEXIM1 20446_s_s_at LPIN2 212754_st CREB1 225595_at	214101_s_at	NPEPPS
201455_s_at NPEPPS 23125_x_at FAM73A 202630_at APPBP2 223443_s_at AM22P1 1555875_at SRGAP1 201188_at NMT1 227105_at CSPP1 217672_x_at EIF1 205250_s_at CEP290 202880_s_at CVTH1 155283_s_at ZDHHC11 25384_at DOCK7 200090_at_s_at RBICC1 227115_s_at SYNRG 226441_at MAP3K2 240304_s_at CITorf101 212561_at DENND5A 200090_at FNTA 53071_s_at CITorf101 212561_at DENND5A 200600_s_at SLC16A5 220041_at ANKRD40 205596_s_at SMURF2 203011_at - 203651_at ZFYVE16 225572_at CREB1 225575_at CREB1 225198_at VAPA 225575_at CREB1 225575_at CREB1 225575_at	231953_at	BPTF
235125_x_at FAM73A 202630_at APPBP2 223443_s_at AMZ2PI 155875_at SRGAPI 201158_at NMT1 227105_at CSPPI 217672_x_at EFI 20520_s_at CEP290 202880_s_at CTH1 152283_s_at ZDHHC11 225384_at DOCK7 20034_x_at RBICC1 222715_s_at SYNRG 226441_at MAP3K2 240304_s_at CI7orf101 21256_at CI7orf101 21255_s_at SLC16A5 200090_at FNTA 53071_s_at CI7orf101 212561_at DENND5A 200810_at SHUREP 206600_s_at SLC16A5 227064_at ANKRD40 20559_s_at SHUREP 203651_at ZFYVE16 225595_at NLK 225595_at CREB1 225795_at CREB1 225595_at CREB2F 203416_s_at HEXIM1 24405_s_at	201455_s_at	NPEPPS
202630_at APPBP2 223443_s_at AMZ2PI 1555875_at SRGAPI 201158_at SRGAPI 201705_at CSPPI 217672_x_at EIFI 20280_s_at CYTHI 1552283_s_at ZDHHC11 25250_s_at DOCK7 20280_s_at SYNRG 222715_s_at SYNRG 222714_at MAP3K2 24441_at MAP3K2 244304_s_at C17orf101 203071_s_at C17orf101 212561_at DENNDSA 20080_s_at SLC16A5 227064_at ANKRD40 20559_s_at SLC16A5 20351_at ZFYVE16 22589_at BRMSIL 22589_at NLK 22595_at SYNRG 230621_at CREBI 22595_at CREBI 22595_at CREBI 22595_at CREBI 22595_at CREBI 22595_at CCHCII 20440_s_at CREBI 22595_at CREBI<	235125_x_at	FAM73A
223443_s_at AMZ2PI 1555875_at SRGAPI 201158_at NMTI 227105_at CSPPI 217672_x_at EIFI 205250_s_at CEP290 202880_s_at CYTHI 1552283_s_at ZDHHC11 25384_at DOCK7 202034_x_at RBICC1 22715_s_at SYNRG 226441_at MAP3K2 240304_s_at C17orf101 21552_as C17orf101 2156_at DENND5A 20080_s_at SLC16A5 207064_at ANKRD40 205596_s_at SHURF2 203651_at ZFYVE16 22589_at NLK 22589_at NLK 22599_at NLK 22595_at CREBI 21704_at CREBI 21704_at CREBI 22595_at CREBI 22595_at CREBI 212704_at CREBI 212704_at CCHC11 20440_s_at CREBI 21294_at CHEXIMI	202630_at	APPBP2
IS55875_at SRGAPI 201158_at NMTI 227105_at CSPPI 217672_x_at EIFI 205250_s_at CYTHI 1152283_s_at CYTHI 225384_at DOCK7 20034_x_at RBICCI 222715_s_at SYNRG 22444_at MAP3k2 240304_s_at CI7orfI01 21256_at CI7orfI01 21256_at CI7orfI01 21256_at DENND5A 20090_at FNTA 53071_s_at CI6A5 200600_s_at SLC16A5 207064_at ANKRD40 205596_s_at SMURF2 230211_at - 230211_at - 230211_at - 22589_at SMURF2 230211_at SYNRG 22595_at SYNRG 22595_at SYNRG 22595_at CREBI 221704_at CACHII 22597_at RDX 212704_at CCHCIII 20446_s_at HEXIMI	223443_s_at	AMZ2P1
201158_at NMTI 227105_at CSPPI 217672_x_at EIFI 205250_s_at CEP290 202800_s_at CYTHI 1552283_s_at ZDHHC11 225384_at DOCK7 202303_x_at RBICCI 22715_s_at SYNRG 226441_at MAP3K2 240304_s_at FNTA 20090_at FNTA 53071_s_at CI7orf101 212561_at DENND5A 20081_at SMURE2 20060_s_at SIC16A5 227064_at ANKRD40 20556_s_at SMURE2 20211_at - 202650_at BRMSIL 22559_at NLK 22559_at NLK 22559_at TMEM133 230621_at CREBI 225198_at VAPA 202460_s_at LPIN2 212704_at CREBI 22595_at TOMILI 21397_at RDX 22595_at CREBZF 202814_s_at RDX	1555875_at	SRGAPI
227105_at CSPPI 217672_x_at EIFI 20520_s_at CEP290 202880_s_at CYTHI 1552283_s_at ZDHHC11 225384_at DOCK7 202034_x_at RBICC1 225441_at MAP3K2 240304_s_at SYNRG 226441_at MAP3K2 240304_s_at CI7onf101 21561_at DENND5A 200810_s_at SLC16A5 227064_at ANKRD40 20559_s_at SMURF2 230211_at - 203651_at ZFYVE16 22589_at NLK 22589_at NLK 223595_at CREB1 23021_at IAH1 225572_at CREB1 21704_at ZCCHC11 20440_s_at RDX 22595_at CCHC11 20445_s_at HEXIM1 202460_s_at BRSF 20214_s_at CREB7 20214_s_at CHCH11 21794_at RDX 22595_at UBE2VV	201158_at	NMTI
217672_x.at EIFI 205250_s_at CEP290 202880_s_at CYTHI 1552283_s_at ZDHHC11 25384_at DOCK7 202034_x_at RBICC1 22715_s_at SYNRG 226441_at MAP3K2 240304_s_at TMCS 200090_at FNTA 53071_s_at C17of101 21561_at DENND5A 200811_at CIRBP 20600_s_at SLC16A5 22764_at ANKRD40 20596_s_at SLC16A5 200811_at - 203651_at ZYVE16 22580_at BRMS1L 22589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at IME1133 23621_at VAPA 20240_s_at VAPA 20240_s_at CCHC11 204485_s_at TOM1L1 212704_at CCHC11 204485_s_at UBE2W 201814_s_at WAPST 202814_s_at HEXIM1<	227105_at	CSPPI
205250_s_at CEP290 202880_s_at CYTHI 1552283_s_at ZDHHCIII 225384_at DOCK7 202034_x_at RBICCI 222715_s_at SYNRG 226441_at MAP3K2 240304_s_at FNTA 20090_at FNTA 53071_s_at CI7of101 212561_at DENND5A 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 203651_at ZFYVE16 22658_at SMURF2 203651_at ZFYVE16 22595_at NLK 225764_at HGSNAT 64418_at SYNRG 22595_at CHCI11 20445_s_at CHCI11 20445_s_at CHCI11 20445_s_at CHCI11 20445_s_at CHCI11 20445_s_at CHCI11 20446_s_at CHCI11 20446_s_s_at CHCI11 20446_s_at CHCI11 20446_s_at	217672_x_at	EIFI
202880_s_at CYTHI 1552283_s_at ZDHHC11 225384_at DOCK7 202034_x_at RBICCI 222715_s_at SYNRG 222441_at MAP3K2 240304_s_at FNTA 20090_at FNTA 53071_s_at CI7orfI01 212561_at DENND5A 200811_at CIRBP 20660_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 203651_at ZFVE16 22589_at BRMS1L 22589_at NLK 227564_at HGSNAT 64418_at SYNRG 225198_at CREB1 225198_at VAPA 202460_s_at ERB1 225198_at CACHC11 20440_s_at CREBJ 22595_at CREBJ 22595_at CREBJF 202814_s_at HEXIM1 20440_s_at RDX 225595_at CREBJF 202814_s_at HEXIM1 20440_s_at RNGTT<	205250_s_at	CEP290
IS52283_s_at ZDHHC11 225384_at DOCK7 202034_x_at RB1CC1 222715_s_at SYNRG 226441_at MAP3K2 240304_s_at TMCS 200090_at FNTA 53071_s_at C17orf101 212561_at DENND5A 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22589_at NLK 223592_at NLK 223592_at IMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at CCHC11 20485_s_at TOMIL1 21237_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 20256_at UBE2W 20316_s_at FELH 22595_at CREBZF 202814_s_at HEXIM1	202880_s_at	CYTHI
225384_at DOCK7 202034_x_at RBICCI 222715_s_at SYNRG 226441_at MAP3K2 240304_s_at TMCS 200090_at FNTA 53071_s_at CI7orf101 212561_at DENND5A 200811_at CIRBP 206600_s_at SLC16A5 207064_at ANKRD40 20556_s_at SMURF2 230211_at - 203651_at ZFYVE16 22589_at NLK 22559_at MEN31L 22559_at IMEN133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at EPIN2 212704_at CCHC11 20485_s_at TOM1L1 21237_at CREBZF 202814_s_at HEXIM1 204208_at UBE2W 203116_s_at FECH 22795_at UBE2W 20316_s_at FECH 22795_at DBE2PS	1552283 s at	ZDHHCII
202034_x_at RBICCI 222715_s_at SYNRG 226441_at MAP3K2 240304_s_at TMCS 200090_at FNTA 53071_s_at CI7orf101 212561_at DENND5A 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 226580_at BRMS1L 222599_at NLK 223595_at TMEM133 230621_at IAH1 225572_at CREB1 202460_s_at LAH1 225572_at CCHC11 20440_s_s_at RDX 225595_at TOM1L1 212397_at RDX 225595_at CREB2F 202814_s_at HEXIM1 204208_at RNGTT 202460_s_at ECH 22595_at CREB2F 202814_s_at RNGTT 202814_s_at HEXIM1 204208_at RNGTT <td>225384 at</td> <td>DOCK7</td>	225384 at	DOCK7
222715_s_at SYNRG 226441_at MAP3K2 240304_s_at FNTA 20090_at FNTA 53071_s_at C17orf101 212561_at DENINDSA 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at IMEM133 230621_at LAH1 225572_at CREB1 21704_at ZCCHC11 20440_s_s_at RDX 225595_at RNGTT 225595_at RNGTT 202460_s_at BEZF 202814_s_at HEXIM1 204208_at RNGTT 225595_at UBEZVV 20214_s_at HEXIM1 204208_at BNGTT 202814_s_at HEXIM1 204205_s_at UBEZVV 203116_s_at FECH <td>202034 × at</td> <td>RBICCI</td>	202034 × at	RBICCI
226441_at MAP3K2 240304_s_at FNTA 200090_at FNTA 53071_s_at C17orf101 212561_at DENIND5A 200811_at CIRBP 206600_s_at SLC16A5 207064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22589_at BRMS1L 222589_at NLK 223595_at SYNRG 223595_at TMEM133 230621_at LAH1 225572_at CREB1 225198_at VAPA 202400_s_at ZCCHC11 20440s_s_at RDX 225595_at TOMILI 212704_at CCCHC11 20440s_s_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 202456_at UB22V 203116_s_at FCH 227395_at IB28498 201454 s at NPEPPS	222715 s at	SYNRG
240304_s_at FNTA 200090_at FNTA 53071_s_at C17orf101 212561_at DENND5A 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22589_at BRMS1L 222589_at NLK 223595_at SYNRG 223595_at TMEM133 230621_at LAH1 225572_at CREB1 225198_at VAPA 202400_s_at ZCCHC11 20440_s_at ZCCHC11 20446_s_at RDX 225595_at TOMIL1 212374_at CREB1 225595_at CREB2F 202814_s_at HEXIM1 204208_st RNGTT 225595_at CREBZF 202814_s_at HEXIM1 204208_st BRUST 202814_s_at HEXIM1 204205_st UBE2VV 203116_s_at FECH <td>226441 at</td> <td>MAP3K2</td>	226441 at	MAP3K2
200090_at FNTA 53071_s_at C17orf101 212561_at DENND5A 2008011_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22558_at BRMS1L 222589_at NLK 223595_at SYNRG 223595_at YRG 223595_at CREB1 225572_at CREB1 225572_at CREB1 225198_at VAPA 202460_s_at RDX 225595_at CREB1 22595_at TOMIL1 212374_at CCHC11 20485_s_at TOMIL1 212377_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 202814_s_at HEXIM1 204208_at BRUST 202814_s_at HEXIM1 20445_s_at HEXIM1 202856_at UB22VV </td <td>240304 s at</td> <td>TMC5</td>	240304 s at	TMC5
S3071_s_at C17orf101 212561_at DENIND5A 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SIC16A5 230211_at - 203651_at ZFVVE16 22589_at BRMS1L 22589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at LAHI 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at CREB2F 202814_s_at RDX 225595_at CREBZF 202814_s_at BRUT1 204208_at RNGTT 202414_s_at FECH 227395_at ECH 227595_at FECH 227395_at NPEPPS	200090 at	FNTA
212561_at DENND5A 200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at BRMSIL 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAHI 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 20485_s_at RDX 225595_at CREB2F 202814_s_at HEXIM1 204208_at RNGTT 202414_s_at FECH 225595_at CREB2F 202814_s_at HEXIM1 204208_at RNGTT 20246_s_at FECH 227595_at FECH 227595_at FECH 227395_at NPEPPS	53071 s at	CI7orfI0I
200811_at CIRBP 206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22680_at BRMS1L 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 20486_s_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 20246_s_at BEZV 20246_s_at FECH 22595_at CREBZF 202814_s_at FECH 227395_at FIJ38498 201454 s_at NPEPPS	212561 at	DENND5A
206600_s_at SLC16A5 227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 22680_at BRMS1L 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at IMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOM1L1 2123595_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 20256_at UBE2VV 203116_s_at FECH 227395_at NPEPPS	2008 at	CIRBP
227064_at ANKRD40 205596_s_at SMURF2 230211_at - 203651_at ZFYVE16 222589_at BRMS1L 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOMILI 212397_at RDX 22595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 20256_at UB22W 203116_s_at FECH 227395_at FLJ38498 201454 s at NPEPPS	206600 s at	SLC16A5
205596at SMURF2 230211_at - 203651_at ZFYVE16 226580_at BRMS1L 222599_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 20440_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOMIL1 212397_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 202566_at UBE2VV 203116_s_at FECH 227395_at KIS 201454 s_at NPEPPS	227064 at	ANKRD40
230211_at - 203651_at ZFYVE16 226580_at BRMS1L 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 22572_at CREB1 22574_at LPIN2 22704_at ZCCHC11 204460_s_at TOMILI 212797_at RDX 22595_at CREBZF 202814_s_at HEXIM1 204208_at RNGTT 202814_s_at HEXIM1 204208_at FIJ38498 201454 s at NPEPPS	205596 s at	SMURF2
203651_at ZFYVE16 226580_at BRMS1L 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 236621_at IAH1 225572_at CREB1 22598_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOM1L1 212397_at RDX 225595_at CREBZF 202814_s_at HEXIM1 20408_at RNGTT 222656_at UB2VV 203116_s_at FECH 227395_at FLJ38498 201454 s_at NPEPPS	230211 at	_
226580_at BRMSIL 222589_at NLK 227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOM1L1 212397_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at BNGTT 202466_s_at UB22V 203116_s_at FECH 227595_at FLJ38498 203145_s at NPEPPS	203651 at	ZEYVE16
222589_at NLK 222589_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at CREBZF 202814_s_at RNGTT 20286_at UBE2W 20214_s_at FECH 22595_at FECH 202395_at State 202463_s_at RNGTT 202464_s_at RNGTT 202595_at FECH 2023116_s_at FECH 27395_at NPEPPS	226580 at	BRMSII
227564_at HGSNAT 64418_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204465_s_at TOM1L1 212397_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at BE2W 203116_s_at FECH 227395_at NPEPPS	222589 at	NIK
223595_at SYNRG 223595_at TMEM133 230621_at IAH1 225572_at CREB1 225572_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOM1L1 212397_at RDX 225595_at CREBZF 202814_s_at HEXIM1 204208_at BROGTT 202456_at UBE2VV 203116_s_at FECH 227395_at RI38498 201454 s_at NPEPPS	227564 at	HGSNAT
223595_at TMEMI33 230621_at IAHI 225572_at CREBI 225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHCII 204465_s_at TOMILI 212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 204208_at RNGTT 202456_at UBE2W 203116_s_at FLJ38498 201454 s_at NPEPPS	64418 at	SYNRG
230621_at IAHI 225572_at CREBI 225572_at VAPA 202460_s_at LPIN2 212704_at ZCCHCII 204485_s_at TOMILI 212397_at RDX 225595_at CREBZF 202460_s_at HEXIMI 202460_s_at BDX 212704_at ZCCHCII 204485_s_at TOMILI 212397_at RDX 225595_at CREBZF 202408_at RNGTT 22656_at UB22W 203116_s_at FECH 227395_at FIJ38498 201454 s at NPEPPS	223595 at	TMFM133
225572_at CREBI 225572_at CREBI 225572_at VAPA 202460_s_at LPIN2 212704_at ZCCHCII 204485_s_at TOMILI 212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 20266_at UB22W 203116_s_at FECH 227395_at RI38498 201454 s at NPEPPS	230621 at	IAHI
225198_at VAPA 202460_s_at LPIN2 212704_at ZCCHC11 204485_s_at TOMIL1 212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 20266_at UB22W 203116_s_at FECH 227395_at CNEPS	225572 at	CREBI
202460_s_at LPIN2 212704_at ZCCHCII 204485_s_at TOMILI 212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 20408_at RNGTT 22656_at UB22W 203116_s_at FECH 227395_at CI138498 201454 s_at NPEPPS	225198 at	VAPA
212704_at ZCCHCII 204485_s_at TOMILI 212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 20408_at RNGTT 222656_at UB22W 203116_s_at FECH 227395_at FLJ38498 201454 s at NPEPPS	202460 s at	I PINI2
204485_s_at TOMILI 212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 204208_at RNGTT 22656_at UB22W 203116_s_at FECH 227395_at FLJ38498 201454 s_at NPEPPS	212704 at	
212397_at RDX 225595_at CREBZF 202814_s_at HEXIMI 204208_at RNGTT 202556_at UB22W 203116_s_at FECH 227395_at FLJ38498 201454 s at NPEPPS	204485 s at	TOMILI
212577_at CREBZF 225595_at CREBZF 202814_s_at HEXIMI 204208_at RNGTT 222656_at UBE2W 203116_s_at FECH 227395_at FLJ38498 201454_s_at NPEPPS	212397 at	RDX
202814_s_at HEXIM1 2042814_s_at RNGTT 204208_at UBE2W 203116_s_at FECH 227395_at FLJ38498 201454_s_at NPEPPS	275595 at	CREBZE
204208_at RNGTT 222656_at UBE2W 203116_s_at FECH 227395_at FLJ38498 201454_s_at NPEPPS	2028/4 s at	HEXIMI
222656_at UBE2W 203116_s_at FECH 227395_at FLJ38498 201454_s_at NPEPPS	204208 at	RNGTT
203116_s_at FECH 227395_at FLJ38498 201454_s_at NPEPPS	227656 at	UBF2W/
227395_at FLJ38498 201454 s at NPEPPS	203116 s at	FECH
201454 s at NPEPPS	227395 at	FLI38498
EI I O	201454 s at	NPEPPS

Bold entry: down-regulated genes in non-responders.

To confirm the robustness of the 14 selected predictor genes, we conducted additional analyses, in which 83 samples were randomly divided five times into 54 training and 29 test samples. Consequently, we were able to classify the samples with high accuracy (Supplementary Table S3), and the same 5 genes (*SMURF2, MBTD1, NPEPPS, APPBP2,* and *AMZ2P1*) among the 14 predictors were selected as predictors in these additional analyses.

Prediction of overall survival by response signature to FOLFOX therapy

In order to confirm whether patients who were identified as responders had a survival advantage when compared with non-responders, the survival characteristics of the two patient populations were examined.

Figure 3 Predicted probabilities using 14 predictor genes for FOLFOX therapy in test samples. Using the prediction model in the training set, 12 of 15 sensitive patients (80.0% sensitivity) and 13 of 14 resistant patients (92.8% specificity) were correctly classified, with an averaged accuracy rate of 69.2% in the test set. The order of samples in **A** correspond to the **B**. (**A**) The heat map of the expression values of 14 predictor genes. As NPEPPS has two probes, the heat map has 15 rows. (**B**) Predicted response probability of 29 test samples (blue square, responder; red triangle, non-responder).

In out-of-bag cross-validation of the training set, 26 patients were identified determined as responders to FOLFOX therapy by RF (Group 1), and 28 patients were classified non-responders (Group 2). The survival characteristics of these patients were then examined by Kaplan – Meier survival analysis (Figure 4A). Patients in Groups 1 and 2 had median survival times of 35.1 and 12.5 months, respectively. Given these results, despite other therapies after FOLFOX in Group 2 patients, the survival distributions of the patients corresponding to the two groups were significantly different (P = 0.0052).

On the other hand, in the test set, 13 patients were predicted to be responders to FOLFOX therapy by RF (Group 3), and 16 patients were classified as non-responders (Group 4). Figure 4B shows the Kaplan-Meier survival analysis. The 2-year overall survival rates in the patients in Groups 3 and 4 were 69.8% and 38.6%, respectively. Group 3 had a significantly longer overall survival than Group 4. Thus, the response signature to FOLFOX therapy is a useful prognostic factor for unresectable CRC outcome.

DISCUSSION

Treatment of unresectable CRC is empirical and most CRC patients are candidates for FOLFOX therapy as a first-line treatment. Consistent with the literature (de Gramont *et al*, 2000; Giacchetti *et al*, 2000), our data show that only half of patients benefit from FOLFOX therapy, indicating that a significant fraction of patients should undergo other treatments. Clinical and pathological data may not be available to sufficiently stratify such patients, whereas genetic approaches have been demonstrated to

Figure 4 Overall survival of unresectable colorectal cancer patients. The response signature was used to predict overall survival in a training set (**A**) and a test set (**B**) of unresectable CRC patients treated with FOLFOX therapy. The predicted probability of the signature was used to identify individual patients exhibiting the phenotype. Continuous line, patients determined as responders by Random Forests algorithm; broken line, non-responders.

be effective for this purpose (Hess *et al*, 2006; Del Rio *et al*, 2007; Dressman *et al*, 2007). In this study, we developed a multigene predictor of responders to FOLFOX therapy using gene-expression signature, which may predict both tumour response and overall survival of patients.

In order to determine the gene signature for response prediction from microarray analysis, many researchers have tried to develop and apply the most accurate classification algorithms. Among such algorithms, SVM and RF are the predominant statistical methods and comparison of these algorithms for microarray-based classification has been reported (Wu *et al*, 2003; Diaz-Uriarte and Alvarez de Andres, 2006; Statnikov *et al*, 2008; Kim *et al*, 2009). In this study, we assumed that RF is a more appropriate algorithm than SVM for the following reasons: first, RF is applicable when there are more predictors than observations (Breiman, 2001); and second, RF consists of many decision trees, which is better suited to predicting response to multiagent chemotherapy. Random Forests also performs embedded gene selection and is relatively insensitive to large numbers of irrelevant genes, which enabled us to identify 14 predictor genes.

Hierarchical clustering analysis has been one of the most successful tools for displaying microarray expression data. However, its results are sensitive to outliers and this makes it difficult to assess the significance of results. On the other hand, proximity matrix, which is an important part of the RF imputation method that includes pairwise similarities between all pairs of probands, gives a robust and reproducible clustering, capable of capturing small signal variations (Breiman, 2001). In addition, proximity matrix can identify outlier samples whose proximities to all other cases in the data are generally small. In the present study, two-way hierarchical clustering analysis failed to significantly separate responders and non-responders (data not shown). Meanwhile, applying proximity matrix to data by RF algorithm, it was possible to separate responders, non-responders, and outliers, which were consistent with visualisation by two-dimensional eigenvalue decomposition analysis (data not shown). After removing outliers from training samples, we were able to identify more predominant classifier genes by which independent validation samples were correctly classified with higher accuracy.

Among the selected predictor genes in this study, several cisplatin-related genes were included. *SMURF2*, a member of the HECT family of E3 ubiquitin ligases, is thought to regulate the

REFERENCES

Affymetrix. *Technical notes*. Affymetrix I (2005) Guide to probe logarithmic intensity error (plier) estimation. http://www.affymetrix.com/support/technical/technotesmain.affx

expression of Smad2 through a ubiquitination- and proteasomedependent degradation process during TGF β signalling (Lin *et al*, 2000; Zhang *et al*, 2001). On the other hand, several researchers have reported that TGF β increases sensitivity to cisplatin for cancer treatment (Thavaraj *et al*, 2005; Irigoyen *et al*, 2010) and therefore, *SMURF2* will be available as a biomarker for identification of responders for FOLFOX therapy.

The increased ANKRD40 mRNA transcript in non-responders to FOLFOX therapy is intriguing. Ankyrin repeats is a short motif that mediates protein – protein interactions and found in proteins of diverse function, and ankyrin-repeat proteins such as p16 (Tang *et al*, 2003) and Notch proteins (Aster *et al*, 2000) have been associated with cancer. Furthermore, up-regulation of ANKRD1was associated with decreased sensitivity for cisplatin in ovarian adenocarcinoma (Scurr *et al*, 2008). In addition to our data, ankyrin-repeat domains may enhance platinum resistance.

Other than cisplatin-resistant genes, genes including *CIRBP* (Zeng *et al*, 2009) and *CREB1* (Shukla *et al*, 2009), the overexpression of which is reported in chemotherapy-resistant cells, were also up-regulated in non-responders in the present study.

In summary, RF analysis for multiagent therapy not only identified predictor genes, but also stratified patients by tumour response, independently of established clinicopathological variables. We believe that the present approach is effective for predicting responders to chemotherapy, and will be useful as a first step in establishing personalised therapy.

ACKNOWLEDGEMENTS

This work was mainly supported by a Grant-in-Aid for Scientific Research (S) 20221009 (HA) and (C) 23591972 (YM) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and the Program of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), Japan. We thank Hiroko Meguro for valuable technical assistance, Shuichi Tsutsumi and Shogo Yamamoto for confirming the reproducibility of our analysis, and Kenji Katsumata and Hiroyuki Mushiake for sample preparation.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS (2000) Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. *Mol Cell Biol* 20: 7505-7515

- Berchuck A, Iversen ES, Lancaster JM, Pittman J, Luo J, Lee P, Murphy S, Dressman HK, Febbo PG, West M, Nevins JR, Marks JR (2005) Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. *Clin Cancer Res* 11: 3686-3696
- Braun MS, Adab F, Bradley C, McAdam K, Thomas G, Wadd NJ, Rea D, Philips R, Twelves C, Bozzino J, MacMillan C, Saunders MP, Counsell R, Anderson H, McDonald A, Stewart J, Robinson A, Davies S, Richards FJ, Seymour MT (2003) Modified de Gramont with oxaliplatin in the first-line treatment of advanced colorectal cancer. *Br J Cancer* **89**: 1155-1158
- Breiman L (2001) Random Forests. Mach Learn 45: 5-32
- Cheeseman SL, Joel SP, Chester JD, Wilson G, Dent JT, Richards FJ, Seymour MT (2002) A 'modified de Gramont' regimen of fluorouracil, alone and with oxaliplatin, for advanced colorectal cancer. *Br J Cancer* 87: 393-399
- de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A (2000) Leucovorin and fluorouracil with or without oxaliplatin as firstline treatment in advanced colorectal cancer. J Clin Oncol 18: 2938-2947
- Del Rio M, Molina F, Bascoul-Mollevi C, Copois V, Bibeau F, Chalbos P, Bareil C, Kramar A, Salvetat N, Fraslon C, Conseiller E, Granci V, Leblanc B, Pau B, Martineau P, Ychou M (2007) Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J Clin Oncol 25: 773-780
- Diaz-Uriarte R, Alvarez de Andres S (2006) Gene selection and classification of microarray data using random forest. *BMC Bioinformatics* 7: 3
- Dressman HK, Berchuck A, Chan G, Zhai J, Bild A, Sayer R, Cragun J, Clarke J, Whitaker RS, Li L, Gray J, Marks J, Ginsburg GS, Potti A, West M, Nevins JR, Lancaster JM (2007) An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25: 517-525
- Giacchetti S, Perpoint B, Zidani R, Le Bail N, Faggiuolo R, Focan C, Chollet P, Llory JF, Letourneau Y, Coudert B, Bertheaut-Cvitkovic F, Larregain-Fournier D, Le Rol A, Walter S, Adam R, Misset JL, Levi F (2000) Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil-leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 18: 136-147
- Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Richards WG, Jaklitsch MT, Sugarbaker DJ, Bueno R (2003) Using gene expression ratios to predict outcome among patients with mesothelioma. *J Natl Cancer Inst* **95:** 598-605
- Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, Rouzier R, Sneige N, Ross JS, Vidaurre T, Gomez HL, Hortobagyi GN, Pusztai L (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24: 4236-4244
- Irigoyen M, Pajares MJ, Agorreta J, Ponz-Sarvise M, Salvo E, Lozano MD, Pio R, Gil-Bazo I, Rouzaut A (2010) A TGFBI expression is associated with a better response to chemotherapy in NSCLC. *Mol Cancer* **9**: 130
- Kim BK, Lee JW, Park PJ, Shin YS, Lee WY, Lee KA, Ye S, Hyun H, Kang KN, Yeo D, Kim Y, Ohn SY, Noh DY, Kim CW (2009) The multiplex bead array approach to identifying serum biomarkers associated with breast cancer. *Breast Cancer Res* 11: R22
- Lin X, Liang M, Feng XH (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275: 36818-36822
- Midorikawa Y, Ishikawa S, Iwanari H, Imamura T, Sakamoto H, Miyazono K, Kodama T, Makuuchi M, Aburatani H (2003) Glypican-3, overexpressed in hepatocellular carcinoma, modulates FGF2 and BMP-7 signaling. *Int J Cancer* **103**: 455–465
- Nannini M, Pantaleo MA, Maleddu A, Astolfi A, Formica S, Biasco G (2009) Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. *Cancer Treat Rev* 35: 201-209

- Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. *Cancer Res* 63: 1602–1607
- Parissenti AM, Hembruff SL, Villeneuve DJ, Veitch Z, Guo B, Eng J (2007) Gene expression profiles as biomarkers for the prediction of chemotherapy drug response in human tumour cells. *Anticancer Drugs* 18: 499 – 523
- Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38: 500-501
- Scurr LL, Guminski AD, Chiew YE, Balleine RL, Sharma R, Lei Y, Pryor K, Wain GV, Brand A, Byth K, Kennedy C, Rizos H, Harnett PR, deFazio A (2008) Ankyrin repeat domain 1, ANKRD1, a novel determinant of cisplatin sensitivity expressed in ovarian cancer. *Clin Cancer Res* 14: 6924-6932
- Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S (2005) Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. *Mod Pathol* **18**: 547-557
- Shukla A, Bosenberg MW, MacPherson MB, Butnor KJ, Heintz NH, Pass HI, Carbone M, Testa JR, Mossman BT (2009) Activated cAMP response element binding protein is overexpressed in human mesotheliomas and inhibits apoptosis. Am J Pathol 175: 2197-2206
- Simon R (2008) The use of genomics in clinical trial design. *Clin Cancer Res* 14: 5984–5993
- Statnikov A, Wang L, Aliferis CF (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. *BMC Bioinformatics* **9:** 319
- Tang KS, Fersht AR, Itzhaki LS (2003) Sequential unfolding of ankyrin repeats in tumor suppressor p16. Structure 11: 67-73
- Thavaraj S, Paterson IC, Hague A, Prime SS (2005) Over-expression of TGF-beta1 in Smad4-deficient human oral carcinoma cells causes tumour regression *in vivo* by mechanisms that sensitize cells to apoptosis. J Pathol 205: 14-20
- Therneau TM, Ballman KV (2008) What does PLIER really do? Cancer Inform 6: 423-431
- Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92: 205-216
- Torri V, Simon R, Russek-Cohen E, Midthune D, Friedman M (1992) Statistical model to determine the relationship of response and survival in patients with advanced ovarian cancer treated with chemotherapy. *J Natl Cancer Inst* 84: 407-414
- van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A geneexpression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009
- Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H (2003) Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. *Bioinformatics* 19: 1636–1643
- Yamamoto S, Midorikawa Y, Morikawa T, Nishimura Y, Sakamoto H, Ishikawa S, Akagi K, Aburatani H (2010) Identification of chromosomal aberrations of metastatic potential in colorectal carcinoma. *Genes Chromosomes Cancer* **49:** 487-496
- Zeng Y, Kulkarni P, Inoue T, Getzenberg RH (2009) Down-regulating cold shock protein genes impairs cancer cell survival and enhances chemosensitivity. J Cell Biochem 107: 179-188
- Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. *Proc Natl Acad Sci USA* **98:** 974–979

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.