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BACKGROUND: Molecular characterisation using gene-expression profiling will undoubtedly improve the prediction of treatment
responses, and ultimately, the clinical outcome of cancer patients.
METHODS: To establish the procedures to identify responders to FOLFOX therapy, 83 colorectal cancer (CRC) patients including
42 responders and 41 non-responders were divided into training (54 patients) and test (29 patients) sets. Using Random Forests (RF)
algorithm in the training set, predictor genes for FOLFOX therapy were identified, which were applied to test samples and sensitivity,
specificity, and out-of-bag classification accuracy were calculated.
RESULTS: In the training set, 22 of 27 responders (81.4% sensitivity) and 23 of 27 non-responders (85.1% specificity) were correctly
classified. To improve the prediction model, we removed the outliers determined by RF, and the model could correctly classify
21 of 23 responders (91.3%) and 22 of 23 non-responders (95.6%) in the training set, and 80.0% sensitivity and 92.8% specificity, with
an accuracy of 69.2% in 29 independent test samples.
CONCLUSION: Random Forests on gene-expression data for CRC patients was effectively able to stratify responders to FOLFOX
therapy with high accuracy, and use of pharmacogenomics in anticancer therapy is the first step in planning personalised therapy.
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Combinations of oxaliplatin (OHP) combined with various
schedules of antimetabolite 5-fluorouracil (5-FU) and leucovorin
(LV) are currently the first-line treatments for unresectable
colorectal cancer (CRC), and the superiority of the FOLFOX4
regimen has been demonstrated (de Gramont et al, 2000;
Giacchetti et al, 2000). A much higher response rate was observed
(450%) with the FOLFOX4 regimen than with 5-FUþ LV, and this
resulted in survival benefits for patients undergoing FOLFOX4
therapy (de Gramont et al, 2000; Giacchetti et al, 2000), and the
modified FOLFOX6 (mFOLFOX6) regimen subsequently showed
equivalent efficacy and tolerance (Cheeseman et al, 2002; Braun
et al, 2003). Thus, some patients receive the benefits of FOLFOX
therapy, while others undergo ineffective chemotherapy for several
cycles until the effects are determined, which can often result in
detrimental, life-threatening side effects. Stratification of patients
for multidrug response based on biological characteristics is thus
indispensable for personalised therapy.

Drug sensitivity in chemotherapy is thought to be attributable to
variations in underlying genetic characteristics of cancer. Biomar-
kers were originally used to measure disease progression and as
surrogates of treatment efficacy. However, biomarkers can also be
used as predictive markers to indicate whether a patient is a good

candidate for a specific drug or regimen (Torri et al, 1992;
Simon, 2008).

Gene-expression signatures have a great potential both for
predicting outcomes in cancer patients, and for predicting
response or toxicity with various anticancer drugs (van de Vijver
et al, 2002; Gordon et al, 2003; Nutt et al, 2003; Berchuck et al,
2005), and they may be superior to conventional clinical and
pathological approaches (Parissenti et al, 2007). Using gene-
expression profiles, Dressman et al (2007) were able to identify
advanced ovarian cancer patients who were likely to be resistant to
platinum-based chemotherapy with more than 80% accuracy. On
the other hand, a classifier gene set selected by diagonal linear
discriminant analysis predicted pathologic complete response
(CR) to paclitaxel and fluorouracil –doxorubicin– cyclophospha-
mide chemotherapy for breast cancer with high sensitivity in
independent cases (Hess et al, 2006). When compared with the
estimation of responders to anticancer drugs using expression
profiling in breast or ovarian cancers, only a small number of such
studies have been performed in CRC (Nannini et al, 2009). Del Rio
et al (2007) determined 14 classifier genes for predicting response
to combined therapy with LV, 5-FU, and irinotecan (FOLFIRI),
although they studied a relatively small number of patients.

In order to maximise the benefits of microarray technology,
researchers have attempted to develop several classification
algorithms in a reproducible manner (Wu et al, 2003; Statnikov
et al, 2008; Kim et al, 2009). Random Forests (RF) is a machine
learning algorithm that uses an ensemble of classification trees and
is available for microarray data analysis in which the number of
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variables is much larger than samples (Breiman, 2001). Random
Forests was demonstrated to be a part of the standard method
for class prediction and gene selection with microarray data
(Diaz-Uriarte and Alvarez de Andres, 2006). In addition to this, RF
was able to cluster samples; thus, we applied RF to predicting the
efficacy of FOLFOX therapy. Some reports have demonstrated that
RF, as with other methods including support vector machines
(SVMs) and linear discriminant analysis, outperforms in the
classification of several cancers (Wu et al, 2003; Statnikov et al,
2008; Kim et al, 2009). Clinically, using RF, tumour class discovery
of renal cell carcinoma based on tissue microarray profiling is
possible, and this could not be explained by clinicopathological
variables (Shi et al, 2005).

In the present study, we used the RF algorithm to identify
classifier genes that are able to predict responders to FOLFOX
therapy for unresectable CRC. Using these biomarkers, we were
able to predict the patients most likely to benefit from selected
multiagent chemotherapy with a high degree of accuracy.
Our results demonstrated that pharmacogenomic identification
of predictor genes for response to chemotherapy will benefit
advanced cancer patients, which will aid in the development of
personalised therapy.

MATERIALS AND METHODS

Patients and tissue samples

A total of 83 patients with unresectable CRC undergoing FOLFOX
therapy from April 2007 to December 2010 in Teikyo University
Hospital at Mizonokuchi and Gifu University Hospital were
recruited in this study. All CRC samples were obtained before
mFOLFOX6 therapy, including 56 primary CRCs and 27 metastatic
lesions to the liver (23 tumours), lung (1 tumour) and peritoneum
(3 tumours). None of the patients enrolled in this study underwent
any chemotherapy or radiotherapy in advance. Samples were
divided (approximately 2 : 1 ratio) into training and test sets. As a
result, 54 of 83 samples obtained in the first half of this period were
selected for the training set, and the remaining 29 samples in the
latter half were selected as the test set. All subjects gave their
informed consent for participation in the study. Clinical para-
meters and tumour status based on histological findings of
resected specimens are summarised in Supplementary Tables S1
and S2.

Surgical specimens were immediately cut into small pieces after
resection, snap frozen in liquid nitrogen, and stored at �80 1C.

Chemotherapeutic regimen and monitoring of
FOLFOX therapy

All patients were treated with mFOLFOX6, as proposed by
Cheeseman et al (2002); 85 mg m�2 OHP, 200 mg m�2 LV, and
400 mg m�2 5-FU bolus on day 1, and 2400 mg m�2 5-FU as a 46-h
continuous infusion starting on day 1, which is repeated every 2
weeks. After four cycles of mFOLFOX6 therapy, all lesions were
assessed by computed tomography, and classified as CR (disap-
pearance of all target lesions), partial response (PR, at least a 10%
decrease in the sum of the longest diameter of target lesions),
progressive disease (PD, at least a 10% increase in the sum of the
longest diameter of target lesions), and stable disease (SD, neither
sufficient shrinkage to qualify for PR nor sufficient increase to
qualify for PD), according to the Response Evaluation Criteria
in Solid Tumors (Therasse et al, 2000), with minor modification.

RNA extraction and oligonucleotide microarray for
gene-expression studies

After trimming the frozen sample, in order to contain more than
50% tumour nuclei (Yamamoto et al, 2010), total RNA was isolated

from tumour samples, as described previously (Midorikawa et al,
2003). Experimental procedures for GeneChip were performed in
accordance with the GeneChip Expression Analysis Technical
Manual (Affymetrix, Santa Clara, CA, USA), using 3 mg of total
RNA. These data are available at NCBI with GEO Accession
no. GSE28702.

Normalisation and filtering of gene-expression data

Before further statistical analysis, we normalised and filtered the
raw data. The Affymetrix Power Tools (Affymetrix. Technical
notes. Affymetrix, 2005) was used to summarise the probe intensity
of the CEL file by apt-probeset-summarise command with plier-
mm-skech option. We filtered out the poorly expressed probe sets
from the raw data using Gene Pattern (Reich et al, 2006) with the
following parameter settings: minchange¼ 3, mindelta¼ 100,
threshold¼ 20, ceiling¼ 20 000, and num excl¼ 2.

Random Forests analysis

The RF algorithm was applied to raw data for tumour samples
obtained from expression arrays, as described previously
(Breiman, 2001). Briefly, RF is a machine-learning algorithm that
builds a class prediction model using class labelled input samples
and calculates a ranking of input variables ordered by the extent of
association with classification. To create a variety of decision trees
in each iteration step, RF divides the input samples into two
groups: randomly selected samples with replacement, the size of
which is the same as the input; and remaining samples, known as
out-of-bag samples, the size of which is stochastically about one-
third of the input. The RF repeats the procedure that consists of
the following two steps: constructing the decision tree by using
the randomly selected samples and validating the tree using the
out-of-bag samples.

Identification of predictor genes for responders to
FOLFOX therapy

In the RF algorithm, the genes that confer resistance to FOLFOX
therapy were ranked by frequency of occurrence in each out-of-
bag cross-validation, which was repeated at 200 000 times. The top-
ranking genes were selected as predictors to maximise out-of-bag
classification accuracy. Using the genes selected at above step,
we conduct a second RF procedure in the training set. Random
Forests is not only a learning algorithm for building a class
prediction model, but it calculates useful characteristics about
samples, such as outlier measurements for each sample or
proximity matrixes representing the similarity between all pairs
of samples. For subsequent analyses, we used the proximities
obtained by a second RF analysis (Figure 1).

In addition to the author (ST), two bioinformaticians
independently analysed the data for reproducibility using the
same algorithm.

RESULTS

Assessment of clinical response by FOLFOX therapy

The training set was evaluated by computed tomography after four
cycles of mFOLFOX6 therapy; CR was achieved in 2 patients
(3.7%), and confirmed PR was seen in 25 patients (46.2%). On the
other hand, disease remained stable in 15 patients (SD, 27.7%) and
12 patients (22.2%) showed PD. In the test set, a total of 15 patients
(51.7%) demonstrated PR, 5 patients (17.2%) showed SD, and 9
patients (31.0%) showed PD. As cancer cells in SD patients
are not sensitive due to activation molecules or pathways for
drug resistance, SD patients were biologically classified as non-
responders in this study. Therefore, the overall clinical response
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rate for mFOLFOX6 therapy was 50.6% (n¼ 42), which is
consistent with results from larger randomised studies using
FOLFOX therapy for unresectable CRC (de Gramont et al, 2000;
Giacchetti et al, 2000). Representative images are shown in
Supplementary Figure S1.

On univariate analysis including clinical and pathological
characteristics, no variables were significantly associated with
response to chemotherapy (Table 1).

Gene-expression profiles that reflect and predict
response to FOLFOX therapy using Random
Forests analysis

Gene-expression data were generated in all the cancer samples
followed by mFOLFOX6 therapy. After normalisation by PLIER
and filtering of expression score, 17 920 probes were analysed
(Therneau and Ballman, 2008). The RF algorithm was then applied
in the training set and 1197 informative probe sets were selected in
order to distinguish responders from non-responders to FOLFOX
therapy (Figure 1).

Using a cutoff of 0.5, which was same as the response rate, 22 of
27 responders (81.4% sensitivity) and 23 of 27 non-responders
(85.1% specificity) were correctly identified (Figure 2A). Applying
a Kolmogorov – Smirnov test for statistical significance demon-
strated the capacity of the predictor to stratify the patient
population into two groups according to expression data
(Po10�5).

Proximity matrix based on predictor genes

The proximities that form the N�N matrix, where N indicates
sample size, is one of the most useful measures to understand
sample variability. To visualise and interpret the results, we
formed a proximity matrix. Identification of CRC subtypes by
proximity matrix is shown in Figure 2B with three subtypes
corresponding to responders, non-responders and unclassified
clusters. According to the RF website (http://www.stat.berkeley.
edu/~breiman/RandomForests/), outlier values are defined as
follows:

outlierðiÞ ¼ n
P

clðkÞ¼clðiÞ
prox2ði; kÞ ðn; sample sizeÞ

Patients are classified as outliers when the outlier value is more
than 6.0; 23 patients were classified as responders, 23 patients as
non-responders, and 8 patients as outliers.

Thus, the proximity matrix gives robust and reproducible
clustering, and enables us to classify responders and non-
responders and to extract outliers, which is clinically valuable
for selection of candidates for FOLFOX therapy.

Confirmation of predictor genes based on proximity
in validation samples

Outliers identified by proximity matrix may adversely affect the
selection of predictor genes in RF. To identify predictor genes that
better stratify patients, the RF algorithm was applied to the
remaining 46 training samples after removing the 8 outlier samples
from the 54 training samples (Figure 2C). The top-ranked 50
predictor genes are listed in Table 2. To determine an appropriate
number of genes that can predict resnponders to FOLFOX therapy
more accurately, out-of-bag classification accuracy was calculated

First random forests (RF) analysis

54 Samples
17 920 Probe sets

Probe set selection
Z score of attribute importance > 2.0

Second RF analysis
(outlier sample detection)

54 Samples
1197 Informative probe sets

Third RF analysis

46 Samples
17 920 Probe sets

Exclude eight outlier samples

Fourth RF analysis
(prediction model construction)

46 Samples
15 Predictor probe sets (14 genes)

Prediction for 29 test samples

Probe set selection
out-of-bag error estimation

Figure 1 Flow diagram for the present study. Random Forests analysis
was totally conducted four times. The final model with 15 probe sets was
used for predicting the response of the independent 29 samples.

Table 1 Clinical and pathological characteristics of patients

Responder (n¼ 42) Non-responder (n¼ 41) Total (n¼ 83) P-value

Age (years) 64.0±10.2 61.8±12.3 62.9±11.3 NSa

Gender (male/female) 27/15 27/14 54/29 NSb

CEA (ng ml�1) 299.0±772.9 339.9±756.6 319.2±760.5 NSc

CA19-9 (U ml�1) 418.6±941.6 536.4±1085.2 476.8±1010.6 NSc

Differentiation grade (well/mod/por) 32/9/1 30/7/4 62/16/5 NSb

Primary lesion (rt/lt) 18/24 18/23 36/47 NSb

Metastatic lesion (liver/lung/bone/peritoneum) 32/7/0/3 32/3/2/4 64/10/2/7 NSb

Abbreviations: CA19-9¼ carbohydrate antigen 19-9; CEA¼ carcinoembryonic antigen; lt¼ left; mod¼moderately; NS¼ not significant; por¼ poorly; rt = right. at-test. bFisher’s
test. cWilcoxon’s test.
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using various top-ranked genes. If several probes corresponding
the same gene appeared repeatedly, only one representative probe
was selected. Out-of-bag classification accuracy was maximised
when the top 15 probes (14 genes) were applied to RF analysis
(Figure 1). Using these 14 classifier genes (SMURF2, MBTD1,
AP3M2, RNF141, NPEPPS, BPTF, FAM73A, APPBP2, AMZ2P1,
SRGAP1, NMT1, CSPP1, EIF1, and CEP290), RF correctly classified
21 of 23 responders (91.3% sensitivity) and 22 of 23 non-
responders (95.6% specificity), and achieved 80.2% out-of-bag
classification accuracy (Figure 2D).

Based on a cutoff 0.50, as defined in the training set, such
predictor genes worked well to predict response to FOLFOX
therapy within the 29 independent validation samples (Figure 1),
that is, correctly classfying 12 of 15 (80.0%) responders and 13 of
14 (92.8%) non-responders with an accuracy rate of 69.2%
(Figure 3B). The 14 predictor genes were up-regulated in the
non-responder groups, and the samples of which the predictor
genes were strongly up-regulated tended to be predicted as non-
responder with more certainty, that is, low response probability,
and vice versa (Figure 3A).
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Figure 2 Classification accuracy of responders to FOLFOX therapy. (A and B) Classification accuracy of responders to FOLFOX therapy using 50 top-
ranked genes selected by Random Forests in the training set. (A) Probabilities of sensitivity for FOLFOX therapy in out-of-bag cross-validation. Cutoff value
was defined as response rate, 0.5. In all, 22 of 27 sensitive patients (81.4% sensitivity) and 23 of 27 resistant patients (85.1% specificity) were correctly
classified, with an accuracy of 62.1% (blue square, responder; red triangle, non-responder). (B) Proximity matrix by predictor genes for FOLFOX therapy. At
the intersection of each column and row in the figure is a pixel, the intensity of which is a measure of the distance (defined as 1�Peason’s correlation
coefficient) between the centroids named by the intersecting column and row. The red area corresponds to a high degree of co-occurrence, that is, these
samples tend to cluster in all clustering runs. Asterisk on the patient numbers indicate outliers. Red, blue, and black boxes below the proximity matrix
represent non-responder, responder, and outlier, respectively. (C and D) Classification accuracy of responders for FOLFOX therapy using 15 predictor
probes (14 genes) after removing 8 outliers from the training set. (C) Probabilities of sensitivity for FOLFOX therapy in out-of-bag cross-validation after
removing 8 outliers. Sensitivity (91.3%), specificity (95.6%), and out-of-bag classification accuracy (80.2%) were markedly improved. (D) Proximity matrix by
predictor genes for FOLFOX therapy after removing 8 outliers. Outlier scores were calculated again in 46 samples, all of which were o6.0.
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To confirm the robustness of the 14 selected predictor genes, we
conducted additional analyses, in which 83 samples were
randomly divided five times into 54 training and 29 test samples.
Consequently, we were able to classify the samples with high
accuracy (Supplementary Table S3), and the same 5 genes
(SMURF2, MBTD1, NPEPPS, APPBP2, and AMZ2P1) among the
14 predictors were selected as predictors in these additional
analyses.

Prediction of overall survival by response signature
to FOLFOX therapy

In order to confirm whether patients who were identified as
responders had a survival advantage when compared with
non-responders, the survival characteristics of the two patient
populations were examined.

In out-of-bag cross-validation of the training set, 26 patients
were identified determined as responders to FOLFOX therapy by
RF (Group 1), and 28 patients were classified non-responders
(Group 2). The survival characteristics of these patients were then
examined by Kaplan–Meier survival analysis (Figure 4A). Patients
in Groups 1 and 2 had median survival times of 35.1 and 12.5
months, respectively. Given these results, despite other therapies
after FOLFOX in Group 2 patients, the survival distributions of the
patients corresponding to the two groups were significantly
different (P¼ 0.0052).

On the other hand, in the test set, 13 patients were predicted to be
responders to FOLFOX therapy by RF (Group 3), and 16 patients
were classified as non-responders (Group 4). Figure 4B shows the
Kaplan–Meier survival analysis. The 2-year overall survival rates in
the patients in Groups 3 and 4 were 69.8% and 38.6%, respectively.
Group 3 had a significantly longer overall survival than Group 4.
Thus, the response signature to FOLFOX therapy is a useful
prognostic factor for unresectable CRC outcome.

DISCUSSION

Treatment of unresectable CRC is empirical and most CRC
patients are candidates for FOLFOX therapy as a first-line
treatment. Consistent with the literature (de Gramont et al, 2000;
Giacchetti et al, 2000), our data show that only half of patients
benefit from FOLFOX therapy, indicating that a significant fraction
of patients should undergo other treatments. Clinical and
pathological data may not be available to sufficiently stratify such
patients, whereas genetic approaches have been demonstrated to

Table 2 Top 50 classifier genes after exclusion of outliers

Probe set ID Gene symbol

227489_at SMURF2
226797_at MBTD1
203410_at AP3M2
226106_at RNF141
214101_s_at NPEPPS
231953_at BPTF
201455_s_at NPEPPS
235125_x_at FAM73A
202630_at APPBP2
223443_s_at AMZ2P1
1555875_at SRGAP1
201158_at NMT1
227105_at CSPP1
217672_x_at EIF1
205250_s_at CEP290
202880_s_at CYTH1
1552283_s_at ZDHHC11
225384_at DOCK7
202034_x_at RB1CC1
222715_s_at SYNRG
226441_at MAP3K2
240304_s_at TMC5
200090_at FNTA
53071_s_at C17orf101
212561_at DENND5A
200811_at CIRBP
206600_s_at SLC16A5
227064_at ANKRD40
205596_s_at SMURF2
230211_at –
203651_at ZFYVE16
226580_at BRMS1L
222589_at NLK
227564_at HGSNAT
64418_at SYNRG
223595_at TMEM133
230621_at IAH1
225572_at CREB1
225198_at VAPA
202460_s_at LPIN2
212704_at ZCCHC11
204485_s_at TOM1L1
212397_at RDX
225595_at CREBZF
202814_s_at HEXIM1
204208_at RNGTT
222656_at UBE2W
203116_s_at FECH
227395_at FLJ38498
201454_s_at NPEPPS

Bold entry: down-regulated genes in non-responders.
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Figure 3 Predicted probabilities using 14 predictor genes for FOLFOX
therapy in test samples. Using the prediction model in the training set, 12 of
15 sensitive patients (80.0% sensitivity) and 13 of 14 resistant patients
(92.8% specificity) were correctly classified, with an averaged accuracy rate
of 69.2% in the test set. The order of samples in A correspond to the B.
(A) The heat map of the expression values of 14 predictor genes. As
NPEPPS has two probes, the heat map has 15 rows. (B) Predicted
response probability of 29 test samples (blue square, responder; red
triangle, non-responder).
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be effective for this purpose (Hess et al, 2006; Del Rio et al, 2007;
Dressman et al, 2007). In this study, we developed a multigene
predictor of responders to FOLFOX therapy using gene-expression
signature, which may predict both tumour response and overall
survival of patients.

In order to determine the gene signature for response prediction
from microarray analysis, many researchers have tried to develop
and apply the most accurate classification algorithms. Among such
algorithms, SVM and RF are the predominant statistical methods
and comparison of these algorithms for microarray-based
classification has been reported (Wu et al, 2003; Diaz-Uriarte
and Alvarez de Andres, 2006; Statnikov et al, 2008; Kim et al,
2009). In this study, we assumed that RF is a more appropriate
algorithm than SVM for the following reasons: first, RF is
applicable when there are more predictors than observations
(Breiman, 2001); and second, RF consists of many decision trees,
which is better suited to predicting response to multiagent
chemotherapy. Random Forests also performs embedded gene
selection and is relatively insensitive to large numbers of irrelevant
genes, which enabled us to identify 14 predictor genes.

Hierarchical clustering analysis has been one of the most
successful tools for displaying microarray expression data.
However, its results are sensitive to outliers and this makes it
difficult to assess the significance of results. On the other hand,
proximity matrix, which is an important part of the RF imputation
method that includes pairwise similarities between all pairs of
probands, gives a robust and reproducible clustering, capable of
capturing small signal variations (Breiman, 2001). In addition,
proximity matrix can identify outlier samples whose proximities to
all other cases in the data are generally small. In the present study,
two-way hierarchical clustering analysis failed to significantly
separate responders and non-responders (data not shown).
Meanwhile, applying proximity matrix to data by RF algorithm,
it was possible to separate responders, non-responders, and
outliers, which were consistent with visualisation by two-dimen-
sional eigenvalue decomposition analysis (data not shown). After
removing outliers from training samples, we were able to identify
more predominant classifier genes by which independent valida-
tion samples were correctly classified with higher accuracy.

Among the selected predictor genes in this study, several
cisplatin-related genes were included. SMURF2, a member of the
HECT family of E3 ubiquitin ligases, is thought to regulate the

expression of Smad2 through a ubiquitination- and proteasome-
dependent degradation process during TGFb signalling (Lin et al,
2000; Zhang et al, 2001). On the other hand, several researchers
have reported that TGFb increases sensitivity to cisplatin for
cancer treatment (Thavaraj et al, 2005; Irigoyen et al, 2010) and
therefore, SMURF2 will be available as a biomarker for identifica-
tion of responders for FOLFOX therapy.

The increased ANKRD40 mRNA transcript in non-responders to
FOLFOX therapy is intriguing. Ankyrin repeats is a short motif
that mediates protein– protein interactions and found in proteins
of diverse function, and ankyrin-repeat proteins such as p16 (Tang
et al, 2003) and Notch proteins (Aster et al, 2000) have been
associated with cancer. Furthermore, up-regulation of ANKRD1
was associated with decreased sensitivity for cisplatin in ovarian
adenocarcinoma (Scurr et al, 2008). In addition to our data,
ankyrin-repeat domains may enhance platinum resistance.

Other than cisplatin-resistant genes, genes including CIRBP
(Zeng et al, 2009) and CREB1 (Shukla et al, 2009), the over-
expression of which is reported in chemotherapy-resistant cells,
were also up-regulated in non-responders in the present study.

In summary, RF analysis for multiagent therapy not only
identified predictor genes, but also stratified patients by tumour
response, independently of established clinicopathological vari-
ables. We believe that the present approach is effective for
predicting responders to chemotherapy, and will be useful as a first
step in establishing personalised therapy.
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