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Abstract: In the world, there is a growing need for lower limb prostheses due to a rising number
of amputations caused primarily, by diabetic foot. Researchers enable functional and comfortable
prostheses through prosthetic design by integrating new technologies applied to the traditional
handcrafted method for prosthesis fabrication that is still current. That is why computer vision shows
to be a promising tool for the integration of 3D reconstruction that may be useful for prosthetic
design. This work has the objective to design, prototype, and test a functional system to scan plaster
cast molds, which may serve as a platform for future technologies for lower limb reconstruction
applications. The image capture system comprises 5 stereoscopic color and depth cameras, each
with 4 DOF mountings on an enveloping frame, as well as algorithms for calibration, segmentation,
registration, and surface reconstruction. The segmentation metrics of dice coefficient and Hausdorff
distance (HD) show strong visual similarity with an average similarity of 87% and average error
of 6.40 mm, respectively. Moving forward, the system was tested on a known 3D printed model
obtained from a computer tomography scan to which comparison results via HD show an average
error of ≤1.93 mm thereby making the system competitive against the systems reviewed from the
state-of-the-art.

Keywords: point cloud; iterative closest point; dynamic reconstruction; multi-view

1. Introduction

The most common cases that cause lower limb amputations are diabetes, vascular
problems, neuropathy and trauma. Over 150 thousand amputations take place each year in
the United States alone from these causes [1]. As an example of a lower to middle income
country (LMIC), Mexico is of particular interest due to its high levels of both diabetes
and lower-limb amputations. According to the Mexican Institute of Social Security, in
2014 alone, there were nearly 900 thousand amputees in the country, to which are added
75 amputations per day. This means that each year Mexico is accumulating more than
70 thousand people with lower-limb amputations, forming now part of those people with
disabilities [2]. This generates economic problems and dependency for their caregivers,
their families, and the community. This is why prostheses have an important role in
recovering a percentage of mobility in amputees, providing autonomy to the person in
carrying out activities, as well as complementing the person in a social and cultural aspect,
preserving their individual identity [2].

The most important part of the prosthesis is the socket, because it is uniquely shaped
for each individual. It forms part of the four sections in a lower limb prosthesis, i.e., the
socket, knee, pylon, and foot [3]. While several prosthetic parts can be obtained in large
quantities, materials, and sizes. The socket is the component that interfaces directly with
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the amputee’s residuum and where the load transfer occurs. Thus, a correct fit must be
achieved. A favorable socket design stimulates muscle growth and relieves pressure in
sensitive areas providing comfort to the user [4]. On the other hand, improper fitting may
result in skin problems and tissue injury caused by unbalanced weight and friction [5].

That said, the socket requires a manufacturing process that ensures a match with the
user’s residuum measurements and shape. Currently, design and manufacture continue to
be handcrafted since all the fabrications are unique and unrepeatable [5]. The overall socket
fabrication can be seen in Figure 1. First, a prosthetist performs an evaluation by taking
limb measurements Figure 1a and a cast mold Figure 1b is taken. Subsequently, the mold is
filled to obtain a model that describes the geometry of the residual limb. Afterward, post-
processing is necessary to rectify, add and remove material, to ensure that the dimensions
match with those obtained Figure 1c, but also to relieve pressure in sensitive areas while
loading more resistant regions. Then, the socket is manufactured by laminating the mold
and then curing it. Polypropylene shown in Figure 1d is often a material of choice for check
sockets. Finally the socket gets polished, as shown in Figure 1e. The time and number
of iterations invested in the process depend on the experience of the prosthetist, since
obtaining a fitting socket consists of trial and error. Typically the participant will receive a
check socket, return for adjustments to get a provisional socket that will last from 6 months
to a year before the residuum strengthens and changes in volume. Here again, a check
socket must be fabricated, and afterward, a definitive socket is delivered and can be used
for several years before wear and morphological changes require the process to start all
over again [6].

(a) (b) (c) (d) (e)

Figure 1. The overall process of conventional socket fabrication is shown. (a) Starting with the limb
measurements. (b) Then, a plaster cast is obtained with the residuum geometry. (c) Later, the plaster
cast model is post-processed by adding and removing material at key locations. (d) Next, lamination
and curing take place. (e) Finally, the socket gets polished and the cut line is shaped.

Computer vision appears to be a tool that benefits these processes through digital
reconstruction with the use of photogrammetry to obtain a digital surface model. This
technique is used to obtain detailed information from photographs. Then, algorithms
take these images and estimate their position to generate a 3D point cloud. This can be
done with multi-view stereo cameras as mentioned in [7]. In the literature, the study of
lower limb reconstruction has advanced Computer-Aided Design (CAD), which assists
in socket manufacturing. Digital models allow iteration at a minimal cost and reduce the
time taken for product manufacture. Moreover, digital models allow accurate geometry
and additional relevant information to be gathered for socket fabrication. Useful existing
technologies and methods involve not only photogrammetry, but also 3D scanning with
structured light, 3D laser scanning, computed tomography (CT), and magnetic resonance
imaging (MRI). Image acquisition systems such as CT and MRI can provide information
about the internal and external tissue of the residuum, information that can be useful in
the design of the prosthesis [5]. These methods are, however, more expensive compared
to a photogrammetry based system, they are not portable, acquisitions can only be made
with the participant lying down, the images can have various artifacts due to the long
acquisition periods and in the case of CT equipment, there is ionizing radiation, which
adds exposure when making multiple acquisitions in a short period of time [4,6,8]. In the
case of structured light-based camera arrays, interference can be generated between the
light patterns of the multiple cameras, which can affect the estimated depth information.
Therefore, it is necessary to multiplex the cameras during the acquisition, which can
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generate artifacts in the acquisition of moving objects [9,10]. Finally, a hand-held 3D laser
scanner only performs a partial capture of the lower residuum, therefore an array of laser
scanners is necessary to capture the entire target in real-time or if any motion is desired,
resulting in the technique being expensive [11]. For these reasons, the present work focuses
on designing a lower-limb residuum capture system based on multi-view photogrammetry.
This is a low-cost and portable solution, capable of easy manipulation and of making
captures simultaneously.

State of the Art

Multi-view systems are based on photogrammetry, which assumes to have multiple
repeated elements of the same object in multiple images. This is so as to obtain information
about physical objects and the environment by capturing a sequence and processing the
sequence to extract data such as properties and measurements as mentioned by Wang and
Riel [7,12]. Most of the algorithms employed deal with the topic of 3D reconstruction. Then,
a triangulation of points can be made from the images and the world. So a point cloud can
be made from this point triangulation. This can be approached via a single camera that
is re-located to have different views of a target or via an array of cameras pointed at the
whole target object while having overlapping areas of said object [7].

Several studies on lower limb reconstruction using multi-view photogrammetry have
taken place. Taqriban et al. conducted a study on close-range photogrammetry by using
a digital reflex camera and Autodesk® Recap Photo software to obtain a 3D model. The
lower residual limb of a participant was scanned 360º with two different shooting angles, a
3D model of the external surface was obtained with Recap and then a manual rectification
was performed. It is worth mentioning that the manipulation process towards the socket
manufacture is still digitally handcrafted with this method [13]. Wu et al. proposed a sys-
tem with six RGB-D cameras in an array that identifies landmarks and measurements taken
from a foot. The results showed a 3D capture system able to scan a foot, obtain multiple
point clouds (PCs), and merge them using an iterative closest point (ICP) algorithm. In
addition, twelve anatomical landmarks of the foot can be detected automatically without
manual intervention [14]. Solav et al. present a multi-camera array to analyze lower body
muscular deformation through Digital Image Correlation (DIC) by using 12 RGB cameras.
The methodology proposed includes a stage of distortion correction, stereo calibration
using a cylinder, and 2D-DIC of stereo image pairs. For the final 3D reconstruction, the
fusion of adjacent surfaces is carried out by means of Delaunay triangulation. The proposed
system was tested with a rigid cylinder and with the lower leg while the subject performed
ankle plantarflexion [15]. Cullen et al. have performed the evaluation of the quality for
3D reconstruction of transtibial sockets using a smartphone in the combination with the
commercial Autodesk® ReCap Photo software and a genetic algorithm for the optimal
selection of the photos used in the reconstruction [16]. Mohd Sobani et al. report a recon-
struction of a representative model of a transtibial socket from a sequence of uncalibrated
2D images. The proposed system is based on a rotating base and a digital camera. For 3D
reconstruction, they integrate Canny’s contour detector, the Random Transform algorithm,
and the Delaunay triangulation to map the connected points on a 3D surface [17]. Ballit et
al. merge the information of 4 RGB-D Kinect v2 cameras. The methodology they propose
consists of a stage of generation of point clouds through depth information, followed
by error compensation using a chessboard, outliers elimination using statistical outlier
removal algorithm, and iterative alignment using the method based on the Singular Value
Decomposition (SVD). The validation of the methodology proposed by these authors was
performed by means of a known cylindrical object [18]. In prior work, we presented a
semi-automatic system capable of capturing a whole target object with four fixed RGB-D
cameras that surround the target. Thus, the system can minimize the involuntary move-
ments of the body during capture by taking captures almost simultaneously. A human
hand was used to demonstrate its capabilities for non-static and deformable targets [9].

All of these studies have important attributes that make strong research in their field,
the use of different approaches or a combination of these can be useful for this work to
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move forward the lower-limb residuum prosthesis socket design and fabrication. Some
of the research described, however, use commercial software to rebuild; were tested and
validated with cylindrical models considering only the circumference in the reconstruction;
they do not include the design of a specific capture system for applications of subjects
with lower limb amputation, or they use a single camera, thereby making it difficult to
capture–at one time–the entire object of interest.

The proposed work is directed in the design and construction of a novel yet specific
system for the acquisition and external reconstruction 3D of the residuum for participants
with transtibial amputation. The array-of-cameras capture system (ARACAM), integrates 5
RGB-D cameras distributed optimally to capture the object of interest appropriately. Multi-
view information is automatically integrated using a photogrammetry-based approach. The
implemented algorithm integrates a stage of calibration, segmentation, generation of point
clouds, alignment of multiple views, and a filtering stage. Finally, the proposed capture
system is validated by rebuilding plaster molds, as well as a final test with a participant
with transtibial amputation. The ARACAM project is available at https://github.com/
marcoagbarreto/ARACAM (accessed on 1 March 2022).

The following sections describe in detail the proposed methodology for the design
of the capture system and its validation, followed by the results found, discussion, and
conclusion of the work developed.

2. Materials and Methods

This section presents in detail the different stages carried out for the development of
the system (Figure 2). The methodology begins with the mechanical design of the array-
of-cameras capture system (ARACAM); followed by calibration of the cameras using only
a checkerboard; the development of an automatic segmentation algorithm, the creation
and alignment of 3D point clouds, and finally, the validation of the results by using Dice
Coefficient (DC) and Hausdorff Distance (HD) metrics.

Figure 2. System pipeline.

2.1. Capture System: ARACAM

The term ARACAM is an abbreviation that stands for an array of cameras and it
is meant to describe the mechanical design and physical implementation. This section
deepens into the optimal distances between the camera and the target, leading to the
mechanical design.

2.1.1. Resolution

The ARACAM uses 5 Intel® RealSense® D435i RGB-D camera. This component meets
the pre-determined design requirements, by capturing depth and color images and an
accuracy of ≤2% at 2 m. Additionally, the camera uses stereovision that allows multi-
view setups.

The optimal distance from the camera to target gets calculated and the resolution
that ensures a resolution less than 0.5 mm

px considering the range distance suggested by the
manufacturer. The distance from the cameras to the objective, and the resolution, share
a common relationship through the focal distance, as shown in Equation (1), which was
obtained from prior work [9],

f =
B
G
(l) (1)

https://github.com/marcoagbarreto/ARACAM
https://github.com/marcoagbarreto/ARACAM
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where f is the focal distance, B is the image size, G is the target size and l is the distance to
the target.

From Equation (1), B holds the information of the image width i and height j, while
G is the size in mm of the objective for width and height denoted by w and h. Then,
the resolution of the image can be calculated with Equation (2), obtained from previous
work [9],

res =
G
B

=
(i, j)
(x, y)

(2)

where w and h are the real width and height in mm captured by the camera, i and j is the
number of pixels regarding the camera’s width and height, res is the resulting resolution in
terms of mm

px . Since pixels are squared, the resolution can be calculated with only one axis
component.

The camera’s manufacturer establishes that the ideal usage range is from 200 mm
to 3 m for a proper depth estimation for the D435i, but may go up to 10 m. Given these
specifications, The dimensions of the frame is proposed to have a diameter of 610 mm.
Next, the distance from the cameras to the objective given these parameters gets calculated.
An experimental measurement is taken from the circumference C of a healthy man’s leg,
with a 1.85 m height and a body mass of 73 kg to find a radius r in Equation (6):

c = 470 mm (3)

c = π(d) (4)

d =
470 mm

π
= 149.6 mm (5)

r =
d
2
= 74.8 mm ≈ 75 mm (6)

where c is the circumference, d is the diameter, r is the radius.
Then in Equation (7) the distance l from the frame circumference to the target

is obtained:

l = 305 mm− 75 mm = 230 mm (7)

the resulting distance, l = 230 mm, lies within the ideal usage range with an additional
30 mm gap to avoid the 200 mm lower limit. In this setup, the D435i uses a color resolution
of 1280× 720 px, with a field of view of 69.4× 42.5, horizontal and vertical respectively,
as provided by the manufacturer [19]. At this distance, the horizontal range is found with
Equation (10), similarly, the height range is obtained in Equation (10). The camera is placed
in a vertical stance to cover the most length possible of the target. Then, the resolution is
calculated with Equation (12):

w
2
= tan(34.7◦)(230 mm) = 159.26 mm (8)

w ≈ 318.52 mm (9)
h
2
= tan(21.25◦)(230 mm) = 89.44 mm (10)

h ≈ 178.88 mm (11)

res =
318.52 mm

1280 px
= 0.24

mm
px

(12)

where w and h are the width and height length of the field of view.
When finding a maximum resolution of 0.24 mm

px for this setup at a distance of 230 mm,
it is found that lower values increase the resolution. The resolution obtained of 0.24 mm

px is
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less than the 0.5 mm
px specification, meaning a better image resolution for the application

(see Figure 3). The cameras may be adjusted on the rails to increase or decrease the distance
to the target from a minimum of 230 mm up to 400 mm, which allows flexibility for use
with larger objects.

In the case of 3D video reconstruction. The cameras allow simultaneous capture and
streaming thus supporting up to 90 frames per second (fps). The faster the frame rate, the
smoother the transitions will be between reconstructions, thereby effectively achieving
an end result of 3D video data is possible. Higher fps facilitate deformation analysis by
determining the changes from one frame to another.

Figure 3. A vision area of 318.52× 178.88 px at 230 mm from the target using the D435i stereo camera.
This results in a resolution of 0.24 mm

px .

2.1.2. Mechanical Design

The frame is designed and manufactured to support and hold the cameras in place, it is
made out of laser-cut and bent aluminum sheets capable to support the system components.
Figure 4a shows a top view of the frame, where cameras are spaced every 90º, thereby
equidistant when using 4 cameras and the calculated radius obtained in Equation (6) to
the target. The number of cameras and their radial position was obtained through trial
and error. Since plaster cast molds and residuums have convex shapes, our results show
no occlusion, thus the choice of 4 cameras at 90º. These locations are marked in blue
dots. Furthermore, Figure 4a displays the overlapping angles between cameras. The
structure has an overall dimension of 534.50 mm height and an inner diameter of 610 mm
where the camera lenses are placed, as shown in Figure 4b. The figure also shows the
adjustable locator with the ball head mount for all 4 cameras and the one end camera
that captures the end view of the residuum. Previous work utilizes only 4 radial cameras,
demonstrating a robust full capture of the target [9]. This study reveals the need for a
fifth camera directly pointing at the head of the residuum, as it contains important skin
information post-surgery [8]. So, with a total of 5 cameras, 4 radially placed every 90º
and 1 camera at the base capturing the end view of the residuum successful captures are
achieved. This represents the mechanical design.

The structure comes into close proximity with the amputee when scanning. This is
why, the system works in a non-contact scheme, where the design in C and the system can
be accessed from a wheelchair or other sitting position. This prevents accidents or captures
data corruption caused by bumps or scrapes. Figure 5 displays the example scenario of
this interaction, highlighting three main parts, the roller chair with the amputee, the fixed
frame, and the cameras.
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(a) (b)

Figure 4. Mechanical design overview showing: (a) frame and camera setup with overlapping areas;
(b) frame’s overall dimensions.

For the placement procedure, the participant is seated at the edge of a raised surface,
in this case, a roller chair. The residuum rests flying in a state of relaxation. Then the roller
chair is slid towards the fixed structure by the system operator. While gently moving the
participant and chair, the residual limb is centered within the camera angles. The opening
in C allows the system to move comfortably to enclose the amputation, keeping it in the
center of the structure. The residuum is kept at rest during the scan process. In the end, the
operator removes the roller chair from the structure in the same way.

Figure 5. Example of the participant’s and operator’s interaction with the system, with a non-contact
scheme. Labeled in blue, the rolling chair enables the participant to move towards the frame. In
orange, previously calibrated cameras aiming at the residual limb. In green, the fixed structure, with
a C shape at the top for ease of access.

2.2. Calibration

Calibration is used to obtain intrinsic and extrinsic system parameters. Intrinsic
parameters describe the position of the internal components, in this case, the distance from
one color sensor to the other and the position of the projector, depth scaling factor, and
the distortion parameters. These are needed to map out RGB-D images into PCs. While
extrinsic parameters describe the rigid transformations of a global coordinate system, in
other words, where are the cameras located in the physical space. The transformations are
useful for global registration, helping as a first rough alignment between PCs.

Since RealSense cameras are used, most of our implementations rely on base code
provided by the manufacturer from the official repository [20]. Intrinsic parameters are
given by the manufacturer and may be accessed through the camera’s firmware. While
extrinsic parameters must be calculated. Intel® already provides a calibration demo for
the D435i cameras [20]. All cameras must be facing inwards, viewing a common 6× 9
checkerboard as the calibration item as shown in Figure 6. The calibration is performed by
using a Kabsch algorithm [21]; this algorithm finds the optimal rotation matrix between
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two sets of points. It superimposes both sets of points and minimizes the Root Mean Square
Deviation (RMSD). This is realized in three stages.

First, the centroids of two point-sets P and Q are calculated (13). Each is the average
position of the overall points, and a translation of the centroid to the origin of the coordinate
system is performed (14). This is obtained by subtracting the centroid from all of the
point coordinates:

C(x, y, z) =
∑n

k=1 xk

n
,

∑n
k=1 yk

n
,

∑n
k=1 zk

n
(13)

t(x, y, z) = (x− xc, y− yc, z− zc) (14)

where C is the resulting centroid, t is the translation, x, y and z are point coordinates in a
3D space. Second, the covariance matrix H is computed in Equation (15):

H = PTQ (15)

where P is the reference matrix and Q is the matrix to be rotated. Third, a Singular Value
Decomposition (SVD), is computed from the covariance matrix H in Equation (16). Then,
a check-sign takes place to ensure a proper rotation in Equation (17). Finally, the rotation
matrix R is calculated in Equation (18). This returns a superimposed matrix that “fits" the
reference matrix by minimizing the RMSD in Equation (19):

Hn×m = Vn×nSn×mWT
m×m (16)

d = sign{det(WVT)} (17)

R = W

1 0 0
0 1 0
0 0 d

VT (18)

RMSD(p,q) =

√
1
n

n

∑
k=1
|pk − qk|2 (19)

where H is an n×m covariance matrix, V and W are orthogonal, and S is diagonal. p and
q are the k-th points of matrices P and Q respectively.

Once the calibration is complete, the program saves the intrinsic and extrinsic param-
eters. Figure 6 displays the view from all 5 cameras looking at a common checkerboard
target which is serving as the calibration object. Additionally, all the images display a green
bounding box corresponding to the book underneath the checkerboard, correct orientation
and dimensions validate a successful calibration of the cameras.

(a) (b) (c)

Figure 6. Cont.
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(d) (e)

Figure 6. Calibration setup and the view from all 5 cameras (a–e). All sensors look at a common
checkerboard serving as the calibration item. The green box displays the dimensions of the book
underneath the checkerboard to validate that the process was completed successfully. This shows the
simultaneous view of the calibration phase.

2.3. Segmentation

By default, the cameras take raster RGB and depth images of the whole scene. This
means that not only is the target object present but also background and spurious surfaces
add noise to the reconstruction. This is why image segmentation is needed. Segmentation
allows keeping only the desired object by removing unnecessary elements. OpenCV [22]
and Scikit-image [23] libraries are used for their segmentation algorithms. First, the original
RGB image is taken. Then the background gets removed by using a depth threshold of
500 mm , which leaves the target object and the table previously covered with a green
sheet. Then, a color segmentation is employed by setting a color range filter U with an
upper and lower bound U = xk − x1, the Hue, Saturation, and Value (HSV) color space is
used to control the selection of darker and brighter values of the same color. This extracts
the pixels corresponding to any green color, within the selected range, on the image and
thus belonging to the sheet. This operation creates a binary image that shows the pixels
corresponding to the color range previously selected.

Consequently, an algorithm checks an area with the biggest connected elements in the
image, assuming the desired object is the largest on the remaining scene. To do so robustly,
Otsu’s Thresholding algorithm [24] computes and finds the intensity threshold value that
separates pixels into two classes determined by maximizing its variance in Equation (20):

σ2
ω(th) = ω0(th)σ2

0 (th) + ω1(th)σ2
1 (th) (20)

where ω are the probabilities of the classes, th is the threshold, and σ are the variances. The
resulting threshold is used to binarize the image.

Next, connected pixels of the same value represents an area. So, for every region,
pixels are counted, the region with the highest amount of pixels is assumed to be the
target object.

Afterward, median and erosion filters are applied to the binary image from the re-
sulting largest element in the image. These filters are used to smooth out the edges of
the remaining region, The median filter selects the median value pixel from a 15× 15
squared mask. This process is repeated 10 times swiping the whole image with the mask
represented in Equation (21):

median(k) =
k(n+1)

2
(21)

where median is the resulting filter, k are the values inside the mask. This filter is useful to
smooth the edges from the previous colored segmentation.

The erosion filter is a morphological operator, it computes the local minimum within
a 3× 3 mask. This erosion takes place on the binary image to slim the target and iterates
10 times. This helps to remove possible outliers that neither the depth threshold nor
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color segmentation could not resolve. The erosion of a binary image can be described in
Equation (22):

AΘB =

{
min A(u)
u ∈ B

⋂
A

}
(22)

where A is the matrix image and B is the mask.
At last, the target object segmentation is obtained by performing a bit-wise operation

of the binary image over the original image. While the choice of techniques for segmen-
tation appears somewhat arbitrary, they present a robust, yet simple, solution for the
given application.

After the segmentation process completes, the 5 RGB and 5 depth images must be
aligned before converting them into a single Point Cloud (PC). To do so, epipolar geometry
is needed to find a correspondence between the depth image and the color image. This
is also the case for stereovision with the D435i cameras, for estimating depth. From the
factory, the D435i has the parameters needed to align color and depth images. Following,
a program converts aligned RGB-D images into a PC by mapping the depth information
using the intrinsic parameters from each camera. This is performed by using Shreeyak’s
piece of code as a base and modifying it to meet the needs of this work [25]. When the
color image is segmented, only valid color data is processed with the depth information,
meaning that everything out of the segmented region is dropped from the process.

2.4. Reconstruction

All of the reconstruction process is implemented using the Open3D library [26], as it
can process 3D data, and contains alignment algorithms, surface reconstructions, filters,
and an integrated visualizer. The process starts by importing the five PCs and applying
the transformation obtained from the extrinsic parameters. This transformation corre-
sponds to the initial global alignment obtained from the extrinsic parameters during the
calibration phase. Each PC suffers a rigid transformation by the 4 × 4 homogeneous
transformation matrix.

Then, PCs are down-sampled by a scale of 0.002 for a faster processing time, being 0
the original size of the PC. Afterward, a refine alignment is performed with a pairwise reg-
istration for each acquired projection by using the Iterative Closest Points (ICP) algorithm,
through a point to plane estimation with the objective function found in Equation (23)
as follows:

E(T) = ∑
(p,q)∈κ

((p− Tq)np)
2 (23)

where E is the result from the objective function, T is the transformation matrix, κ is the
correspondence set of points (p, q) from a target PC P, and a reference PC Q, and np is the
normal of point p. The ICP algorithm was preferred, as demonstrated to have the second
best performance for aligning 2D PCs in previous work and since there is already an initial
global alignment. The ICP is best suited as a refine alignment [27]. The pairwise registration
is performed in the same order in which the cameras are physically placed on the frame.
Once all of them are aligned, a Poisson surface reconstruction is performed [28]. This
algorithm solves an optimization problem to obtain a smooth surface. Then, the resulting
surface needs to be closed to be converted into a volume using MeshFix [29].

These previously mentioned algorithms that integrate the reconstruction pipeline of
the system are then validated by evaluating the segmentation and reconstruction phases
using region and distance-based metrics to quantify the performance of the algorithms
used. These metrics are further described in the next section.
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2.5. Validation

Validation is split into 4 blocks allowing different methods to demonstrate similarity,
measurements, and soft tissue deformation capabilities. These are listed as follows:

• Segmentation comparison of a manual segmentation using image editing software
(ground truth) vs. the use of the proposed algorithms.

• Comparison of a CT model (ground truth) vs. the scan with the proposed system.
• Diameter measurement verification with 4 plaster cast molds.
• Participant use demonstration with skin deformation.

For these comparison tests, Dice Coefficient (DC) and Hausdorff Distances (HD) are
proposed to measure the error. On the one hand, DC calculates the similarity between two
samples with Equation (24), where 1 is identical and 0 is no similarity.

dice(A, B) =
2|A ∩ B|
|A|+ |B| (24)

where A and B are binary images to be compared. The order does not matter, as the result
would be the same.

On the other hand, the Hausdorff Distances (HD) metric measures the Euclidean
distance between two sets with Equation (25) and returns the worst-case scenario, where 0
is the best and ≥0 is the worst outcome.

dHD(A, B) = max

{
sup
p∈A

inf
q∈B

d(p, q), sup
q∈B

inf
p∈A

d(q, p)

}
(25)

where A and B are binary images or PCs to be compared, “sup” and “inf” determine the
least upper bound and the greatest lower bound, and p and q are points.

First, a total of four molds were scanned. The first mold corresponds to a 3D printed
model to which its digital model was obtained from a CT image from the transtibial
amputee participant M1 from Proactible, a local prosthetics clinic. The remaining three
models correspond to plaster cast models obtained from Proactible. M2 belongs to a
transtibial amputee, while M3 and M4 belong to transfemoral amputees. The segmentation
results obtained in this phase were submitted to DC and HD metrics, obtaining a percentage
value for DC and pixel count for HD, which can later be related using the system resolution
obtained in Section 2.1.1.

Second, The M1 transtibial 3D printed model gets scanned with the proposed system.
The 3D printed model was printed using HP’s Multi Jet Fusion technology with a ±0.3%
(with a lower limit on ±0.2 mm) accuracy stated by the manufacturer [30] and this error
would be expected for validation. Then, the reconstructed model obtained with the system
is compared vs. ground truth via HD only. As the system outputs a surface mesh, HD is
best suited for this application.

Third, the diameter of all four scanned models gets measured at the same view angle at
three different heights. The bottom parts of the models were not considered to be included,
as they serve as bases for the cutlines and are not important for the limb measurements.

Last, the system validates its use with a transtibial participant M6 from Proactible.
This scenario shows the capabilities of the non-contact automatic reconstruction of the
proposed system. Two scans at different poses were obtained during this phase. The
first pose was obtained in a relaxed state, and the second by co-contracting the residuum.
A comparison between these two poses was computed through HD to visualize muscle
contraction with a distance heat map. This color map demonstrates skin deformation and
geometries displacements.

The results are displayed and discussed in the following section, as well as the advan-
tages of using this system and potential areas of improvement for future development.
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3. Results & Discussion

This section presents the results to demonstrate the objectives previously presented.
The proposed system accomplishes the mount of 5 RGB-D cameras and their calibration.
It also can simultaneously capture images across all 5 cameras, segment, and reconstruct
automatically a 3D surface mesh. Then, segmentation comparison using DC and HD takes
place demonstrating a strong resemblance to the ground truth segmentation. Next, the
3D printed model obtained from a CT scan gets compared to the results of the proposed
system using HD metrics. Then, all four scanned models with the system get compared by
diameter measurement via both software and physically. Finally, the demonstration closes
with the scan of a participant’s residuum.

3.1. ARACAM

Hereby, we present the prototype and test of a functional capture system. The system
was used in two different configurations for the capture and digitization of shapes. The first
configuration is used with plaster molds as shown in Figure 7, the structure is placed on a
table covered by a green tablecloth. While the second configuration is used adjacently with
participants as shown in Figure 8. Where it shows the workspace, the calibration support
and the user interaction. The frame has a “C” shape cut out at the top so the participant
can be moved closer to the frame. A 45º position of the frame was chosen so participants
could easily place the residuum at the same orientation of the frame while sitting on a chair.
Regardless of configurations, the frame demonstrates the camera mounting, the workspace,
and the calibration support. This shows the frame holding 5 cameras with the ability to
change orientation and position to direct the field of view to the target and calibration item.
The frame can hold four cameras radially every 90º with 4 degrees of freedom (DOF) mount
for each, by using a ball and socket joint combined with a rail axis as seen in Figure 8a, and
a fifth fixed camera capturing the end view of the residuum. Moreover, all the cameras
capture the desired object in place. An image of the workspace can be seen in Figure 8b
displaying the setup of the frame before being used by a participant and operator. Looking
at the top, the frame has a removable support to hold the calibration target as displayed in
Figure 8c.

(a) (b) (c)
Figure 7. The configuration used for the plaster molds showing: (a) 4 cameras mounted on a support
that enables rotation and positioning; (b) the workspace of the system being calibrated; and (c) the
model being captured. Demonstrating the positions of camera mounts and their ability to change
orientation to focus on the objective.

Wu et al. [14] reported the average processing time for the computer with their system
to be around 19 seconds including calibration, scanning, registration, and reconstruction.
Furthermore, they mention that they used 6 structured light cameras, which did not allow
the system for simultaneous capture and make use of multiplexing the cameras on/off, an
allowance that could increase the overall execution time for the system.

Simultaneous streaming was an issue in our previous work using structured light.
With the use of stereoscopic cameras, the issue was solved in this work. Although the
system is configured for the simultaneous stream, cameras can be synchronized via hard-
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ware to work at the same clock. This feature would enable synchronous video recording to
record continuous tissue deformation.

(a) (b) (c)
Figure 8. The configuration used for participants shows: (a) the workspace of the system being
calibrated; (b) the removable support for target calibration in magenta; and (c) the interaction with
the participant. Demonstrating the positions of camera mounts and their ability to change orientation
to focus on the objective.

3.2. Segmentation Results

Results for the segmentation process can be seen in Figure 9. This process shows the
results for each step of the proposed algorithms, starting from the original image up to the
segmented result. Since the binary image is the one that determines the end result of the
segmentation. All binary images from the 4 models are compared via DC and HD metrics.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 9. Automatic segmentation, feature extraction, contour smoothing, contour outlier removal,
and masking process via the algorithms for one camera image. This shows the automatic segmentation
from start to finish. (a) Original. (b) No background. (c) Color removal. (d) Region box. (e) Binary
image. (f) Median. (g) Erosion. (h) Result.

Figure 10 shows on the top part the ground truth segmentation, on the bottom the use
of algorithms, at the top of each comparison displays the serial number for each camera.
The footnote presents the numerical results corresponding to the DC and HD metrics.
While on the one hand, DC presents a percentage, where digits closer to 1 means better,
on the other hand, HD digits closer to 0 represent a better segmentation. Moreover, HD
is measured in pixel count, error in mm may be obtained with the 0.24 mm

px resolution
previously calculated in Section 2.1.1. From the results presented in Figure 10 a summary of
the statistics can be seen in Table 1 showing a mean of 0.87 for DC and 26.67 px or 6.40 mm
for HD using the segmentation algorithms. This determines a strong resemblance to the
ground truth segmentation. Other states are available in the table such as the upper (3rd
Qu.) and lower (1st. Qu) quartiles, the Interquartile range (IQR) that shows the difference
between the 3rd Qu. and 1st Qu., and the root mean squared (RMS) calculated from the DC
and HD data itself. It is important to notice that different volume molds were used. For
the segmentation phase, it can be seen in Figure 10 that models are arranged from smallest
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to largest. Since focal lengths and the cameras themselves are fixed smaller objects would
occupy a smaller portion of the image resolution. For smaller objects, this could mean
lower object resolution that could affect the error for the segmentation phase. In addition,
there are errors due to the average and erosion filters that remove a portion of the edge.
However, the areas of interest for reconstruction are the overlapping areas of the shape, not
the edges. So these overestimations do not present a problem for reconstruction.

(a)

(b)

(c)

(d)
Figure 10. DC and HD metrics for RGB-based binary image segmentation for four scanned models.
In each model, the top row displays the segmented object using manual segmentation as ground
truth. Below are shown the segmentation results using the algorithms, which demonstrates a strong
visual comparison. (a) M1. (b) M2. (c) M3. (d) M4.
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Table 1. DC and HD statistics obtained from the segmentation results.

Type Min. 1st Qu. Median Mean 3rd Qu. Max. IQR RMS

DC (%) 0.47 0.80 0.98 0.87 0.99 0.99 0.19 0.89
HD
(px) 7.21 13.17 15.97 26.67 22.68 138.76 9.51 40.30

HD
(mm) 1.73 3.16 3.83 6.40 5.44 33.30 2.28 9.67

This results in a clean PC in Figure 11b, in contrast with a PC from the original scene
as shown in Figure 11a.

(a) Scene (b) Target
Figure 11. Comparison of the original scene (a) and the segmented target object (b). This demonstrates
that the segmentation algorithms and PC conversion were working correctly.

For the validation of the results, it was sought to have a comparison of both regions
and distance, so we proposed the use of DC and HD metrics. The Segmentation shows a
strong visual correspondence between the ground truth and algorithms.

These tests show promising results, in this part of the segmentation we see errors due
to the averaging and erosion filters that remove part of the edges. In this case, the sections
of interest are those overlapping of the shape, not the edges. So these errors do not present
a problem for reconstruction for this particular application. But the algorithms can be
further improved. Currently, the algorithms employed to calculate the segmented region
with the biggest element in the image make use of Otsu’s method to calculate areas within
the image. Otsu’s algorithm may calculate wrong areas if lighting conditions are poor or
over-exposed and/or depending on the image and targe colors. This specific algorithm
works well with plaster cast models since they are white because brighter areas get marked
in white and darker areas get marked in black. During the participant test, 2 out of 5 of the
segmented images had trouble with the region selection due to this mentioned issue and
manual intervention was needed. Since cameras can be automatically adjusted for light
exposure, no additional light source was needed. But the use of an external light source
could result in smoother and more uniform light along the target object while minimizing
the shadows if the environment requires it.

3.3. 3D Reconstruction Performance Evaluation

The registration of the multiple PCs results in a clean 3D mesh in Figure 12b, in
contrast with the 5 PCs global alignment shown in Figure 12a.

Next, Figure 13 presents the model comparison through HD for the M1 model. Where
the original model in light blue was obtained with a CT scan, and the scan with the proposed
system in yellow. A histogram of the HD results is shown at the left of the model, from the
minimum value 0 mm up to the maximum value 10.7 mm going from blue through red
respectively. Segmentation results for M1 can be seen in Figure 10a above. Then, Table 2
shows the statistical summary from the HD histogram presented, showing an error mean
of 1.93 mm and a median of 1.27 mm.
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(a) Point Clouds (b) 3D surface model

Figure 12. Comparison of (a) the initial global 5 images alignment and (b) the output model after
applying a refined ICP registration and Poisson surface reconstruction. This shows the input and the
output of the reconstruction algorithms.

The median is preferred over other statistics as it better describes the central tendency.

(a) M1 Original (b) M1 Scanned

(c) M1 Quality map

Figure 13. M1 model measured via HD. (a) The original model from the CT, (b) the scanned model
with the proposed system, and (c) the quality map between the scanned and original models.

Table 2. HD statistics results were obtained from the reconstruction model comparison (values
in mm).

Min. 1st Qu. Median Mean 3rd Qu. Max. IQR RMS

0.00 0.59 1.27 1.93 2.64 10.72 2.06 2.73

The bottom of the model colored in red represents the highest disparity for two reasons.
First, the bottom part of the original CT model was modified for a proper 3D printing.
Second, the disparity is due to the position of the model placed over the workspace. Adding
to this, the system algorithms create a flat surface at the bottom where it touches the table.
This region, although showing the greater error, is not important because it is below the
cutline marked with magenta in Figure 13. This means that it is not part of the socket and,
therefore, is not desired to be compared. The important region resides above the cutline
showing a central tendency with a median of 1.27 mm of error. By comparison results
with Wu et al’s foot scanner, report two accuracy validations by using a sphere with a real
circumference of 942 mm and an average measured value of 940 mm for the scanned model.
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Additionally, they compared their system against a commercial laser foot scanner reporting
the largest error of 5 mm and 80% of their data with ≤1.5 mm of error with a mean error of
1.42 mm [14]. Accuracy statistics from our previous work reported the use of a freeform
and prismatic shape [9]. The scale in that study was updated to meet the same units in
this work for a proper comparison. The freeform showed a max error of 8.3 mm with a
mean of 1.3 mm and the tangram showed a max error of 4.8 mm with a mean of 1.3 mm.
The characterization study for the SR300, demonstrated the multi-view performance using
freeform and prismatic shapes with a max error of 2.5 mm [31]. Figures 17 and 18 in [31]
show a lower and upper bound for their compared meshes, with no mean errors reported.
The work of Solav et al. presented errors of 0.06 mm evaluating a cylinder with random
patterns as the calibration target.

These mentioned studies related to the use of multi-view systems for reconstruction
and the use of Euclidian distances for measuring error. The system presented here showed
a median error of 1.27 mm which is less than the reported with some of the compared
studies. The system proposed uses 5 stereoscopic cameras, while my previous work used
5 structured light cameras. Comparatively, Wu et al. used 6 structured light cameras
and Solav et al. used 12 RGB cameras of 8 Mpx. The calibration procedure in this work
utilizes a checkerboard using the Kabsch algorithm, previous work lacked a calibration
target. Wu et al. use a T-shaped checkerboard pattern using a variation of Zhang’s method
algorithm. Solav et al. use a cylinder with random dotted patterns. Another main dif-
ference regarding the calibration phase is that in this work and Wu et al. systems get
calibrated previously during the setup stage, after that the checkerboards get removed
before capturing phase. While Solav et al. paints a similar pattern over the subject that
serves as markers to later correlate the images, resulting in less error reported from the
discussed studies, but with the drawback of having to paint the test subject [15].

With the current system, the global alignment error can be reduced if the cameras
setup is taken care of by obtaining values close to 0 during calibration with the Kabsch
algorithm. In a practical way, we have noticed that placing the camera as close to being
perpendicular to the board gets better results. However, the system also makes use of the
ICP algorithm that depends on a threshold, which influences the final error of the model.
So there is still room for improvement with the ICP algorithm to minimize this error.

These results allow us to discuss the ideal tolerances that should exist between the
socket and the residuum. Works in the literature focus their efforts mainly on the recon-
struction and manufacture tolerances, but no interface tolerances have been reported to
date. This could be caused due to the skin’s elastic properties and ability to adapt to
unconventional socket shapes. Traditional methods work on a trial-and-error basis in
adding and removing material from the mold for socket manufacturing. Recent techniques
with the use of medical images are very accurate and can have resolutions of 0.3 mm [8].
However, the use of FE models that optimize the shape by deforming the 3D model will
depend on each participant, which will have variations for each socket. This would result
in different tolerances for every socket [5]. This is still an area of opportunity that needs
further research. Current methods try to approach these tolerances by using pressure
sensors that can evaluate the interface pressure to understand the loading conditions and
possible pain thresholds [32–37]. The resulting mesh from the proposed capture system
can be further processed to meet desired diameters which would be well suited for socket
tolerances and manufacture.

3.4. Plaster Mold Diameters Measurements

Furthermore, the scanned models get compared with the real diameter dimensions
of the plaster cast models at the same view angle presented. Figure 14 demonstrates all
four models with their corresponding measurements. It shows the diameters at three
different heights obtained via software (Solidworks) of the scanned model and the physical
counterpart. Additionally, M1 presents both the model obtained from the CT and the
scanned model. The heights are proportionally distributed with respect to each model,
meaning that the distances used vary and are not the same. This helps to verify that the
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measurements obtained from the scanned model resemble the physical model. Moreover,
the different heights selected are considered to be below the cutline in the case of M1,
M2, and M3. For M2, heights were considered to be below the knee, considering that the
models are upside down. Additionally, the molds were arranged by size from small to
large to demonstrate the dimension scan capacity of the system. Demonstrating that the
system allows the scanning of small and large objects by adjusting the cameras with their
respective 4 DOF. The largest mold tested has a diameter of ≈150 mm, as calculated in
Equation (6) to ensure a proper field of view of the target.

The obtained measurements of the diameters enable a fast verification of measure-
ments using a caliper, by taking measuring the diameter at 3 different heights demonstrates
that overall, objects follow the same dimensions. As mentioned above in the study of
Wu et al. they compared a real sphere vs. the scanned one having a difference of 2 mm
for the circumference. The use of diameters from a single viewpoint was proposed due
to the irregular shape of the amputation models which cannot be considered completely
cylindrical. Initially, the measurement of the circumference was proposed but software
limitations could not return the circumference, making the measurement of diameters
at specific heights more viable. Overall error measurements remain ≤1.6 mm, having a
strong resemblance with the real model. This proves to be useful for the assistance of the
prosthetist in the prostheses manufacture. Facilitating the comparison of measurements of
physical and digital models.

Figure 14. Diameter measurements across all 4 models. Comparison for both SW and physical
diameters at 3 different heights (units are in mm). (a) M1-transtibial proto model. (b) M2-transtibial
plaster. (c) M3-transfemoral plaster. (d) M4-transfemoral plaster.

3.5. Participant Validation

Figure 15 shows the process from start to finish with the system previously calibrated.
In the time span of 5 min, a full reconstruction from start to finish was accomplished
with little intervention from the system’s operator. This time-lapse includes setting up the
parameters of the camera and creating a folder for the current workspace. Furthermore, it
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includes executing the parts of the program that consider the calibration, image capture,
segmentation, PC conversion, and reconstruction. The system’s operator intervention
includes only inputting the data for the workspace creation, the placement, and removal of
the calibration target, saving the desired images in the capture phase, and selecting the cam-
era order in which reconstruction takes place. These may be performed previously as the
setup stage, except the capture phase. Once concluded, the system is ready instantaneously
for a full automatic reconstruction.

(a) (b) (c) (d) (e) (f)
Figure 15. Testing of the system with a participant, starting from (a) the general view of the system
and the participant, (b) the color image from one of the cameras, (c) the aligned depth image,
(d) the segment of the target, (e) the mapping of the PC and (f) the resulting surface mesh after the
5 images reconstruction. This shows the process from start to finish of the system viewed from one
camera angle.

The 3D reconstruction results in Figure 16 show the comparison between two different
poses. The first one is in a relaxed state and the second one performs muscle co-contraction.
The quality map shows the differences and changes from one state to another showing
great differences in 3 main parts, i.e., the knee, vastus lateralis (the external part of the
quadriceps), and the residuum. The knee and residuum differences relate to the change in
position, while the quadriceps region was caused by muscle contraction. Furthermore, an
artifact appears at the same spot in both poses at the top part, making a sink. This could
possibly be caused by the reconstruction algorithm while stitching the mesh.

Results show that the proposed system serves as a useful tool to scan and create a
digital library for plaster cast models. Additionally, the diameters measurements verifi-
cation demonstrates the use scenario to assist the prosthetist for residuum dimensions
and manufacturing process. The 3D reconstructions of the transtibial and transfemoral
plaster casts, as well as the reconstruction of the participant’s lower residual limb show
that the ARACAM system is versatile due to the proposed design and the DOF of the
mounted cameras. This allows acquisitions to be taken in different positions with minimal
intervention or reconfiguration of the system. Looking back to the traditional pipeline in
Figure 1, the integration of this system would be a hallmark for any prosthetics clinic to be
able to create dossiers and see patients’ progress. The system would mean an update in the
pipeline with the integration of the new technology as shown in Figure 17. This integration
means the scan of the current plaster model can be re-fabricated and re-used in designing
the definitive socket after 6–12 months have passed. Another possible change in future
pipelines could be the replacement of the plaster cast models and directly scanning the
amputee, resulting in a reduction of using materials and faster model iterations.

Additionally, throughout the literature review, there is already a new socket design
paradigm using CT scans, which enables the location of external and internal geometries
that can be used along with an FE-model for an automatic socket design [5]. The proposed
system can be used to update the external geometries of previous CT models to avoid
additional radiation exposure. More than that, future work will involve the use of the
proposed system along with multi-view DIC to properly extract the viscoelastic tissue
properties to feed an FE model.
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(a) Relaxed (b) Extension

(c) Comparison changes heat-map of tissue deformation

Figure 16. Results from two poses obtained from participant M6. Results measured via HD. (a) The
residuum model in a relaxed pose, (b) the residuum model while co-contracting the muscles, and
(c) quality map between both poses.

Figure 17. The traditional pipeline with the addition of technology integration. (1) Limb measure-
ments and socket fabrication. (2) Check socket. (3) Provisional/Definitive socket. (4) Scan of current
plaster cast mold. (5) 6–12 months before receiving a definitive socket. (6) 3D Re-fabrication of the
mold from the digital library.

Regarding areas for improvement, the reconstruction algorithm needs to input the
camera order in which the reconstruction has to be carried out. This process requires the
affixing of the first PC and making a pair-wise registration of the subsequent PC and so on
until all PCs have had the ICP algorithm applied. While this registration works adequately,
it is not ideal. Algorithms can be further improved so that key features can be detected
and correspondences between images can be achieved to automatically determine the
order in which registration should take place. Moreover, the use of body markers could
be implemented to facilitate the detection of correspondences. This could also involve the
calibration and the analyzing method used, which enables the possibility to implement a
multi-view DIC to detect corresponding points across images.

4. Conclusions

The work presented addresses the design, prototype, and testing of a new fully
automatic capture system employed specifically for lower-limb prosthetic design and
manufacture. The prototype was designed and manufactured via laser cutting and bending
of aluminum sheets that can support the mounting of 5 stereoscopic cameras, cameras
with 3 DOF for positioning and orientation towards the target. The frame has a “C” shape
cut-out for easy interaction with the participant. The system can perform an automatic
360º reconstruction including the end view of a target in less than 5 min. The system
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presents the advantage of simultaneously capturing across all RGB-D cameras. Added to
this, it is calibrated to a global coordinate system via a checkerboard by implementing the
Kabsch algorithm. Then, the system segments the acquired images to keep the target object,
which is then mapped out into PCs with an initial alignment. Afterward, the registration
algorithms align and reconstruct the surface from these PCs, resulting in a closed mesh.

The results for the plaster cast models show the segmentation and registration vali-
dations. The segmentation metrics of DC and HD show strong visual similarity. Moving
forward, the 5-camera system was tested using a known prototype model obtained from a
CT scan, to which comparison results via HD show an average error of ≤1.93 mm making
the system competitive against the state-of-the-art reviewed systems. The different diam-
eters obtained of the four models through SW present a reasonably close resemblance to
the physical models. These results from the objectives show that the system is useful for
the generation of a digital library to create a patient history to see the shape progression
over time, as well as assist the prosthetist in the manufacturing process, the saved model
can serve to update external geometries of previous CT scans, and future extraction of
viscoelastic properties of the skin.

A full reconstruction was possible with only 5 images since no occlusion areas were
observed with the convex shape of the amputee residuum including the molds, having
no issue during the surface reconstruction with this application. Currently, registration
still takes place by selecting the order in which cameras are placed. While results were
promising, problems may arise if selecting the wrong camera order. Image correlation,
key features, or even color ICP may be implemented to overcome this issue. Additionally,
calibration via a traditional checkerboard method is sensitive to external disturbances and
easily loses calibration, adding error to the initial global alignment. A cylindrical calibration
target may be implemented along with the use of body markers to resolve this problem. The
results obtained from the participant demonstrate that the system is capable of non-contact
reconstruction and analysis. Cameras can be synchronized via hardware to ensure the
same time frames across devices, which would enable the possibility of synchronous video
recording to obtain an over-time shape deformation useful for the extraction of viscoelastic
properties of the skin.

This work accomplishes to design, prototype, and test a new fully automatic capture
system to scan plaster molds and serve as a platform for future technologies in lower-
limb reconstruction applications. The challenges involved the selection and integration of
technologies that could be useful to comply with the application of developing an automatic
capture system. In less than 5 min the reconstruction of an object can be acquired with
little operator intervention with the proposed system. Current commercial and industrial
solutions for 3D reconstruction consist of large equipment for which a dedicated area is
required for its operation, such as full-body scanning systems. This work addresses this
issue by scaling down a multi-view system design to scan small objects and designed to
consider involuntary or voluntary movements of the body or object during capture.
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