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Hydrogen-rich saline injection into the subarachnoid 
cavity within 2 weeks promotes recovery after acute 
spinal cord injury
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Introduction
Traumatic spinal cord injury (SCI) occurs in two phases: 
primary and secondary injury (Xie et al, 2014; Zhao et al., 
2014). The phase in which treatment is started is often crit-
ical in determining the final outcome, and thus provides a 
practical target for therapeutic intervention (Cao et al., 2003; 
McKenna et al., 2005; Fan et al., 2013; Hao et al., 2013; Yang 
et al., 2014). The regulatory mechanism underlying second-
ary injury is complex, and various clinical treatments have 
been explored. For example, resveratrol has been shown 
to attenuate oxidative stress and inflammation in rats with 
SCI, an effect which may be dependent on signaling via the 
peroxisome proliferator-activated receptor gamma (PPARγ), 
Wnt/β-catenin, and insulin-like growth factor 1 (IGF-1) 
(Wang et al., 2013a, b). In addition, delayed administra-
tion of certain concentrations of complement component 
5a (C5a) inhibits caspase-3-mediated neuronal apoptosis 
in SCI, and also promotes neurite outgrowth in uninjured 
neurons (Guo et al., 2013). Reactive oxygen species (i.e., O2

− 
and H2O2) can damage proteins, nucleic acids and lipids, 
resulting in cytotoxicity. Thus, they play an important role 
in secondary injury, particularly in neuronal tissue because 
of its abundance of polyunsaturated fatty acids (Hall, 1989; 

Hall and Braughler, 1993; Genovese and Cuzzocrea, 2008; 
Chen et al., 2010). Various investigations have therefore been 
conducted with the aim of developing a suitable antioxidant 
treatment for SCI (Genovese et al., 2006; Xiong and Hall, 
2009).

Hydrogen is effective against oxidative stress, inflamma-
tion, and apoptosis-induced tissue injuries, and as such is 
beneficial in many diseases (Xie et al., 2012a, b). The appli-
cation of saline containing a therapeutic dose of hydrogen 
(hydrogen-rich saline) is a useful method by which to deliver 
molecular hydrogen (Cai et al., 2009; Chen et al., 2010; Qian 
et al., 2010; Zhou et al., 2013). Xu et al. (2013) showed that 
antioxidant hydrogen-rich saline has therapeutic potential 
in unilateral ureteric obstruction-induced renal injury in 
rats. The benefits of hydrogen-rich saline are not limited to 
the kidney; it also reduces acute spinal cord contusion inju-
ry, possibly by decreasing oxidative stress, inflammation and 
apoptosis while increasing brain-derived neurotrophic fac-
tor expression and activation of the mitochondrial adenos-
ine triphosphate-dependent potassium (mitoKATP) channel 
(Chen et al., 2010; Zhou et al., 2013). However, the actions 
of hydrogen-rich saline in SCI have not yet been investi-
gated in a systemic study. Neuronal apoptosis occurs when 
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the spinal cord is injured; this is an important pathological 
change in secondary SCI (Emery et al., 1988) and can be ob-
served between 6 hours and 21 days after injury (Crowe et 
al., 1997). Caspase-3 plays an important role in cell apopto-
sis. Therefore, in the present study, we compared the effects 
of physiological and hydrogen-rich saline administration 
on caspase-3 expression and other measures of spinal cord 
repair in rats with SCI at 6, 24 and 48 hours, and 1 and 2 
weeks, after injury. 

Materials and Methods
Animals
Seventy-five male adult Sprague-Dawley rats weighing 250–
300 g were purchased from the Laboratory Animal Center 
of Central South University in China. The rats were housed 
in pathogen-free colonies at 20–30°C and 45–60% relative 
humidity under a 12-hour light/dark cycle, and were allowed 
free access to food and drinking water. All procedures involv-
ing animals were approved by the Animal Ethics Committee 
of Central South University, China. 

Hydrogen-rich saline production
Hydrogen-rich saline-producing apparatus (Central South 
University) was used to produce hydrogen-rich saline, as de-
scribed previously (Li et al., 2013). The hydrogen-saturated 
(0.6 mM) saline was stored at 4°C and sterilized by gamma 
radiation before use. Hydrogen-rich saline was freshly pre-
pared every week and hydrogen content was measured by 
gas chromatography (Ohsawa et al., 2007).

Experimental groups
After 1 week of habituation, rats were randomly assigned to 
a sham-operated group (n = 25) and an SCI group (n = 50). 
Blood pressure and hindlimb performance were analyzed 
using the Basso, Beattie and Bresnahan (BBB) scoring system 
to ensure there were no differences between the two groups 
before the start of the experiment (Basso et al., 1995). SCI 
rat models were established in the SCI group according to 
a modification of a previously described method (Gruner, 
1992). Briefly, rats were anaesthetized with 10% chloral 
hydrate (0.33 mL/100 g intraperitoneally). Following an-
esthesia, the vertebrae at T9–11 were exposed and a dorsal 
laminectomy was performed at the T10 level to expose the 
dura. The T9 and T11 vertebrae were held with stabilization 
clamps. A moderate contusion was created by dropping a 10 
g stainless-steel weight onto the exposed cord from a height 
of 4 cm, and muscle and skin were sutured. Sham-operated 
rats only had their spinous process and vertebrae lamina 
removed before suturing. After surgery, the rats with SCI 
underwent BBB scoring again to ensure there were no dif-
ferences between the rats in this group, and were equally and 
randomly divided into two sub-groups. 

Thus, all rats were assigned to the following three groups: 
(1) sham-operated plus physiological saline (SP, n = 25); 
(2) SCI plus hydrogen-rich saline (SH, n = 25); (3) SCI plus 
physiological saline (SSP, n = 25). A catheter was implanted 
in the subarachnoid space (Wang et al., 2013a, b) to receive 

hydrogen-rich or physiological saline. 
Animals had free access to food, water, and a heat pad. 

Temperature and hydration were carefully monitored for 24 
hours after injury. Bladders were expressed manually three 
times a day until spontaneous voiding returned. All animals 
received preventive penicillin (2 × 105 U) twice a day for 48 
hours after injury. Physiological or hydrogen-rich saline (0.25 
mL/kg) was injected through the catheter at 0.5, 1, 2, 4, 8, 12 
and 24 hours after injury, then once a day until sacrifice. Two 
investigators blinded to the experimental groups analyzed 
hindlimb function using the BBB scoring system at 6, 24 and 
48 hours and 1 and 2 weeks postoperatively.  

Tissue processing
Immediately after BBB scoring, rats were anesthetized with 
10% chloral hydrate (0.33 mL/100 g intraperitoneally) and 
fixed on an operating table in the supine position. The skin 
was disinfected, the chest opened to expose the heart, and 
the pericardium was lifted with forceps and carefully sepa-
rated. A 2 mL blood sample was taken from the right ven-
tricle and stored at −80°C until use. The rats were then per-
fused with 50 mL ice cold isotonic saline followed by 150 mL 
paraformaldehyde (4% w/v in 0.1 M PBS; pH 6.9) through 
a cannula inserted in the ascending aorta. After 5 minutes, a 
10 mm segment of spinal cord, centered on T10, was removed 
and stored in paraformaldehyde (4% w/v), and immersed in 
0.02% sodium azide at 4°C until analysis. 

Serum superoxide dismutase (SOD) and malondialdehyde 
(MDA) analysis
Serum SOD activity and MDA content were analyzed using 
spectrophotometric kits (Nanjing Jiancheng Biotechnology 
Institute, Nanjing, China) in accordance with the manufac-
turer’s instructions and as reported previously (Ren et al., 
2012b). 

Morphological analyses
Spinal cord tissues were fixed with paraformaldehyde (4%, 
w/v) in PBS at 4°C, dehydrated through a graded ethanol 
series, and embedded in paraffin wax. The tissues were sec-
tioned (5 μm thick) and mounted on slides, before being 
dewaxed, hydrated, and stained with hematoxylin and eosin. 
Under a light microscope, the integrity of neurons, axons 
and glial cells, nuclear staining, and infiltration of inflamma-
tory cells were analyzed by two investigators who were blind 
to the experimental grouping. 

Immunohistochemistry 
Spinal cord tissue was fixed with paraformaldehyde (4%, 
w/v) for 24 hours at room temperature, and embedded in 
paraffin. Expression of caspase-3 and calcitonin gene-related 
peptide (CGRP) was measured in 3 mm paraffin-embedded 
sections. The sections were dewaxed in xylene, rehydrated in 
ethanol, and antigen retrieval was performed by microwav-
ing (two cycles of 5 minutes each at 780 W) in ethylenedi-
amine tetraacetic acid buffer (pH 8.0). Pure methanol and 
30% hydrogen peroxide (9:1 ratio) were used to clear endog-
enous enzymes. Endogenous biotin and nonspecific signals 



960

Wang JL, et al. / Neural Regeneration Research. 2015;10(6):958-964.

Figure 1 Effects of hydrogen-rich saline on cell morphology in rats with spinal cord injury (hematoxylin-eosin staining, × 200). 
(A) SP group (sham-operated plus physiological saline); (B) SH group (spinal cord injury plus hydrogen-rich saline); (C) SSP group (spinal cord 
injury plus physiological saline). No lesion was observed on the rat spinal cord tissue in the SP group. In the SH and SSP groups, neuronal death 
(arrows), destruction of gray matter, and infiltration of inflammatory cells were observed. The SSP group showed more damage than the SH group. 

Table 1 Effects of hydrogen-rich saline on hindlimb motor function, SOD activity and MDA content, and spinal cord CGRP and caspase-3 
immunoreactivity in rats with SCI

Group

Time after injury

6 hours 24 hours 48 hours 1 week 2 weeks

BBB scores SP 21.00±0.00 21.00±0.00 21.00±0.00 21.00±0.00 21.00±0.00

SH 0.22±0.01# 0.92±0.06# 1.84±0.25# 4.71±0.36# 12.75±1.41#

SSP 0.22±0.01# 0.78±0.01*# 1.26±0.17*# 2.51±0.371*# 7.20±1.03*#

Serum SOD activity SP 193.50±5.07 191.50±6.96 193.75±5.12 194.25±4.11 193.50±5.00

SH 139.25±8.62# 123.25±5.38# 87.00±6.27# 110.00±5.10# 160.00±7.43#

SSP 135.50±9.26# 105.25±4.11*# 53.00±4.76*# 62.25±6.13*# 120.50±4.51*#

Serum MDA content SP 1.45±0.07 1.45±0.08 1.42±0.02 1.42±0.03 1.41±0.04

SH 2.52±0.10# 2.84±0.11# 3.32±0.09# 3.48±0.11# 2.79±0.09#

SSP 2.76±0.25# 3.64±0.20*# 4.23±0.21*# 4.74±0.06*# 3.44±0.04*#

CGRP-immunoreactive cells (IOD) SP 0.45±0.01 0.44±0.01 0.44±0.02 0.45±0.01 0.44±0.01

SH 0.11±0.01# 0.08±0.01# 0.05±0.00# 0.19±0.01# 0.25±0.02#

SSP 0.11±0.01# 0.04±0.01*# 0.01±0.00*# 0.09±0.00*# 0.15±0.00*#

Caspase-3-immunoreactive cells (IOD) SP 2.23±0.53 1.75±0.68 1.93±0.25 1.95±0.27 2.10±0.68

SH 18.80±0.97# 29.50±4.20# 51.50±6.35# 73.25±5.74# 29.00±4.83#

SSP 19.40±0.80# 61.75±3.50*# 73.75±4.86*# 114.25±14.10*# 59.50±2.89*#

*P < 0.05, vs. SH group; #P < 0.05, vs. SP group (one-way analysis of variance and the least significant difference post hoc test). Data are expressed 
as the mean ± SD (n = 5 rats per group per time point). SP: Sham-operated plus physiological saline; SH: spinal cord injury plus hydrogen-rich 
saline; SSP: spinal cord injury plus physiological saline treatment; BBB: Basso, Beattie and Bresnahan scale; SOD: superoxide dismutase; MDA: 
malondialdehyde; CGRP: calcitonin gene-related peptide; IOD: integrated optical density; SCI: spinal cord injury.
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Figure 2 Effects of hydrogen-rich saline on calcitonin gene-related peptide (CGRP) immunoreactivity in rats with spinal cord injury
(immunohistochemical staining, × 200). 
(A) SP group (sham-operated plus physiological saline); (B) SH group (spinal cord injury plus hydrogen-rich saline); (C) SSP group (spinal cord 
injury plus physiological saline). CGRP staining (arrows) in the SH and SSP groups was lighter than in the SP group, and that in the SSP group was 
lighter than that of the SH group.

Figure 3 Effects of hydrogen-rich saline on caspase-3 immunoreactivity in rats with spinal cord injury (immunohistochemical staining, × 200). 
(A) SP group (sham-operated plus physiological saline); (B) SH group (spinal cord injury plus hydrogen-rich saline); (C) SSP group (spinal cord 
injury plus physiological saline). Nuclei of caspase-3-immunoreactive apoptotic cells (arrows) were stained brown, and positive cells could be seen 
at each stage in the SH and SSP groups. At 24 and 48 hours and 1 and 2 weeks after the injury, caspase-3 expression was greater in the SSP group 
than in the SH group. 
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were blocked by incubation with normal goat serum for 20 
minutes at 20°C. For immunohistochemistry, the slides were 
incubated with primary antibodies (anti-CGRP and rabbit 
anti-caspase-3, 1:100 dilution) for 2 hours at room tempera-
ture in a humid chamber, washed in PBS, and visualized by 
biotinylated secondary antibodies (goat, 1:200), followed by 
incubation with horseradish peroxidase-conjugated strepta-
vidin (R&D Systems, London, UK) for 30 minutes. Condi-
tions that produced the darkest labeling of immunopositive 
cells combined with the lowest background staining deter-
mined the working concentrations of primary and second-
ary antibodies. 

The chromogen was 3,3′-diaminobenzidine free base. 
CGRP immunohistochemistry was performed and the 

optical density of CGRP-positive regions was measured in 
Image-Pro Plus 6.0 analysis software using the following 
formula: optical density = mean integrated optical den-
sity/optical density of selected positive expression area. 
Caspase-3-positive cells were identified by their brown 
nuclei under a high power lens, counted in five non-over-
lapping horizontal fields of view per section, and the mean 
value was calculated.

Statistical analysis
Data are presented as the mean ± SD and were tested to 
confirm normal distribution. One-way analysis of variance 
and the least significant difference post hoc test were used to 
analyze differences between groups using SPSS 16.0 software 
(SPSS, Chicago, IL, USA). The significance level was set at α = 
0.05.  

Results
Hydrogen-rich saline improved motor function in rat 
hindlimb after SCI 
The BBB score was notably lower in the SH and SSP groups 
than in the SP group at 6, 24 and 48 hours and 1 and 2 weeks 
after surgery (P < 0.05; Table 1), confirming the success in 
spinal cord injury induction (Chen et al., 2010). Animals 
that received hydrogen-rich saline had significantly higher 
BBB scores than those that received physiological saline, 
from 24 hours after surgery until the end of the experiment 
(P < 0.05; Table 1).

Hydrogen-rich saline reduced cell death in the injured 
spinal cord 
SCI induced distinct cell death, hemorrhage and inflamma-
tory cell infiltration, consistent with a previous report (Chen 
et al., 2010). No significant microscopic lesions were found 
in the SP group. However, in the SH and SPP groups, a large 
number of microscopic lesions, such as cell death, hemor-
rhage and inflammatory cell infiltration, were observed after 
injury (Figure 1). Lesions were less severe in the SH group 
than in the SPP group (Figure 1). 

Effects of hydrogen-rich saline on CGRP 
immunoreactivity in SCI rats 
SCI significantly decreased CGRP expression compared to 

that observed in the SP group (P < 0.05), with the lowest ex-
pression occurring 48 hours after injury (Table 1; Figure 2). 
Hydrogen-rich saline significantly reversed this decrease in 
CGRP expression at 24 and 48 hours, 1 and 2 weeks after 
surgery (P < 0.05; Table 1; Figure 2). 

Hydrogen-rich saline reduced caspase-3 overexpression in 
SCI model rats   
SCI significantly increased caspase-3 expression compared 
to that observed in the SP group (P < 0.05; Table 1; Figure 
3), with the highest expression observed 1 week after injury. 
Caspase-3 protein expression was significantly lower in the 
SH group than in the SPP group from 24 hours until the end 
of the experiment (P < 0.05; Table 1; Figure 3). 

Effects of hydrogen-rich saline on serum MDA content and 
total SOD activity in SCI rats 
SCI significantly reduced the serum total SOD activity com-
pared to that of the SP group (P < 0.05; Table 1), with the 
lowest activity at 48 hours post injury. Hydrogen-rich saline 
significantly reversed this decrease in SOD activity at all time 
points after 6 hours, compared with SCI rats that received 
physiological saline (P < 0.05; Table 1). Conversely, SCI 
significantly increased serum MDA content compared with 
that observed in the SP group (P < 0.05; Table 1), with the 
highest expression occurring 1 week after injury. MDA con-
tent was significantly lower in the SH group than in the SPP 
group at 24 and 48 hours, 1 and 2 weeks after injury (P < 0.05; 
Table 1).  

Discussion
We have shown that administration of hydrogen-rich saline 
alleviates histological and functional damage after SCI, re-
ducing cell death and increasing hindlimb motor function, 
consistent with previous studies (Chen et al., 2010; Zhou 
et al., 2013). Indeed, the beneficial roles of hydrogen-rich 
saline in the brain extend beyond SCI. Li et al. (2010) and 
Wang et al. (2011) reported that hydrogen-rich saline pre-
vents neuroinflammation and oxidative stress induced by 
amyloid beta, possibly by attenuation of c-Jun N-terminal 
kinase and nuclear factor-κB activity. Furthermore, hydro-
gen-rich saline also improves histological and functional 
measures in a rat model of carbon monoxide enceph-
alopathy, showing potential as a treatment for patients 
with severe carbon monoxide poisoning presenting with 
delayed neurologic sequelae (Sun et al., 2011). In addition, 
hydrogen-rich saline has a notable beneficial effect in rats 
with transient global cerebral ischemia/reperfusion injury 
induced by deep hypothermic circulatory arrest (Ji et al., 
2011; Shen et al., 2011), as well as protective roles in the 
kidney (Wang et al., 2011), intestine (He et al., 2013), lung 
(Xiao et al., 2013), heart (Zhang et al., 2011) and eye (Wei 
et al., 2012). 

The mechanism underlying the roles of hydrogen-rich 
saline in SCI involves reducing oxidative damage by acting 
on MDA and SOD. MDA is a highly reactive compound, 
generated from reactive oxygen species. SOD catalyzes the 
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dismutation of superoxide (O2
−) into oxygen and hydrogen 

peroxide, thus conferring a critical antioxidant response in 
nearly all cells when they are exposed to oxygen. Several com-
pelling observations have demonstrated that SCI decreases 
SOD activity and increases MDA levels (Ozgiray et al., 2011; 
Song et al., 2013; Zhou et al., 2013). In the present study, 
hydrogen-rich saline treatment significantly alleviated this 
SCI-induced change, consistent with previous findings (Chen 
et al., 2010; Zhou et al., 2013). Li et al. (2012) showed that 
hydrogen-rich saline is dose-dependently neuroprotective 
against permanent focal cerebral ischemia, mediated in part 
by a reduction in oxidative stress. Similarly, Hou et al. (2012) 
also observed that hydrogen-rich saline protects synaptic 
plasticity and cognition after mild traumatic brain injury 
by decreasing oxidative damage. Moreover, the antioxidant 
properties of hydrogen-rich saline relieve the effects of trau-
matic pancreatitis (Ren et al., 2012a, b). However, the biolog-
ical mechanism underlying its effects on oxidative function 
warrants further investigation. The benefits of hydrogen-rich 
saline have also been implicated in immune processes, such 
as the immune response to viral infection (Ren et al., 2013a, 
b) and vaccination (Ren et al., 2013c, d, e), and innate im-
mune activation (Ren et al., 2013d, e). It is therefore of great 
interest to validate the biological functions of hydrogen-rich 
saline in these immune processes. Mounting evidence indi-
cates that SCI decreases CGRP expression (Jaerve et al., 2011; 
Kim et al., 2013). Caspase-3, one member of the cysteine-as-
partic acid protease (caspase) family, plays a central role in 
cell apoptosis via interaction with caspase-8 and -9. Since 
apoptosis is also involved in the secondary phase of SCI, it is 
not surprising that caspase-3 is elevated in SCI (Chen et al., 
2010; Lu et al., 2013). Hydrogen-rich saline treatment revers-
es the elevation of caspase-3 in SCI, consistent with previous 
evidence (Chen et al., 2010; Zhou et al., 2013). 

Together, these data indicate that hydrogen-rich saline alle-
viates SCI via a mechanism involving the antioxidant system, 
CGRP, and caspase-3. To our knowledge, the present study 
is the first to investigate the systemic functions of hydro-
gen-rich saline after SCI. Our results contribute important 
data to the body of evidence indicating that hydrogen-rich 
saline is a promising potential treatment for SCI and other 
diseases associated with oxidative damage, inflammation and 
apoptosis.  
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