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ABSTRACT: Self-nanoemulsifying drug delivery systems (SNEDDS) have been widely
applied to improve the dissolution and bioavailability of hydrophobic medications like
glibenclamide (GB). However, the acid liability of GB limits its loading in SNEDDS
formulation owing to the expected drug degradation. The present study investigated the ability
of a polymeric amorphous system (PAS) to amorphize raw GB and facilitate its integration
within dispersed SNEDDS. Liquid-SNEDDS (L-SNEDDS), solid-SNEDDS (S-SNEDDS),
and combined systems (SNEDDS + PAS) were prepared for this purpose. The
physicochemical properties of the prepared formulations were examined using a zeta-sizer,
SEM, DSC, PXRD, and dissolution apparatus. In addition, GB integrity within formulations
following incubation in a stability chamber was also investigated. The prepared formulations
were able to be dispersed within the nanosize range. SEM, DSC, and PXRD showed that
freeze-drying (FD) was superior to the microwave (MW) method in GB amorphization. Even
though L-SNEDDS and S-SNEDDS were able to increase the dissolution efficiency (DE) of
GB, drug degradation was observed. However, PAS prepared using FD was able to increase the DE of GB from 2.5% to 84.2% and
protect the drug from chemical degradation. The present study revealed that a combined system (SNEDDS + PAS) is a promising
approach to enhance the stability of acid-labile drugs and facilitate the integration of amorphous drugs within a dispersed SNEDDS
formulation.

1. INTRODUCTION
Glibenclamide (GB, Figure 1) is prescribed by medical staff for
patients diagnosed with type 2 diabetes mellitus.1,2 It belongs

to the second generation of the sulfonylurea group that
efficiently stimulates insulin secretion from beta cells of the
pancreas.3 However, the reported low drug solubility
compromises its dissolution and absorption from the gastro-
intestinal tract.4 Therefore, various oral drug carriers have been
developed to combat this issue.5−7

Self-nanoemulsifying drug delivery systems (SNEDDS) have
been widely applied to improve the dissolution and
bioavailability of orally administered drug molecules owing
to the reported advantages.8,9 Following oral administration,
nanoemulsions spontaneously form within the gastrointestinal
tract through peristaltic movement.10,11 This enhances drug

integration within the lipid core and ensures the existence of
drugs in the solubilized form within the gastrointestinal tract.12

Despite the advantages of the SNEDDS formulation, GB is
susceptible to chemical degradation in the prepared
formulation. This results from GB’s exposure to the reported
acidic microenvironment within the SNEDDS formulation,
which is yielded by free fatty acids.13 Therefore, an alternative
strategy is required to avoid instability issues and retain the
advantages of the SNEDDS formulation. Various studies have
shown that solidifying the drug-loaded SNEDDS formulation
significantly enhances drug stability.14,15 However, this
approach failed to retain the integrity of some therapeutic
molecules within the SNEDDS formulation after solidification.
This failure may be attributed to the intimate molecular
interactions between the drugs and fatty acids, which can
promote the chemical degradation of the loaded drug by the
fatty acids.13,16
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Figure 1. Chemical structure of glibenclamide.
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Alternatively, drug separation from the formulation has been
invented to avoid drug exposure to the acidic microenviron-
ment of SNEDDS.17,18 However, various studies have shown
that the crystalline nature of drug molecules within raw
material prevents their dissolution and incorporation into the
SNEDDS formulation.19,20 Therefore, drug amorphization is
necessary to ensure a complete therapeutic outcome following
oral administration.15,20

Polymeric amorphous systems (PAS) have been widely
utilized to disrupt a drug’s crystalline structure and convert it
to an amorphous phase. They are usually prepared using a
hydrophilic polymer to ensure the high absorption of water in
vivo, which ensures rapid dissolution of the incorporated
drugs.21 Different types of instruments have been utilized for
this purpose. Inter alia, microwave (MW), and freeze-drying
(FD) technologies have been used widely owing to their
effectiveness and simplicity.22

This study was designed to investigate the combined
system’s ability to enhance the dissolution profile and stability
of acid-labile drugs. Liquid SNEDDS (L-SNEDDS), solid
SNEDDS (S-SNEDDS), and combined systems (SNEDDS
and PAS) were prepared. They were subjected to phys-
icochemical characterization using a zeta-sizer, SEM, DSC,
PXRD, and dissolution apparatus. Moreover, a stability study
was performed to investigate drug degradation within the
prepared formulations.

2. MATERIALS AND METHODS
2.1. Materials. Glibenclamide was acquired from Saudi

Pharmaceutical Industries and Medical Appliances (Qassim,
KSA). Cremophor EL (surfactant) was obtained from BASF
(Ludwigshafen, Germany). Imwitor-308 (cosurfactant) was
supplied by Sasol Germany GmbH (Germany). Kollidon
(precipitation inhibitor) was acquired from BASF (Ludwig-
shafen, Germany). Capmul MCM (oil) was obtained from
Abitec (Janesville, WI, USA).

2.2. Ultra-Performance Liquid Chromatography
(UPLC) Method. This study utilized a previously validated
UPLC method to quantify the GB concentration.23 An
Ultimate 3000 UPLC system consisting of a quadratic pump
connected to an automatic sampler, a column chamber, and a
Photodiode Array (PDA) detector was used for drug analysis.
The mobile phase composed of 46.9% acetonitrile and 53.1%
of a 0.1% formic acid solution was eluted through a connected
Acquity UPLC column BEH C18 at 0.3 mL/min. The column
temperature was maintained at 38.8 °C. In addition, the GB
concentration within samples was accurately measured using a
connected PDA detector that was set at 228 nm.

2.3. Preparation of SNEDDS and S-SNEDDS Formu-
lations. A drug-free SNEDDS formulation was prepared using
Kolliphor-EL, Imwitor-308, and Capmul MCM in the
following ratio: 2:1:1. After that, 5% (w/w) PVP K30 was
dissolved within the prepared formulation to enhance the
solubilization of GB and avoid drug precipitating during
storage. GB was mixed with a drug-free SNEDDS formulation
to prepare the L-SNEDDS formulation with a drug loading of
5 mg/g. The S-SENDDS formulation was prepared by mixing
Syloid with an equivalent amount of L-SNEDS formulation.24

2.4. Preparation of PAS Systems. In the present study,
two methods were utilized to prepare the PAS of glibenclamide
(GB): MW and FD. A mixture of GB, poloxamer 188, and
sodium bicarbonate for both methods was prepared and used
in a 1:4:1 ratio, respectively. Poloxamer 188 was added as a

hydrophilic polymer to enhance the amorphization of the
drug,25 while sodium bicarbonate enhances drug stabilization
and solubilization.26

2.4.1. MW Method. 1 g portion of the aforementioned
mixture was placed in a white porcelain dish and mixed well to
obtain a consistent homogeneous blend. The PAS was
prepared by utilizing a MW instrument (Samsung Model
ME0113M1). The instrument was subjected to preheating
before the experiment. The mixture in the porcelain dish was
subjected to radiation with a power of 600 W for 3.5 min. The
obtained melted blend was mixed at room temperature using a
glass rod to ensure dispersion of GB in the prepared PAS
formulation. The solidified formulation was crushed in a glass
mortar and then sieved to obtain uniform powders by using a
screen with a pore size of 315 μm.

2.4.2. FD Method. The mixed components were dissolved
in 300 mL of Milli-Q water using a magnetic stirrer to prepare
a clear solution. After that, the prepared solution was frozen at
−60 °C as the primary step in the FD process. The frozen
dispersions were subsequently subjected to FD for a minimum
duration of 48 h at a temperature of −60 °C utilizing a freeze-
dryer (Alpha 1−4 LD Plus, Osterode am Harz, Germany) to
facilitate the sublimation of the solvent. The prepared PAS was
ground and then sieved through a 315 μm mesh to obtain a
uniform powder.

2.5. Particle Size (PS) and Zeta Potential (ZP). The
prepared formulations were diluted (1:1000) using distilled
water and mixed using a magnetic stirrer for 5 min to ensure
SNEDDS dispersion. The PS and ZP values of the obtained
dispersed system were measured using a Zetasizer instrument
Model ZEN3600, Malvern Instruments Co. (Worcestershire,
UK).27

2.6. Scanning Electron Microscopy (SEM). Images of
pure GB and PAS were captured using scanning electron
microscopy (SEM) to investigate the drug’s integration within
the formulation matrix. In addition, the syloid adsorbent and
solidified SNEDDS were also examined to determine the
impact of SNEDDS on the adsorbent. Samples were affixed to
stubs and underwent gold sputter coating for a duration of 60 s
at a 20 mA current in a Q150R sputter coater (Quorum
Technologies Ltd., East Sussex, UK) within an argon
environment. The SEM parameters were set as follows: EHT
= 20.00 kV, WD = 9.5 mm, Signal A = SE1, and magnification
= 1.00 and 5.00 KX for high- and low-resolution power,
respectively. This preparation enabled the assessment of the
surface texture and structure of the various PASs using SEM
imaging technology (Carl Zeiss EVO LS10, Cambridge, MA,
USA) in a high vacuum setting.28

2.7. Differential Scanning Calorimetry (DSC). Thermal
analysis of glibenclamide, poloxamer 188, sodium bicarbonate,
and the prepared PAS was performed using a DSC-8000
Perkins Elmer (Waltham, MA, USA) apparatus in a temper-
ature range of 30−220 °C at heating rates of 10 °C/min. An
accurately weighed amount of samples (2−3 mg) was placed
and fixed within the sealed aluminum pan.19

2.8. Powder X-ray Diffraction (PXRD). Powder X-ray
diffraction analysis was performed to examine the crystalline
state of glibenclamide. The pure ingredients, physical mixture,
PAS, and solidified SNEDDS formulations were analyzed using
an X-ray diffractometer (Ultima IV, Rigaku Inc. Tokyo, Japan).
The X-ray diffractometer scanned the PXRD for each sample
from 3° to 60° at a rate of 1°/min. The samples were evaluated
for their characteristic peaks by collecting data using
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monochromatic radiation at a 1.54 Å (Cu Kα’ 1) 30
wavelengths.29

2.9. In Vitro Dissolution. The in vitro dissolution study
was conducted to investigate the prepared formulations’
impact on glibenclamide dissolution. Dissolution apparatus
Type II (LOGAN Inst. Corp., NJ, USA) was used during the
study, and the paddle was set to rotate at a 50 rpm speed. For
each test, 2.5 mg of GB, either as a raw drug or within the
various formulations, was placed in capsules and then
surrounded with a sinker to avoid floating. The dissolution
medium was preheated before the experiment at 37 ± 0.5 °C,
which consisted of 900 mL of phosphate buffer (pH 6.8).
Samples were withdrawn from the medium at predetermined
intervals (5, 10, 15, 30, 45, and 60 min) using a 10 μm filter
connected to the syringe. The in vitro dissolution profile was
obtained by plotting the percentage of drug dissolved (based
on cumulative drug released) against time intervals. This plot
facilitates a comparison between raw GB and the various
formulations. The drug concentration within the samples was
measured using the UPLC method. The dissolution efficiency
was calculated to investigate the impact of different
formulations on the dissolution profile of glibenclamide.6

2.10. Stability Study. This experiment was conducted to
evaluate the stability of GB within the prepared formulations.
The prepared formulations were placed in glass vials that were
tightly locked by using a screwed cap. A stability chamber
(Binder GmbH, Tuttlingen, Germany) was used for this study.
Temperature was set at 40 ± 2 °C and 15 ± 5% relative
humidity before the incubation of samples. The drug
concentration within samples was measured at the beginning
of the study to determine the initial drug concentration (0
Day). At the end of the experiment, the percentage of drug
degradation was estimated using the developed UPLC method
to assess the impact of different types of formulations on
glibenclamide stability.13

3. RESULTS
3.1. Physicochemical Characterization. Table 1 sum-

marizes the measured physicochemical properties of the

prepared formulations. The results showed that glibenclamide
loading within the prepared SNEDDS formulation resulted in
an insignificant change in the particle size of the dispersed
system. However, the particle size of the SNEDDS formulation
was significantly reduced when it was dispersed with the
prepared PAS and its solidified formulation. In addition, the
incorporation of glibenclamide within the prepared SNEDDS
showed an insignificant effect on the zeta potential value. On
the contrary, solidified SNEDDS and the combined system had
lower zeta potential values than the drug-free SNEDDS
formulation.

3.2. SEM. 3.2.1. Solidified SNEDDS Formulation. SEM
images of the Syloid adsorbent and S-SNEDDS formulation
are captured to study the morphological characteristics (Figure

2). The Syloid adsorbent has an irregular shape with a smooth
surface, as shown in Figure 2A,B. On the contrary, the S-

SNEDDS formulation showed that the surface appearance of
the Syloid adsorbent changed from smooth to rough, as
depicted in Figure 2C,D. However, there is no sign of changes
in the particle size following the adsorption of L-SNEDDS by
Syloid.

3.2.2. Polymeric Amorphous System. Figure 3 shows the
SEM images for glibenclamide along with the prepared PAS.
Untreated glibenclamide appears as tiny crystals with sharp
borders, indicating its crystalline structure. On the other hand,
the captured images of PAS systems have large particle sizes
and smooth surfaces. The distinctive crystalline structure of
glibenclamide was completely absent in the captured images of
PAS.

3.3. DSC. 3.3.1. Solidified SNEDDS Formulation. Figure 4
presents DSC thermograms for GB, Syloid, and S-SNEDDS.
The figure clearly shows that glibenclamide has a sharp
endothermic peak at 175 °C. However, the Syloid adsorbent
has a broad endothermic peak at 62 °C. In addition, the
endothermic peak of the adsorbent in S-SNEDDS was
detected at 47 °C.

3.3.2. Polymeric Amorphous System. Figure 5 shows the
thermograms of glibenclamide and poloxamer 188, which have
sharp endothermic peaks at 175 and 54 °C, respectively. In
addition, sodium bicarbonate has two distinctive peaks at
about 88 and 93 °C. Furthermore, the physical mixture and the
prepared PAS have sharp endothermic peaks at around 52 °C.
However, the characteristic melting peak of glibenclamide
completely vanished.

3.4. PXRD. 3.4.1. Determining the Characteristic Peaks of
Glibenclamide. Figure 6 shows PXRD chromatograms of
glibenclamide, poloxamer 188, and sodium bicarbonate. It was
found that glibenclamide has different characteristic peaks
around 19.2° and 23.1°. In addition, poloxamer 188 has two
overlapping peaks with glibenclamide at 19.1° and 23.4°. In
contrast, sodium bicarbonate exhibits noninterfering peaks
with GB, predominantly above 30°. However, GB has four
predominant characteristic peaks (Figure 7; indicated by gray
rectangles) with high to moderate intensity at 10.9°, 11.7°,
21.0°, and 21.9° along with additional peaks with low intensity
at 14.8°, 15.3°, and 28.1°.

Table 1. Physicochemical Properties of the Prepared
Formulations

Physicochemical properties Particle size (nm) Zeta potential (mV)

Drug-free SNEDDS 124.4 ± 3.1 −16.4 ± 0.9
L-SNEDDS 122.4 ± 3.3 −16.6 ± 0.6
S-SNEDDS 137.6 ± 6.2 −25.5 ± 0.9
Drug-free SNEDDS + PAS-FD 93.7 ± 2.0 −23.6 ± 1.8

Figure 2. SEM images of A,B) Syloid adsorbent and C,D) S-SNEDDS
at low and high magnification power, respectively.
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3.4.2. Determining the Amorphization of GB in S-
SNEDDS. The PXRD analysis of the Syloid adsorbent is
presented in Figure 7 to examine its crystalline structure. It is
clear from the obtained spectrum that Syloid has two
diffraction peaks at 38.1° and 44.3°. The spectrum of the S-
SNEDDS formulation was compared against the raw Syloid
adsorbent. The spectrum showed that the S-SNEDDS
formulation has no impact on the diffraction peaks of Syloid.
Moreover, the characteristic peaks of GB completely
disappeared from the spectrum of drug-loaded S-SNEDDS.

3.4.3. Determining the Amorphization of GB in PAS. The
PXRD spectrum of GB was compared to that of the physical
mixture of the prepared PAS as shown in Figure 8. It is clear
that the predominant characteristic peaks of GB were
obviously observed in the physical mixture. Regarding PAS-
MW, the spectrum showed that all characteristic peaks were
retained with a reduction in peaks at 21.0° and 21.9°, whereas
the peak at 28.1° was absent. In contrast, the PAS-FD

spectrum showed a remarkable reduction and absence of the
characteristic peaks of GB within the prepared formulation.

3.5. In Vitro Dissolution Study. 3.5.1. SNEDDS For-
mulations. The in vitro dissolution study presented in Figure
9 revealed that the total percent of glibenclamide dissolved
from the raw material at the end of the experiment was 4.1%,
with a dissolution efficiency value of 2.5%. However, L-
SNEDDS and S-SNEDDS formulations significantly increased
glibenclamide dissolution efficiency by about 24 and 19 times

Figure 3. SEM images of A,B) untreated glibenclamide along with the PAS formulations prepared using C,D) MW method and E,F) FD method
SNEDDS at low and high magnification power, respectively.

Figure 4. DSC chromatogram of glibenclamide, the Syloid adsorbent,
and S-SNEDDS.

Figure 5. DSC chromatogram of glibenclamide, poloxamer 188,
sodium bicarbonate, and PAS formulations, along with the physical
mixture of their ingredients.
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compared to the raw drug. Even though combining drug-free
SNEDDS with the raw drug was able to increase the
dissolution efficiency of the pure drug by about 1.5-fold, it
failed to produce an outstanding increment in dissolution
efficiency compared with L-SNEDDS and S-SNEDDS
formulations.

3.5.2. PAS + Drug-Free SNEDDS Formulations. Figure 10
shows the dissolution profile of GB in the media from the
drug-free SNEDDS formulation combined with pure drug,
PAS-MW, and PAS-FD formulations. At the end of the
experiment, about 66.8% and 94.7% of glibenclamide were
dissolved from the combined system using the PAS prepared
with MW and FD, respectively. Additionally, it was found that
both systems were able to enhance the dissolution efficiency of
glibenclamide by about 20 and 33 times, respectively.

3.5.3. Comparing L-SNEDDS against the Combined
System. The dissolution profile of L-SNEDDS was compared

against the combined system (SNEDDS + PAS-FD) and is
presented in Figure 11. The calculated dissolution efficiency of
the developed L-SNEDDS formulation in the initial phase (0−
10 min) was 51.8 ± 3.84%, while it was lower in the case of the
combined system by 34.3 ± 3.71%. On the other hand, the
estimated dissolution efficiency during all experiments was
higher in the case of the combined system by 1.4-fold
compared to L-SNEDDS.

3.6. Stability Study. Figure 12A displays the percentage of
intact GB at the beginning and end of the stability study. The
analyzed data revealed that the percentage of intact
glibenclamide significantly decreased to 23.4% and 49.0%
within L-SNEDDS, and S-SNEDDS formulations, respectively.
In contrast, there was no significant difference in the
percentage of intact GB at the beginning and end of the
experiments in the PAS. Figure 12B,C shows chromatograms
obtained from samples at Days 0 and 30, respectively. It is clear

Figure 6. PXRD spectra of glibenclamide, poloxamer 188, and sodium bicarbonate.

Figure 7. PXRD spectra of glibenclamide, Syloid, and S-SNEDDS formulation.
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from the figures that the UPLC method can separate GB from
the formed degradation products.

4. DISCUSSION
Innovation in developing oral pharmaceutical formulations has
become a crucial area of research. This aims to tackle the
critical drawbacks of limited drug solubility and overcome
physiological barriers.30,31 Notably, SNEDDS has been
extensively utilized in recent decades owing to its purported
capacity to enhance medication dissolution within the
gastrointestinal tract as well as its permeability across the
physiological intestinal membrane barrier.11 Disappointingly,
oils (the main component of SNEDDS) innately comprise free
fatty acids, which omits its usage because of the anticipated
degradation of acid-labile medications.19 Therefore, this work
explores the influence of numerous approaches that enable the
usage of SNEDDS for acid-labile medications.

First, the traditional forms of SNEDDS (liquid and solid)
were prepared as a control approach to the proposed
combined system (SNEDDS + PAS). To evaluate the prepared
combined system, PAS’s influence on GB’s physical state was
examined. Herein, the impact of the combined system on the
dissolution profile and stability of GB was investigated to

Figure 8. PXRD spectrum of glibenclamide, physical mixture, and prepared PAS.

Figure 9. In vitro dissolution profile of glibenclamide, L-SNEDDS, S-
SNEDDS, and drug-free SNEDDS + pure GB.

Figure 10. In vitro dissolution profile of drug-free SNEDDS
combined with pure GB, PAS-MW, and PAS-FD.

Figure 11. In vitro dissolution profile of L-SNEDDS + drug-free
SNEDDS combined with PAS-FD.
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confirm its suitability for acid-labile drugs. Finally, a stability
study was performed to explore the influence of all
formulations on GB’s degradation.

The emulsification examination revealed that a nanosized
emulsion system was attained, ensuring a promising dispersion
propensity of L-SNEDDS. The obtained results revealed that
the prepared SNEDDS could substantially augment the oral
bioavailability of GB; this is supported by formerly published
data.32,33 Furthermore, further examination revealed that the
dispersed SNEDDS exhibited a negative surface charge. This
finding agrees with formerly published articles that are
portentous in suggesting that free fatty acids are responsible
for this finding.34

The results of in vitro dissolution showed that the L-
SNEDDS formulation have the ability to improve GB’s
dissolution efficiency 24 times compared to the raw GB.
However, L-SNEDDS showed a remarkable drug degradation.
The reported acidic microenvironment in SNEDDS could be
the main factor leading to the degradation of the incorporated
acid-sensitive drug (GB). The reported abundance of fatty
acids is the key factor for this acidic microenvironment, which
is responsible for the detected drug degradation.26,35

Therefore, a traditional solidified approach was used to
mitigate the detected instability within L-SNEDDS. The
current study revealed that S-SNEDDS improved the
dissolution efficiency of GB 19 times compared to that of
the pure drug. SEM images revealed that L-SNEDDS was
completely absorbed by the SYLOID absorbent, and the
prepared S-SNEDDS did not affect the integrity of the
SYLOID adsorbent. This ensured the physical stability of S-
SNEDDS by avoiding particle aggregation during storage.36

Moreover, DSC and PXRD analyses revealed that GB was
completely dissolved within the core of the SYLOID
adsorbent, with no evidence of crystallization. This might be
ascribed to the reported solubilization of the drug within L-
SNEDDS during the adsorption process, whereas GB
molecules uniformly dispersed on the surface of the
adsorbent.37

Even though S-SNEDDS increased the percentage of intact
GB from 23.4% to 49.0%, the overall improvement was
considered to be insufficient. This might be ascribed to the
interaction between GB and SNEDDS due to their direct
contact within the SYLOID adsorbent.18 The present results
align with reported studies that revealed the inability of S-
SNEDDS to protect loaded drugs from chemical degrada-

tion.38 Therefore, an alternative approach is demanded to
resolve the drawbacks associated with the traditional solid-
ification approach.

Alternatively, the separation of drugs from the SNEDDS
formulation has been invented to avoid exposure of acid-labile
drugs to the acid microenvironment within the SNEDDS
formulation.17 In vitro dissolution of combined raw GB and
SNEDDS was achieved to explore GB’s ability to be
partitioned within the dispersed SNEDDS. However, it was
found that SNEDDS was unable to enhance the dissolution of
pure GB. By the end of the experiment, the total percentage of
GB dissolved in the dissolution media reached 3.8%, resulting
in only a 1.5-fold improvement in dissolution efficiency. This
might be ascribed to the presence of the GB in its crystalline
state, preventing its dissolution and ability to be combined
within the SNEDDS formulation.39 Therefore, drug amorph-
ization is necessary to ensure a complete therapeutic outcome
following oral administration.20

Polymeric amorphous systems (PAS) usually convert drugs
from crystalline to amorphous states. PAS consists of a porous
system comprising a polymeric matrix where drugs are
dispersed at the molecular level.40 In this study, the PAS of
GB was prepared using MW and FD methods. Moreover,
sodium bicarbonate was incorporated into the prepared PAS at
an equimolar ratio to GB owing to its ability to create an
alkaline microenvironment that facilitates GB dissolution.41

Physicochemical examination of the dispersed combined
system showed a substantial decline in the particle size
compared to L-SNEDDS. This might be ascribed to the
integration of poloxamer in SNEDDS following dispersion, as
well as its emulsification activity.20 In addition, SEM images of
glibenclamide and the prepared PAS were captured to
investigate the method’s ability to encapsulate GB within the
polymeric matrix. The absence of GB’s crystalline structure
indicates that the drug is successfully incorporated within the
polymer matrix.28

Thermal analysis of the PAS was performed to explore the
physical state of GB within the prepared PAS. The DSC
spectrum showed that GB has a sharp melting point at 175 °C,
which is in synchronization with formerly published papers and
indicates the purity of the raw drug material.42,43 In addition,
the disappearance of the GB endothermic peak corresponds to
either the drug’s amorphization or the dilution effect produced
by an incorporated polymer.44 Thus, PXRD scanning was

Figure 12. A) The stability study showing the percentage of intact GB within the L-SNEDDS, S-SNEDDS, and FD-PAS formulations. B and C)
Chromatograms of GB-loaded formulation at Days 0 and 30, respectively.
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performed to indicate polymorphism changes in the drug
within the prepared PAS.

PXRD assessment was used to evaluate the crystalline nature
of GB within the PAS. The MW and PD methods disrupted
GB crystallinity in the prepared PAS. The intensity of the
characteristic diffraction peaks of GB prepared by the MW
method was reduced, indicating partial amorphization. The
current result concurs with a formerly published paper, which
revealed that MW was not able to disrupt the crystalline
structure of the used drug completely.45 This might be
ascribed to the energy power and rapid heating and cooling
spent during PAS preparation by using the MW radiation
method. However, further increments in MW radiation power
and time could result in polymer burning and drug
degradation.46 However, in the present study, the absence of
a drug degradation peak indicates that the power used during
MW did not affect the integrity of GB. This could be ascribed
to the presence of sodium bicarbonate, which generates an
alkaline microenvironment where the drug is stable.47

On the contrary, GB’s distinctive diffraction peaks were
remarkably reduced in PAS prepared by the PD method. This
might be ascribed to the solubilization of the drug (GB) and
polymer (poloxamer) in the solution, whereas GB is
homogeneously distributed in the polymer matrix. The
sublimation process enables the evaporation of water from
the frozen PAS and leaves amorphous drugs homogeneously
dissolved and distributed in the polymer matrix.48,49

The in vitro dissolution revealed that the combined system
(PAS−PD + SNEDDS) was able to intensify GB dissolution
efficiency compared with the counterpart combined system
(MW-PAS + SNEDDS). This harmonized with the current
result of PXRD, indicating approximately complete amorphiza-
tion of GB within the polymeric matrix using the PD
method.50 Furthermore, the used polymer (poloxamer) during
the preparation of PAS significantly intensifies the dissolution
efficiency of GB compared to L-SNEDDS. This could result
from the reported precipitation inhibition activity of poloxamer
present in the combined system, which could significantly
boost GB oral bioavailability.51 In addition, the stability study
offers additional advantages in terms of drug stability
compared to the traditional S-SNEDDS formulation. This
resulted from avoiding long-term exposure of acid-labile drugs
to free fatty acids within the components of SNEDDS.19

The proposed combined system (SNEDDS + PAS) provides
numerous advantages in terms of improving the dissolution
and stability of acid-labile drugs. This overcomes the reported
limitations of traditional solidification, which include drug
precipitation and drug degradation. Therefore, additional
investigations are mandatory to inspect the suitability and
application of the combination system for acid-labile drugs.

5. CONCLUSIONS
This study demonstrates the significant potential of combina-
tion systems (SNEDDS and PAS) to enhance the acid-labile
drug dissolution profile and stability. The present results
showed that the SNEDDS formulation enhanced the
dissolution efficiency of GB by more than 20-fold compared
with pure GB. However, remarkable drug degradation was
observed. The PAS, using the FD method, was able to convert
the drug from a crystalline to an amorphous state, as confirmed
by SEM, DSC, and PXRD. The in vitro dissolution study
revealed that the PAS enhanced the dissolution efficiency of
GB when combined with SNEDDS with outstanding stability

during storage. This resolves the instability issues associated
with the traditional solidification approach. This innovative
combined system has the potential to utilize the advantages of
SNEDDS formation to enhance oral drug delivery, offering
more effective and reliable therapeutic outcomes.
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