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BACE1 across species: a comparison 
of the in vivo consequences of 
BACE1 deletion in mice and rats
Martin Weber1,*, Tiffany Wu1,*, William J. Meilandt1, Sara L. Dominguez1, Hilda O. Solanoy1, 
Janice A. Maloney1, Hai Ngu2, Miriam Baca2, Chung Kung3, Lisa Lima3, Timothy K. Earr1, 
Daniel Fleck1, Shannon D. Shields1, William F. Forrest4, Oded Foreman2, Søren Warming5, 
Ryan J. Watts1 & Kimberly Scearce-Levie1

Assessing BACE1 (β-site APP cleaving enzyme 1) knockout mice for general health and neurological 
function may be useful in predicting risks associated with prolonged pharmacological BACE1 inhibition, 
a treatment approach currently being developed for Alzheimer’s disease. To determine whether BACE1 
deletion-associated effects in mice generalize to another species, we developed a novel Bace1−/− rat 
line using zinc-finger nuclease technology and compared Bace1−/− mice and rats with their Bace1+/+ 
counterparts. Lack of BACE1 was confirmed in Bace1−/− animals from both species. Removal of BACE1 
affected startle magnitude, balance beam performance, pain response, and nerve myelination in both 
species. While both mice and rats lacking BACE1 have shown increased mortality, the increase was 
smaller and restricted to early developmental stages for rats. Bace1−/− mice and rats further differed 
in body weight, spontaneous locomotor activity, and prepulse inhibition of startle. While the effects 
of species and genetic background on these phenotypes remain difficult to distinguish, our findings 
suggest that BACE1’s role in myelination and some sensorimotor functions is consistent between 
mice and rats and may be conserved in other species. Other phenotypes differ between these models, 
suggesting that some effects of BACE1 inhibition vary with the biological context (e.g. species or 
background strain).

Alzheimer’s disease (AD) is characterized by neurofibrillary tangles and amyloid plaques in the brain, with hyper-
phosphorylated tau and amyloid beta (Aβ ) peptides as their key components, respectively. Sequential proteolytic 
cleavage of membrane-bound amyloid precursor protein (APP) generates soluble Aβ  peptides that, according 
to the amyloid cascade hypothesis of AD1, accumulate in the brain and lead to other downstream pathologies 
including neuronal loss, and ultimately AD. The first cleavage step is largely due to the activity of the aspartyl 
protease BACE1 (β -site APP cleavage enzyme 1), which is widely expressed in the brain (see expression patterns 
on biogps.org). This suggests that inhibition of BACE1 could prevent or reduce the accumulation of Aβ  in the 
brain, reducing AD-related pathology and possibly functional impairments. Strong support for this view comes 
from human genetics with mutations in APP or presenilin, one of the four subunits of γ –secretase responsible 
for the final cleavage step towards Aβ , leading to an overproduction of Aβ  and causing AD (cf.2–4). Specifically, a 
mutation at the BACE1 cleavage site in APP results in more efficient cleavage and causes familial early onset AD5. 
However, a protective mutation in APP (A673T) has been shown to reduce cleavage and production of Aβ  and 
correspondingly decreased risk for AD6. These and other data have built a well-established rationale for a role of 
BACE1 in the pathophysiology of AD and as a potential target for the treatment of AD.

Not surprisingly, inhibitors of BACE1 are currently being developed for the treatment of AD3,7,8, and show 
promise as therapeutics in preclinical and clinical studies. However, putative detrimental effects of prolonged 
BACE1 inhibition are less well understood. Studies suggest that there are many different BACE1 substrates, 
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increasing chances of on-target side effects3,4,9–11. Substrates linked to detrimental effects of BACE1 inhibition 
or deletion include neuregulin 1 (NRG1; specifically NRG1 type III), close homolog of L1 (CHL1), and others4. 
Yet, given the abundance of BACE1 substrates, predicting potential liabilities of prolonged BACE1 inhibition in 
a bottom-up manner from the substrates is not practically feasible. An alternative approach is to take advantage 
of Bace1−/− animals.

Several phenotypes have been reported in BACE1 null mice. For example, increased mortality and reduced 
body weight has been observed in mice with constitutive inactivation of the gene encoding BACE112,13. Savonenko 
et al.14 demonstrated that Bace1−/− mice display several changes in schizophrenia-related preclinical measures, 
most prominently deficits in prepulse inhibition of startle15. Two studies16,17 reported a reduction in nerve myeli-
nation and altered bundling of small caliber axons in BACE1 null mice that were due to lack of BACE1-mediated 
NRG1 type III processing. Changes in nerve myelination can affect a wide range of behaviors from sensation to 
motor function, and both reduced grip strength and increased pain sensitivity in mice lacking BACE1 have been 
linked to changes in myelination17. Others18 discovered alterations in motor function in Bace1−/− mice using gait 
patterns as the primary readout. These findings were linked to deficits in muscle spindle formation and mainte-
nance. BACE1 has also been implicated in axon guidance of olfactory sensory neurons and the formation of the 
olfactory bulb19–21, possibly mediated via the BACE1 substrate CHL121. While this suggests that BACE1 mutant 
mice might also have deficits in olfaction, no functional study has been carried out to date.

Most reports are based on Bace1−/− mice and there is only one published report of a BACE1 knockout rat 
model22. In this study, Fielden et al.22 showed that an ocular phenotype involving thinning of the retina in 
Bace1−/− mice23 is not observed in Bace1−/− rats. While Fielden et al.22 focused on ocular readouts, this raises the 
more general question of how well other findings in BACE1 null mice may translate to rats and possibly other 
species, or if they are unique to the mouse species or specific strain in a given study. To address this question, we 
studied phenotypes in Bace1−/− rats and mice in parallel.

Materials and Methods
Animals. All animal experiments were approved by the Genentech IACUC and comply with the Institute 
for Lab Animals’ guidelines for the humane care and use of laboratory animals. Animals were housed on a 14 h 
light/10 h dark cycle with ad libitum access to water and food. Bace1−/− rats were generated by SAGE Labs using 
zinc-finger nuclease (ZFN) technology24 to create a 137-base pair deletion spanning the translation initiation 
start site in exon 1 of the rat Bace1 gene, corresponding to chr8:48,766,315–48,766,452 (RGSC 5.0/rn5 assembly). 
Rats were generated and maintained on a Sprague Dawley (Taconic) background. Bace1−/− mice25 were origi-
nally obtained from Jackson labs (B6.129-Bace1tm1Pcw/J) and were maintained on a C57BL/6J genetic background 
at Genentech. Note that the Bace1−/− rat and mouse models differ with regard to their respective background 
strains, which are outbred and inbred, respectively. Heterozygous matings generated both Bace1−/− experimental 
animals and Bace1+/+ littermate controls.

Behavioral tests. General. Animals were counterbalanced by genotype to avoid systematic effects of 
recording chambers, arenas, or time of day; acclimated for at least 20 min prior to the beginning of the experi-
ment; and tested during the light phase, with room lights on. An experimenter blinded to genotype performed 
behavioral scoring.

Locomotor activity. Rats: grey thermoplastic cages (40.0 (W) ×  40.0 (L) ×  34.5 (H) cm) were arranged under-
neath a video camera linked to a video tracking system. Distance travelled was recorded. Mice: transparent ther-
moplastic cages (40.5 (W) ×  40.5 (L) ×  38 (H) cm) were fitted with infrared (IR) beams (3 cm above floor) were 
used to record horizontal beam breaks26. A total of 30 min of locomotor activity beginning with the placement of 
the animals into the locomotor chambers were analyzed.

Acoustic startle. Startle testing was conducted according to established rat and mouse protocols as described 
previously26–28. Animals were placed in the startle chambers for a 5 min acclimation period. Background noise 
was 70 (rats) or 65 (mice) dB(A). One hundred (rats) or sixty-five (mice) 1-millisecond readings were collected 
for each animal beginning at the onset of the startle stimulus and averaged to define startle magnitude. The 
session began and ended with a block of four 40-ms, 120-dB(A) noise bursts (pulse-alone trials). Between these 
blocks the following trial types were presented in pseudorandom order: 16 pulse-alone trials; a pulse-alone 
preceded 100 ms (onset-to-onset) by a 20-ms noise burst of either low, medium, or high prepulse intensity  
(10 trials each). The low, middle and high prepulse intensity was 5, 10 or 15 (rats) or 4, 8, 16 dB above background 
(mice)27–30. Inter-trial interval (ITI) between active trials ranged from 8 to 22 s and averaged 15 s. Total session 
duration was 18.5 min.

Odor habituation test. Animals were placed in empty transparent thermoplastic cages (mice: 28 (L) ×  18 
(W) ×  13 (H) cm; rats: 43 (L) ×  22 (W) ×  21 (H) cm) for a 20 min acclimation period during which a water-soaked 
cotton-swab was suspended above the floor. After the acclimation period, a fresh cotton-swab soaked in one of 
three odorants was presented (vanilla extract, Simply Organic® , Frontier Natural Products, Norway, IA, USA, 
1:1000 in water; limonene, 183164, Sigma-Aldrich, St. Louis, MO, USA, 1:1000 in water, or rosemary oil, Now®  
Foods, Bloomingdale, IL, USA, 1:2000 in water). Seven successive trials of three minutes each were conducted. 
Each trial began by presenting a fresh cotton swab and the time spent touching, licking, or sniffing within 1 cm 
from the tip of the swab was recorded. The sequence of odors was arranged to allow odor habituation as well 
as dishabituation: trials 1–3: odor A; trials 4–6: odor B; trial 7: odor C. The sequence of odor presentations was 
counterbalanced between animals. Seven rats (4 Bace1+/+, 3 Bace1−/−) and six mice (5 Bace1+/+, 1 Bace1−/−) 
that did not engage in the task (two or fewer investigations of the cotton swabs throughout the seven trials) were 
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excluded from analyses and graphs. For analysis of odor habituation the investigation times during trials 1 and 
4 were averaged and compared to the average investigation time during trials 3 and 6. For analysis of odor dis-
habituation the average investigation time during trials 3 and 6 was compared to the average investigation time 
from trials 4 and 7.

Hot-plate test. A hot plate apparatus for rats and mice set to 55 °C was used31–33. Each animal was placed onto 
the hot plate. The time until the animal licked a hind paw, jumped, or reached the cut-off time (30 s), whichever 
came first, was recorded, then the animal was removed from the plate. There were 5 min intervals between trials. 
Three trials were averaged per animal.

Balance beam. Wooden dowels (1.04 m long) of varying diameter (~3.2 cm for rats, 2.5, 1.9 and 1.1 cm for mice) 
were placed horizontally between two platforms ~50–65 cm above the ground. A plastic shelter (rats: cylinder 
16 cm (H), 16 cm in diameter; mice: box 14 (L) ×  9 (W) ×  7.5 (H) cm) was located on a target platform, slightly 
higher than the starting platform, creating a slight inclined path on the beam towards the shelter. Animals were 
acclimated to the experimental procedure. On the test days, animals were placed onto the beam facing toward 
(rats) or away from (mice) the shelter. Rats were tested in two trials on the same beam. Mice were tested in three 
trials on each size beam. The number of foot slips made while covering a distance of 80 cm toward the shelter was 
counted and averaged per trial for each animal34.

Tissue collection. Animals were deeply anesthetized and whole blood was collected via cardiac puncture and 
placed in plasma collection tubes with EDTA. Cerebrospinal fluid (CSF) was collected from the cisterna magna, 
placed in 20 μ l of 10% BSA in sterile water and immediately stored on dry ice. After PBS perfusion, the brain was 
collected and the left hippocampus and cortex were frozen and homogenized for Western blotting (see below), 
and the right hippocampus and cortex were frozen and homogenized in 10 volumes of 5 M Guanidine HCL in 
50 mM Tris (pH 8.0) and further diluted 1:10 in Casein Blocking Buffer (0.25% casein, 0.05% sodium azide, apro-
tinin (20 mg/ml), 5 mM EDTA (pH 8.0), leupeptin (10 mg/ml) in PBS) for Aβ 40 analysis.

Sciatic nerves were harvested proximal to the branch point of the tibial and peroneal nerves and fixed over-
night in 4% PFA. Nerves were post-fixed in half Karnovsky’s fixative: 2% paraformaldehyde, 2.5% glutaraldehyde 
in 0.1 M cacodylate buffer, for 24 hours. Nerves were washed in 0.1 M Sorensen’s buffer, post-fixed with agitation 
in 1% osmium tetroxide in 0.1 M Sorensen’s buffer for 24 hours, at 4⁰C, and washed again in 0.1 M Sorensen’s 
buffer. They were incubated en bloc in 2% uranyl acetate for 1 hour and washed again in 0.1 M Sorensen’s buffer. 
Sciatic nerves were dehydrated with agitation at 70%, 95%, and 100% in 200 proof ethanol twice for 10 minutes, 
and agitated in propylene oxide twice for 10 minutes. The nerves were then infiltrated with eponate 12 resin (Ted 
Pella, Redding, CA, USA) with agitation as follows: 1:1 eponate/propylene oxide for 12 hours, followed by 2:1 
eponate/propylene oxide for 4 hours followed by pure eponate for 4 hours. The nerves were embedded in eponate 
in flat silicone embedding molds and polymerized in eponate at 70 °C overnight. Blocks were sectioned on an 
automated ultramicrotome set to cut 1 μ m at a 6 degree knife angle at 1.60 mm/sec. Sections were collected on 
Superfrost positively charged glass slides (Thermo Scientific, Kalamazoo, MI, USA). Slides were stained with 2% 
p-phenylenediamine in 50% ethanol for 15 minutes, rinsed in water for 10 minutes, air dried, and coverslipped 
with Cytoseal 60 (Thermo Scientific, Kalamazoo, MI, USA).

Aβ ELISAs. Plasma, CSF, and brain tissues (cortex or hippocampus) were collected and processed for  
Aβ 40 measurement by ELISA as previously described35–37. Briefly, rabbit polyclonal antibody specific for the 
carboxy-terminus of Aβ 40 (Millipore, Bedford, MA, USA) was coated onto plates, and biotinylated anti-mouse 
Aβ  monoclonal antibody M3.2 (Covance, Dedham, MA, USA) was used for detection. The assay had a lower limit 
of quantification of 1.96 pg/ml in plasma and 39.1 pg/g in brain.

Western Blots. Tissue was weighed and homogenized in 10 volumes of buffer (1% NP40, or RIPA with Roche 
Phosphatase and Complete, EDTA-free, protease inhibitor cocktail tablets) using a Qiagen TissueLyser II 
(2 ×  3 min, 30 Hz). Samples were rotated for 30 minutes at 4 °C then centrifuged at a relative centrifugal force 
(RCF) of 20,817 ×  g for 30 minutes at 4 °C. Supernatants were collected and protein concentrations were 
determined by BCA. 20 μ g of protein were separated on a NuPage 10% Bis-Tris PAGE gel and transferred to 
nitrocellulose membrane. Blots were incubated with the monoclonal rabbit BACE1 antibody (D10E5, 1:1000, 
Cell Signaling, Danvers, MA, USA), GAPDH (14C10, 1:1000, Cell Signaling), or β -actin (A5316, 1:1000, 
Sigma-Aldrich, St. Louis, MO, USA). Densitometric analysis was performed. Samples were normalized against 
loading control (GAPDH or Actin), and were then normalized to control Bace1+/+ samples (set to 1.0).

Myelin quantification. Digital images of p-phenylenediamine stained sciatic nerve cross-sections were acquired 
using a whole slide scanning system at x400 magnification with a resolution of 0.23 microns/pixel. Regions of 
interest (ROI) outlining the cross-sectional area of nerve bundles were manually drawn and analyzed at full 
resolution using Matlab 8.1 (Mathworks, Natick, MA, USA). The images were converted to gray scale and initial 
segmentation of lumen and myelin area was determined using intensity thresholding and rolling-ball filtering. 
Additional segmentation was performed by applying the Laplace operator on Gaussian smoothed images, and 
by morphological and HSI (hue, saturation, intensity) processing within watershed separated regions. Detected 
objects were further selected based on morphological reconstruction, mean intensity, size and shape factor anal-
ysis. Together this led to the detection of an estimated 80% or more of the axons per ROI. Data of one to three 
cross-sections per animal were averaged. For each animal ≥ 4000 axons were sampled to determine precise esti-
mates of the following parameters: axonal density, average myelin and lumen area per myelinated axon, and aver-
age g-ratio (dinner/douter). The average myelin and lumen areas per myelinated axon were summed up to yield the 
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total area of the axon with its surrounding myelin sheath (Aouter). We determined approximate g-ratios by deriving 
the inner diameter (dinner) and outer diameter (douter) from the axon lumen area (Ainner) and axon plus myelin area 
(Aouter), respectively. Assuming circular shape of axon-plus myelin cross-section, the formula d =  2 * (A/π )0.5 was 
used, where d corresponds to dinner, or douter, and A to Ainner or Aouter, respectively. This led to a single average value 
per animal for each readout, which was then used for statistical analyses. Image analysis was performed blinded 
to genotype.

Statistical Analysis. Data were analyzed using mixed-model or between-subjects ANOVAs as appropriate, fol-
lowed by post-hoc comparisons using Tukey’s HSD to account for more than two comparisons between factors 
or factor levels. Mortality analyses were based on > 4,000 mice and 2,000 rats from our BACE1 breeding colo-
nies. These data were assessed via Kaplan-Meier survival estimates followed by generalized Wilcoxon Chi-Square  
(χ 2) tests for the estimated survival functions between genotypes. The day of euthanasia is considered the date the 
censoring criterion was met. Censoring means that the documented survival of the animal until a specific date 
(the censoring date) is used for the analyses, but no assumptions as to how long the animal may have lived after 
the censoring date are being made. A second set of analyses using an alternative approach to account for health 
alerts and subsequent euthanasia in animals was conducted and is outlined in the supplements (Figure S1). The 
day an animal was found dead or not found in the cage (if of weaning age) was considered as the day of its death. 
For both sets of analyses, censoring criteria was also met on the day that an animal was a) submitted for transfer 
out of the breeding colony and no information was available as to whether an animal was alive or not, or b) alive 
on the last day that the database had been updated (4/4/2016) prior to the database query (4/7/2016). Line or bar 
graphs with mean ±  SEM values are shown. A 2-tailed alpha of 0.05 was used. *p <  0.05, **p <  0.01, ***p <  0.0001.

Results
An overview of the results is shown in Table 1.

Aβ40 protein levels in brain and plasma are reduced in Bace1−/− animals. To confirm the absence 
of BACE1 protein and examine the resulting impact on Aβ  production in rats, we measured BACE1 protein 
levels and Aβ  concentrations in a novel BACE1 knockout rat generated using zinc-finger nuclease technology 
(ZFN)24. BACE1 protein was undetectable by Western blot rat Bace1−/− cortex and hippocampus. Cortex from 
Bace1−/− and Bace1+/+ mice was used as negative and positive control, respectively (Fig. 1a). Quantitative com-
parisons of BACE1 protein levels in Bace1+/+, Bace1+/−, and Bace1−/− rats demonstrated gene-dose depend-
ent effects of BACE1 deletion on BACE1 protein levels (Rat hippocampus: Fig. 1b, ANOVA effect of genotype: 
F(2, 16) =  114.28 (p <  0.0001); + /+  >  − /−  (p <  0.0001); + /+  >  + /−  (p =  0.001); + /−  >  − /−  (p <  0.0001); 

Readout

Species

Figures
Mouse 
StudiesMouse Rat

Biochemistry

 BACE1 protein (− ) Absent (− ) Absent 1a–c 42,43

 Aβ 40 concentration (brain, plasma) Not Tested (↓ ) Reduced 1d–g 42

Basic health

 Overall mortality (↑ ) Strongly 
Increased (↑ ) Increased 2a,b

S1a,b 12

 Mortality, post-weaning (↑ ) Increased (0) No Change 2c,d
S1c,d 12

 Body weight, adult animals (↓ ) Reduced (0) No Change 3a,b 12,13

Behavior

 Spontaneous locomotor activity (↑ ) Increased (↓ ) Reduced 4a,b 12–14

 Startle magnitude (↓ ) Reduced (↓ ) Reduced 5a,b 14

 % PPI (↓ ) Reduced (↑ ) Increased 5c,d
S2c,d 14

 Olfactory function (0) No deficit (0) No deficit 6a–d 19–21*

 Thermal pain response latency (↑ ) Increased (↑ ) Increased 7a,b 17 $

 Foot slips on balance beam (↑ ) Increased (↑ ) Increased 8a,b 18

Sciatic nerve anatomy

 Axon density (↑ ) Increased (↑ ) Increased 9b,c 16,17

 Cross-sectional area of axon lumen (↓ ) Reduced (↑ ) Increased, not 
significant 9d,e 16,17

 Area of myelin sheath surrounding axon (↓ ) Reduced (↓ ) Reduced 9f,g 16,17

 g-ratio (↑ ) Increased (↑ ) Increased 9h,i 16,17

Table 1. Summary of findings in Bace1−/− mice and rats relative to Bace1+/+ controls. The summary table 
lists the effects of BACE1 deletion in mice and rats on readouts of biochemistry, basic health, behavior, and 
sciatic nerve anatomy. References to figures and corroborating mouse studies are included. *Referenced studies 
investigated olfactory system formation but not olfactory function. $Referenced study reports contrasting 
findings.
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Figure 1. Effects of BACE1 deletion on peripheral and brain Aβ40 levels in rats. (a) BACE1 protein loss 
was confirmed by Western blotting in the hippocampus and cortex of Bace1+/+, Bace1+/−, and Bace1−/− 
rats. Cortical extracts from wildtype and Bace1−/− mice shown right. Densitometric analysis of BACE1 
immunoreactivity normalized to β -actin and wildtype rats for the rat hippocampus (b) and cortex (c). Aβ 40 
concentrations in Bace1−/− (white bars) and Bace1+/− rats (grey bars) compared with Bace1+/+ controls (black 
bars) in plasma (d), CSF (e) hippocampus (f) and cortex (g). *p <  0.05, **p <  0.01, ***p <  0.0001. Values are 
mean ±  SEM, numbers represent sample size (number of rats, n).
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Rat cortex: Fig. 1c, ANOVA effect of genotype: F(2, 16) =  595.89 (p <  0.0001); + /+  >  + /−  >  − /−  (p <  0.0001 
between all genotypes). There was a significant reduction in plasma Aβ 40 concentrations in Bace1−/− (− 35%) and 
Bace1+/− (− 18%) rats relative to Bace1+/+ controls (Fig. 1d). Aβ 40 concentrations in CSF (Fig. 1e), hippocampus 
(Fig. 1f), and cortex (Fig. 1g) were significantly reduced by ~90% in the BACE1 knockout rats compared with 
BACE1 wildtype controls. Notably, relatively minor reductions in Aβ 40 were observed in the CNS of Bace1+/− 
rats (CSF: − 21%; hippocampus: − 4%; cortex: − 8%), suggesting that ~50% of endogenous BACE1 is sufficient 
to cleave most of the APP under physiological conditions (Plasma: F(2, 23) =  12.37 (p =  0.0002); + /+  >  − /−  
(p <  0.0001); + /+  >  + /−  (p =  0.027); + /−  >  − /−  (p =  0.039); CSF: F(2, 21) =  40.26 (p <  0.0001); + /+  >  + /−  vs. 
− /−  (p <  0.0001); + /+  vs. + /−  (n.s); hippocampus: F(2, 19) =  211.97 (p <  0.0001); + /+  >  − /−  (p <  0.0001); + 
/+  vs. + /−  (n.s.); + /−  >  − /− , (p <  0.0001); cortex: F(2, 19) =  261.63 (p <  0.0001); + /+  >  − /−  (p <  0.0001); + 
/+  vs. + /−  (n.s); + /−  >  − /−  (p <  0.0001)).

Effects of Bace1 deletion on mortality in mice and rats. Previous studies have shown that mortal-
ity is increased in BACE1 null mice relative to their wildtype counterparts12. Here, mortality analyses from a 
total of 6,010 mice (1567 Bace1+/+, 3,314 Bace1+/−, and 1,129 Bace1−/−) revealed higher mortality in BACE1 
null mice when compared to wildtype as well as heterozygous mice, while no significant differences were found 
between wildtype and heterozygous mice (χ 2 (2) =  309.06 (p <  0.0001); + /+  <  − /− , χ 2 (1) =  163.82 (p <  0.0001); 
+/−  <  − /− , χ 2 (1) =  239.37 (p <  0.0001); + /+  vs. + /− , χ 2 (1) =  1.08 (p =  0.299), Fig. 2a).

Corresponding analyses from 2203 rats (422 Bace1+/+, 1380 Bace1+/−, and 401 Bace1−/−) also revealed 
increased mortality in BACE1 null rats when compared to wildtype and heterozygous rats, while no signifi-
cant differences were found between Bace1+/+ and Bace1+/− rats (χ 2 (2) =  67.08 (p <  0.0001); + /+  <  − /−  (χ 2 
(1) =  18.56 (p <  0.0001)); + /−  <  − /−  (χ 2 (1) =  56.70 (p <  0.0001)); + /+  vs + /−  rats (χ 2 (1) =  0.24 (p =  0.62)), 
Fig. 2b). It is notable that while Bace1−/− mortality was significantly increased in both species, mortality appeared 
to be generally higher in Bace1−/− mice compared to Bace1−/− rats (Fig. 2a and b).

Since mortality was most pronounced in juvenile animals before weaning, subgroup analyses were conducted 
to assess if mortality in BACE1 null animals persists after weaning. Animals that were dead or censored before the 
age of 29 days were excluded and the analyses were repeated. For mice, this subgroup contained 4,293 animals in 
total (1,086 Bace1+/+, 2,333 Bace1+/−, 874 Bace1−/−). Increased mortality in BACE1 null mice relative to wildtype 
and heterozygous mice was again detected, while Bace1+/+ were not significantly different from Bace1+/− mice (χ 2  
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Figure 2. Effects of BACE1 deletion on survival. Bace1−/− mice (a) and rats (b) showed significantly increased 
mortality relative to heterozygous and wildtype animals. Since a major fraction of the mortality occurred before 
or at weaning age, subgroup analyses were carried out for animals that lived beyond weaning (≥ 29 days; (c,d). 
In these subgroups, Bace1−/− mice continued to have increased mortality when compared to Bace1+/+ mice (c), 
while the corresponding subgroup of Bace1−/− rats were indistinguishable from their wildtype counterparts (d). 
Censoring marks not shown. ***p <  0.0001. Values shown represent the fraction of animals surviving. Numbers 
represent sample size (number of animals, n).
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(2) =  74.90 (p <  0.0001)); + /+  <  − /−  (χ 2 (1) =  41.84 (p <  0.0001)); + /−  <  − /−  (χ 2 (1) =  55.24, (p <  0.0001)); 
+/+ vs. + /−  (χ 2 (1) =  1.09 (p =  0.30)), Fig. 2c).

In rats, no genotype effect was detected in the corresponding subgroup containing 1,843 animals in total 
(386+ /+ , 1,100+ /− , 357 − /− ; χ 2 (2) =  0.08, (p =  0.96), Fig. 2d).

Additional analyses were conducted using contrasting model assumptions with respect to documented health 
alerts in the database (see Supplements, Statistical analysis section) leading to similar conclusions: Overall mor-
tality is a) increased in both BACE1 null mice and rats relative to wildtype and heterozygous animals; b) not sig-
nificantly different between wildtype and heterozygous animals in both species; c) most pronounced in juvenile 
Bace1−/− mice and rats; and d) increased post-weaning in Bace1−/− mice, but not in Bace1−/− rats.

Body weight is reduced in adult Bace1−/− mice, but normal in adult Bace1−/− rats. Body weight 
of ~20 week old mice is reduced in Bace1−/− mice (Fig. 3a), confirming previous studies12,13. Bace1−/− rats, how-
ever, did not show any reduction in body weight at the same age (Fig. 3b). For mice, analysis of body weight 
revealed a main effect of genotype, with lower body weights for − /−  vs. + /+  animals; and the expected main 
effect for sex, and with no interaction effect of genotype and sex (genotype: F(1, 26) =  37.60, (p <  0.0001); sex: 
F(1, 26) =  71.73 (p <  0.0001); genotype ×  sex: F(1, 26) =  2.33 (p =  0.14)).

In contrast, for rats, there was no main effect of genotype on body weight. The expected sex effect was 
observed, and there was no interaction of genotype and sex (genotype: F(1, 56) =  0.87, (p =  0.35); sex: F(1, 
56) =  149.95 (p <  0.0001); genotype ×  sex: F(1, 56) =  0.09 (p =  0.763), Fig. 3b).

While we do not have body weight data on pre-weaning animals, we did mine our animal breeding databases 
for pre-weaning animals that were flagged as runts (according to visual inspection by experienced colony manag-
ers). There were numerically higher fractions of Bace1−/− runts when compared to their respective control groups 
in both species (Supplementary Table S1).

Locomotor activity is increased in Bace1−/− mice, but reduced in Bace1−/− rats. Consistent 
with other reports12,14 we observed increased locomotor activity in BACE1 null mice compared to wildtype mice 
(Fig. 4a). Unexpectedly, a decrease in locomotor activity was observed in BACE1 null rats when compared to 
wildtype rats (Fig. 4b).

ANOVA analysis of locomotor activity in mice revealed increased locomotor activity in − /−  vs. + /+  mice. 
As expected, locomotor activity in mice increased over time. There also was a genotype by time interaction 
reflecting mildly lower differences in activity levels between the genotypes over time (genotype: F(1, 103) =  41.97 
(p <  0.0001); time: F(2, 206) =  88.75 (p <  0.0001); genotype ×  time: F(2, 206) =  7.86 (p =  0.0005)).

Similar analysis in rats revealed a main effect of genotype with lower locomotor activity in − /−  vs. + /+  rats, 
and the expected effect of time (genotype: F(1, 152) =  35.98, (p <  0.0001); time: F(2, 304) =  910.94 (p <  0.0001); 
genotype ×  time: F(2, 304) =  2.68 (p =  0.071)).

Taken together Bace1−/− mice and rats display distinct locomotor behavior, with pronounced hyperlocomo-
tion in Bace1−/− mice, but pronounced hypolocomotion in Bace1−/− rats.

Startle magnitude is reduced in both Bace1−/− mice and rats. Prepulse inhibition of startle is 
reduced in Bace1−/− mice and increased in Bace1−/− rats. BACE1 null and wildtype animals were 
compared in measures of startle magnitude and PPI15,27–30,38. We find reduced startle magnitudes in Bace1−/− 
mice (Fig. 5a) and rats (Fig. 5b) relative to their Bace1+/+ controls. This indicates functionally analogous changes 
with respect to the startle circuitry in BACE1 null mice and rats relative to wildtype animals (Genotype: mice:  
F(1, 30) =  7.01 (p =  0.013; rats: F(1, 152) =  14.55, p =  0.0002)).

Overall % PPI in mice was reduced in Bace1−/− mice (Fig. 5c) as indicated by ANOVA analysis. As expected, 
increased prepulse intensities resulted in greater % PPI, but this was independent of genotype (genotype:  
F(1, 30) =  37.40, (p <  0.0001); prepulse intensity: F(2, 60) =  33.26 (p <  0.0001); genotype ×  prepulse intensity: 
F(2, 60) =  0.69 (p =  0.50)).
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Figure 3. Effects of BACE1 deletion on body weight. (a) Both male and female Bace1−/− mice showed 
significantly reduced body weights relative to wildtype controls. (b) Both male and female Bace1−/− rats had 
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In rats, the results were reversed, with increased % PPI in Bace1−/− rats (Fig. 5d). There was a main effect 
of prepulse intensity with greater % PPI with increasing prepulse intensities, but no interaction of genotype by 
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prepulse intensity (genotype: F(1, 152) =  39.67 (p <  0.0001)); prepulse intensity: F(2, 304) =  217.52, (p <  0.0001); 
genotype ×  prepulse intensity: F(2, 304 =  1.21 (p =  0.298)).

A change in the basic startle circuitry is predicted to affect startle magnitude. This kind of altered processing 
of the prepulse or pulse, however, may also affect % PPI and yield a false positive PPI finding, given that these 
changes are independent of the PPI circuitry in the forebrain. To assess if the genotype effect on startle magnitude 
in the present study impacts the PPI measure, separate analyses were carried out for subsets of animals generated 
by eliminating the extreme responders until the effects of genotype on startle magnitude were numerically bal-
anced across genotypes. These analyses showed similar results as when the full sets of animals were included, and 
demonstrate that the genotype effect on startle magnitude is unlikely to account for the genotype effect on % PPI 
for either mice or rats (see Supplements; Figure S2). Taken together, these observations indicate functionally anal-
ogous changes with respect to the startle circuitry in BACE1 knockout mice and rats relative to wildtype animals, 
but differences in the impact of BACE1 removal on the circuitry underlying sensorimotor gating in mice and rats.

Odor habituation and dishabituation are normal in BACE1 null mice and rats. Previous studies 
have demonstrated a role for BACE1 in axon guidance of olfactory neurons and in the formation of the olfactory 
bulb19–21. To assess olfactory function, we compared Bace1−/− and Bace1+/+ animals in measures of olfactory 
habituation and dishabituation. Surprisingly, olfactory habituation and dishabituation appeared normal in both 
Bace1−/− mice and rats, indicating intact gross olfactory function (Fig. 6a,b). For statistical analysis, habituation 
and dishabituation scores were calculated for each animal for each odor set (Fig. 6c,d). For habituation in mice, 
ANOVA showed the expected main effect of trial number, with reduced investigation times for the third presenta-
tions of the same odor when compared to the first presentation. There was a non-significant trend towards a gen-
otype effect with more investigation times in Bace1−/− vs. Bace1+/+ mice, and a trend towards a genotype by trial 
number effect. Analysis of the odor dishabituation data for mice demonstrated the expected main effect of trial 
number, with reduced investigation times for the third presentations of the odor when compared to the very first 
presentation of a novel odor. There was no significant genotype effect and no genotype by trial number interac-
tion effect (Odor habituation: genotype: F(1, 23) =  3.265 (p =  0.083); trial number: F(1, 23) =  42.31 (p <  0.0001); 
genotype ×  trial number: F(1, 23) =  3.82 (p =  0.063); odor dishabituation: genotype: F(1, 23) =  2.64 (p =  0.12); 
trial number: F(1, 23) =  21.74 (p <  0.0001): genotype ×  trial number: F(1, 23) =  2.51 (p =  0.13), Fig. 6c).

Analysis of the odor habituation data for rats revealed the expected main effect of trial number, with reduced 
investigation times for the third presentations of the same odor when compared to the first presentation. There 
was no significant genotype effect, and no genotype by trial number interaction effect. Analysis of the odor disha-
bituation data for rats revealed the expected main effect of trial number, with reduced investigation times for the 
third presentations of an odor when compared to the first presentation of a novel odor. There was no significant 
genotype effect, and no genotype by trial number interaction effect (odor habituation: genotype: F(1, 44) =  0.01 
(p =  0.94); trial number: F(1, 44) =  42.35, (p <  0.0001); genotype ×  trial number: F(1, 44) =  0.03 (p =  0.87); odor 
dishabituation: genotype: F(1, 44) =  0.08 (p =  0.77); trial number: F(1, 44) =  67.46 (p <  0.0001); genotype ×  trial 
number: F(1, 44) =  0.27 (p =  0.60), Fig. 6d).

These data show that a lack of BACE1 does not impair odor habitation or dishabituation in either mice or rats. 
On the contrary, exploration times of novel odors tended to be enhanced in Bace1−/− mice.

Hot plate response latency is increased in Bace1−/− mice and rats. A previous study showed 
reduced latencies for Bace1−/− mice in the hot plate test of response to noxious heat17. Surprisingly, we observed 
increased latencies to respond to noxious heat in both Bace1−/− mice and rats when compared to their Bace1+/+ 
counterparts indicating a reduction in nociception in Bace1−/− animals: ANOVA of the response latency demon-
strated main effects of genotype (mice: F(1, 29) =  6.32 (p =  0.018); rats: F(1, 36) =  18.87, p <  0.0001, Fig. 7a,b).

Balance beam foot slips are increased in both Bace1−/− mice and rats. Previous studies have 
demonstrated gait abnormalities in Bace1−/− mice18, prompting us to assess BACE1 null mice and rats in a bal-
ance beam task. The number of foot slips was increased in both Bace1−/− mice and rats suggesting that BACE1 
removal impairs this aspect of motor function. Since, in rats, a large fraction of the variance in this measure is 
linked to sex, two-way ANOVAs with the factors genotype and sex were conducted: ANOVA for mice revealed a 
main effect of genotype, no main effect of sex, and no interaction of genotype with sex (genotype: F(1, 28) =  8.61 
(p =  0.0066); sex: F(1, 28) =  0.54 (p =  0.47); F(1, 28) =  0.001 (p =  0.92), Fig. 8a). Similar analyses for rats showed 
a main effect of genotype with more foot slips in − /−  rats, a main effect of sex, but no interaction of genotype 
with sex (genotype: F(1, 48) =  4.62 (p =  0.037); sex: F(1, 48) =  16.03 (p <  0.0001); genotype ×  sex: F(1, 48) =  1.39, 
(p =  0.24), Fig. 8b).

Myelination deficits in Bace1−/− mice and rats. Previous studies have described myelination deficits in 
Bace1−/− mice16,17. We found that, with the exception of the axon lumen area, both Bace1−/− mice and rats have 
very similar alterations in nerve anatomy when compared to wildtype controls: Axon density in cross-sections 
of the sciatic nerve was significantly increased in Bace1−/− mice (Fig. 9b) and rats (Fig. 9c). Next we assessed 
two measures that are likely to affect conduction velocity39–41 namely the cross-sectional area of the axon lumen 
and the overall myelination as measured by quantifying the area of the myelin sheath surrounding the axon: The 
area of the axon lumen was reduced in Bace1−/− mice (Fig. 9d), but was not significantly altered in Bace1−/− rats 
(Fig. 9e), while the area of the myelin sheath surrounding the axon was lower in both Bace1−/− mice (Fig. 9f) 
and Bace1−/− rats (Fig. 9g) relative to control animals. Next, the g-ratio, a widely used indicator of axon myeli-
nation that relates the lumen diameter to the diameter of the lumen plus myelin sheath was calculated. g-ratios 
were significantly increased in BACE1 null mice (Fig. 9h) and rats (Fig. 9i) relative to control animals, indic-
ative of relatively thinner myelin sheaths in knockout animals from both species (axon density: mice: F(1, 
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11) =  106.08 (p <  0.0001), rats: F(1, 12) =  9.70 (p =  0.0089); axon lumen: mice: F(1, 11) =  12.90 (p =  0.0042), rats:  
F(1, 12) =  4.02 (p =  0.06); myelin sheath area: mice: F(1, 11) =  202.35 (p <  0.0001), rats: F(1, 12) =  32.67 
(p <  0.0001); g-ratio: mice: F(1, 11) =  85.12, p <  0.0001, rats: F(1, 12) =  30.75 (p <  0.0001)).

These results suggest that Bace1−/− animals have pronounced alterations in axonal anatomy of the sciatic 
nerve, apparent on multiple levels of analysis relative to Bace1+/+ controls. In particular, lack of BACE1 leads to 
increased axon density and significantly thinner myelin sheaths around axons in the sciatic nerves of both mice 
and rats.

Figure 6. Effects of BACE1 deletion on odor habituation and dishabituation. (a,b) The odor investigation 
time (s) during a total of 7 trials across three different odors (O1, O2, O3). Odor habituation manifests as a 
reduction in investigation time with repeated presentations of the same odor (trial 1 to 3 for O1 and trial 4 
to 6 for O2). Odor dishabituation manifests in an increased investigation time from the last presentation of a 
repeatedly encountered odor to the first presentation of a novel odor (trial 3 vs. 4, and trial 6 vs. 7). (c,d) For 
data analyses for odor habituation, investigation times of the first presentation of O1 and O2 were averaged (i.e. 
average of trial 1 and 4 (AVG(T1,T4))) and compared to the average of the last presentations of O1 and O2 (i.e. 
average of trial 3 and 6 (AVG(T3,T6))). For data analyses for odor dishabituation, investigation times for the 
last presentation of O1 and O2 were averaged (i.e. average of trial 3 and 6 (AVG(T3,6))) and compared to the 
average of the first presentation of the subsequently presented novel odors O2 and O3 (i.e. average of trial 4 and 
7 (AVG(T4,T7))). Odor habituation and dishabituation were apparent in all groups, without a main effect of 
genotype for either species. ***p <  0.0001. Values are expressed as mean ±  SEM, numbers represent sample size 
(number of animals, n).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:44249 | DOI: 10.1038/srep44249

Discussion
We generated and characterized a novel rat Bace1−/− model and directly compared it with an established Bace1−/− 
mouse model, focusing on behaviors and endpoints that are likely to be modulated by BACE1 activity. This 
cross-species characterization can highlight potential safety liabilities that may emerge after prolonged pharma-
cological inhibition of BACE1. Similar BACE1 null phenotypes across both species included changes in sciatic 
nerve anatomy and several measures of sensorimotor function. In contrast, several other phenotypes of BACE1 
null animals differed strongly between the two species, including spontaneous locomotor activity levels, pre-
pulse inhibition of startle, and indicators of general health including body weight and premature mortality in 
post-weaning animals. Our findings are summarized in Table 1.

In our biochemical analysis, BACE1 null rats were similar to BACE1 null mice42,43: BACE1 protein was virtu-
ally absent in the brains of Bace1−/− mice and rats alike confirming the completeness of the knockout. While 90% 
of the Aβ 40 was absent in the CNS (CSF, hippocampus and cortex) of Bace1−/− rats, a significant amount of Aβ 40 
was still present in plasma suggesting a role of alternative processing pathways. While BACE1 heterozygous rats 
had ~40–70% of wildtype BACE1 protein levels, BACE1 haploinsufficiency only had a mild impact on Aβ 40 levels 
in the CNS, consistent with studies in mice44. This suggests that in rodents, endogenous BACE1 levels are well 
above the levels necessary for APP processing. These findings demonstrate that the biochemical consequences of 
BACE1 deletion, at least with respect to APP processing, are consistent between rats and mice42–45 and in align-
ment with observations in humans following treatment with BACE1 inhibitors46–49, suggesting that this rat model 
has adequate predictive validity as a translational model in these measures.

We used our breeding colony databases to conduct analyses of the effects of BACE1 deletion on mortality. 
Two alternative models were calculated to differentially account for health alerts in the databases. While the two 
models, by design, arrive at different survival curves, the statistical analyses led to similar conclusions: Mortality 
is increased in Bace1−/− mice, confirming earlier findings in mice12. While increased mortality was also detected 
in Bace1−/− rats relative to Bace1+/+ and Bace1+/− animals, the extent of premature mortality in rats was less 

0
2

4

6

8

10

R
es

po
ns

e 
la

te
nc

y 
(s

)
0
2

4

6

8

10

R
es

po
ns

e 
la

te
nc

y 
(s

)

a b 
Rats 

15 16 

* 

*** 

19 19 

Mice 
+/+ 
-/- 
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marked than in Bace1−/− mice. It is also notable that heterozygous animals of both species showed no increase 
in mortality. This suggests that in normal animals, BACE1 may be present in excess of physiologically important 
substrates – a hypothesis that is consistent with our observations of minimal Aβ 40 reductions in heterozygous 
rats. Mortality in both Bace1−/− rats and mice was most pronounced close to weaning age, suggesting a role for 
BACE1 in development on this measure. A second set of analyses in the subpopulation of post-weaning animals 
revealed that mortality in older Bace1−/− animals, while less drastic, continues to be enhanced in knockout mice, 
but not in knockout rats. Note that the sample size for rats (n =  1,843), while still substantial, is smaller than 
for mice (n =  4,293), thus the likelihood to detect very small survival differences, may be somewhat reduced. 
Furthermore, rats were not maintained beyond the age of 300 days.

Body weight, another indication of general health, was reduced in adult Bace1−/− mice confirming earlier 
studies12,13. Surprisingly, this effect was absent in adult Bace1−/− rats. In both species, however, there was a numer-
ically higher fraction of runts at pre-weaning age among Bace1−/− animals. This finding may indicate an increased 
likelihood of poor general health in Bace1−/− rats and mice at this developmental stage. The relatively increased 
mortality of Bace1−/− rats and mice of this age group corroborates this view. However, we cannot ascertain 
that the discrepancies in body weight and mortality phenotype between adult Bace1−/− rats and mice are truly 
due to differences between these species. It is also conceivable that the higher genetic diversity of our outbred 
strain Bace1−/− rat model (Sprague-Dawley) in part masks the higher mortality and the body weight phenotype 
observed in adult Bace1−/− mice, which are on an inbred background strain (C57BL/6J).

We further confirmed that locomotor activity in a novel environment is increased in Bace1−/− mice relative to 
Bace1+/+ mice12,14. Again surprisingly, the opposite phenotype of reduced activity was observed in BACE1 null 
rats, suggesting that this difference must also be due to additional factors that differ between the two models.

Startle magnitude and PPI were examined next: We found that startle magnitude, a sensorimotor measure 
that reflects the activity of the basic startle reflex15,30,38, was reduced in both Bace1−/− mice and rats. PPI on the 
other hand reflects the activity of diverse forebrain regions that leads to an inhibition of the basic startle response. 
PPI is also impaired in several neuropsychiatric disorders15,30,38. Savonenko et al.14 have reported reduced PPI 
in Bace1−/− mice, an observation that we confirmed here. The rat PPI phenotype was again distinct from the 
mouse phenotype, with PPI in Bace1−/− rats enhanced relative to Bace1+/+ rats. The higher baseline PPI value in 
BACE1 control mice, when compared to control rats, may favor detecting PPI reductions in BACE1 null mice 
and PPI increases in null rats. However, % PPI in Bace1−/− mice was less than in Bace1+/+ rats, while % PPI in 
Bace1−/− rats was at or above the % PPI observed in Bace1+/+ mice, ruling out that the dynamic range of our 
instrumentation was insufficient to detect bidirectional changes in behavior. While studies testing the effects of 
genetic manipulations on PPI in mice have been performed for many years, this study is one of the first to evaluate 
the effect of a gene deletion on PPI in rats. As more genetically modified rats become available, future studies can 
further dissect species differences in the contribution of specific genes and biological pathways to this transla-
tionally relevant behavior.

Previous studies in BACE1 null mice discovered changes in axon guidance of olfactory sensory neurons and 
the formation of the olfactory bulb19–21, yet functional studies in BACE1 null animals have been lacking. Here, no 
evidence of functional impairment was detected as both BACE1 null mice and BACE1 null rats displayed normal 
olfactory habituation and dishabituation. While this does not exclude the possibility of subtle differences, our data 
do not support the hypothesis that olfaction is grossly impaired following genetic deletion of BACE1. By exten-
sion, prolonged treatment with BACE1 inhibitors is unlikely to result in major on-target disruption of olfaction.

Hu et al.17 reported reduced escape latencies to noxious heat stimuli in BACE1 null mice, but we found that 
response latencies in a similar hotplate assay were prolonged in both Bace1−/− mice and rats. One difference is 
that Hu et al.17 used hind limb flicks as an additional criterion that constitutes a pain response. This may account 
for the lower overall response latencies seen in null and wildtype mice in their data when compared to our mouse 
data. Hu et al.17 did not report locomotor activity data in their study, but the replicated observation that Bace1−/− 
mice are hyperactive12,13 raises the possibility that hyperactivity may confound the observed pain withdrawal 
latencies. We detected increased pain withdrawal latencies in both Bace1−/− mice and rats, despite their opposite 
locomotor phenotypes, indicating that genotype-dependent effects on locomotor activity are unlikely to con-
found hot plate measures in this study.

Sensorimotor circuits like acoustic startle or pain withdrawal could be affected by changes in the way neural 
signals are conveyed to and from the periphery. For example, nerve axons with larger cross-sectional lumen area 
(or diameter) and thicker myelin sheaths tend to have increased conduction velocity39–41. Therefore, we examined 
the type of changes in peripheral nerve myelination and axonal size that were previously reported in Bace1−/− 
mice16,17. Using an automated detection method, data from several thousand myelinated axons per animal were 
quantified. This led to the detection of several changes in nerve anatomy with very high consistency between ani-
mals of the same experimental group (see SEM values in Fig. 9b–i). Note that the number of animals (not axons) 
is the unit of observation. We found increased axon density in sciatic nerve bundles in Bace1−/− mice and rats. 
The cross-sectional axon lumina were reduced in Bace1−/− mice, but there was no significant difference between 
Bace1−/− rats and Bace1+/+ rats in this measure. The area of the myelin sheath around axons was reduced in 
Bace1−/− mice and rats, corresponding to increased g-ratios (dinner/douter)16,17, suggesting relatively thinner myelin 
sheaths in knockout animals from both species. These findings lead to the testable hypothesis that the conduction 
velocity in axons of BACE1 null animals is reduced. However, whether or not such changes are causally related to 
functional changes in sensorimotor function remains unclear.

Since in vivo data from inducible BACE1 knockout animals have not been published to date, it also remains 
difficult to determine if BACE1-dependent changes in myelination occur exclusively during development, or if 
they could also occur if BACE1 activity was reduced or inhibited in adults3,50. An alternative approach to investi-
gate the role of BACE1 inhibition on myelination and sensorimotor function in adults is chronic treatment with 
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BACE1 inhibitors. Cheret et al.18 used both genetic and pharmacological approaches to link BACE1 function 
to maintenance of gait, and the formation and maintenance of proprioceptive muscle spindles. It is possible 
that changes in nerve myelination could also affect complex motor behavior, including the gait abnormali-
ties described by Cheret et al.18 and the balance beam deficits we observed in both BACE1 null mice and rats. 
However, a recent report49 indicated no overt myelination deficits were observed in rats following 6 months of 
daily treatment with the BACE1 inhibitor MK-8931. While no detailed quantification of nerve myelination was 
presented in their study, this would be in line with the hypothesis that the nerve myelination deficits observed 
in BACE1 null animals primarily reflect developmental deficits. Taken together, further studies comparing the 
effect of genetic vs. pharmacological inhibition of BACE1 on motor function, nerve anatomy, and muscle spindle 
maintenance are ultimately needed to determine if BACE1 removal primarily affects motor behavior through 
developmental pathways or through pathways that are active in the mature nervous system. Ongoing clinical 
observations of motor behaviors in patients treated with BACE1 inhibitors will also provide essential insight into 
the role of BACE1 in motor behaviors in humans.

While genetic deletions can help predict safety liabilities that may emerge from on-target effects of BACE1 
inhibitors, the life-long absence of BACE1 in Bace1−/− animals remains different from prolonged pharmaco-
logical treatments, in part because of off-target effects that are inherent in most pharmacological treatments. 
Furthermore, constitutive gene deletion models lack the gene throughout development, while pharmacologi-
cal treatment approaches for AD are expected to begin later in life. Therefore studies of this type might detect 
developmental phenotypes that will not translate to chronic pharmacological inhibition in the adult. Conditional 
Bace1−/− animals that lack BACE1 during adulthood but not during development are much needed in order to 
minimize the likelihood of this possibility. On the flip side, constitutive mouse and knockout rat models may offer 
the advantage of increased sensitivity for prediction of on-target effects of decade-long pharmacological BACE1 
inhibition in humans that may be missed in time-limited pharmacological inhibition in rodents. Furthermore, 
the “drop-out” due to mortality in Bace1−/− animals raises the concern that the fraction of animals that survived 
until the completion of the experiments represents a subset of animals that is less affected by BACE1 deletion.

The present study highlights the fact that there may be important species-dependent differences in the func-
tion of specific genes, even in biologically conserved pathways. Until recently, genetic studies have been limited to 
mice, but the rat is the typical species used for certain type of studies in drug discovery, including microdialysis 
and notably toxicology. This has made it difficult to determine if effects observed in these studies are on-target 
or not. Conceivably, the ability to do the type of phenotypic analyses reported here in rats that lack expression of 
a relevant drug target could support better design of such studies and more definitive interpretation of results. 
Indeed, if the question arises if a toxicology finding in rats is on-target or not, the definitive proof that the finding 
is off-target would be a persistence of that finding in knockout animals dosed with the same drug. To date only 
one published study on BACE1 null animals examined rats22. Yet, cross-species in vivo studies are urgently needed 
since BACE1 inhibition is an important therapeutic approach for AD in humans3,4. Careful characterization of  
in vivo phenotypes in animals with genetic BACE1 deletion provides a way to predict liabilities of pharmacologi-
cal BACE1 inhibition in the clinic, in particular if animals from multiple species are tested. Using such in vivo data 
as a starting point, it may be possible to identify the biological system and ultimately the BACE1 substrates that 
drive specific phenotypes in a top-down manner. While beyond the scope of the present work, one approach to 
guide such studies may be RNA sequencing in rat and mouse models of BACE1 inhibition, to detect convergent 
transcriptome differences in both mice and rats lacking BACE1.

Remarkably, the present study has identified several BACE1-related phenotypes with strong cross-species 
concordance despite the many differences between the mouse and rat models, ranging from genetic to environ-
mental. These phenotypes include measures of nerve anatomy, and readouts linked to sensorimotor behavior, 
including acoustic startle responsiveness, pain perception, and balance beam performance. This cross-species 
concordance suggests that these effects are particularly robust across species and that there is strong penetrance 
from the genotype to these phenotypes. Within the limitations discussed above, there is strong rationale to mon-
itor the corresponding human versions of these readouts during clinical trials that entail chronic dosing of selec-
tive BACE1 inhibitors. Interestingly, data from early phase testing of BACE1 inhibitors in humans has begun to 
emerge. While the BACE1 inhibitors that were most recently tested in humans had a relatively benign side effect 
profile following acute treatment or daily treatment of up to 2 weeks46,48,49, clearly, the ultimate test of the safety of 
these compounds will be following long-term treatment. Based on the data presented here, it will be very interest-
ing to specifically assess data from long-term trials in measures of sensorimotor function and nerve conduction 
velocity.

The interpretation of measures that diverge between rats and mice lacking BACE1 is more problematic. It 
would be valuable to know what factors account for the species differences in these measures. The Bace1−/− rat 
model was established and maintained on the outbred Sprague-Dawley (Taconic) genetic background. In con-
trast, the Bace1 targeted mouse allele of the mouse model used in the present study, was generated in 129 ES (R1) 
cells and subsequently backcrossed to C57BL/6J to establish a congenic strain25. It is possible that the increased 
genetic diversity in the rat versus the mouse can explain some of the discordant observations. From this per-
spective, the rat may offer a more translatable model, since the outbred line better reflects the genetic diversity in 
human populations. In addition, since the Bace1 null mouse allele was generated in the context of the 129 strain, 
a number of closely linked genes from the original 129 strain that could modify the phenotype are likely to be still 
present in the Bace1−/− mice but absent in Bace1+/+ littermates51. One published phenotypic difference between 
independently derived Bace1−/− mouse lines supports the hypothesis that modifier genes from the background 
strain could lead to different phenotypes within the same species: May et al.52, also using the model of the pres-
ent study, reported normal retinas in their Bace1−/− mouse line. However, Cai et al.23 reported a thinning of the 
retina in their Bace1−/− mouse line. The Bace1 ko allele in their study was also generated in 129 ES cells, but then 
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maintained on a mixed genetic background. It is now possible, using ZFN or CRISPR technology, to generate 
targeted alleles directly in a pure mouse background, allowing direct comparison of the Bace1 null phenotype in 
pure 129 and C57BL/6J backgrounds to see if any of the mouse/rat discordances reported here can be explained 
by strain-specific modifier genes. In contrast, the influence of homozygous recessive modifier alleles is likely min-
imal in outbred rats. Existing mouse studies support a role of genetic background on the expression of Bace1− /−   

phenotypes. For example, Luo et al.42 developed one of the first Bace1−/− mouse models. This model was on the 
outbred Black Swiss background and they did not find any overtly abnormal phenotype. Subsequently, other 
Bace1−/− mouse models were developed on inbred background strains revealing Bace1−/− phenotypes12,13,18–21. 
Overall, the observed Bace1−/− phenotypic differences between mouse genetic backgrounds makes it difficult to 
completely separate the relative role of species and strain background in the present study and it is possible that 
differences in genetic background could, at least in part, have contributed to the apparent species differences. 
More studies are needed to evaluate this possibility. For example, one option may be the direct comparisons of 
congenic Bace1−/− rat and mouse models that were both generated on an inbred background strain. However, no 
such rat model is available at present.

We have developed a novel rat line featuring BACE1 deletion, established several BACE1-dependent in vivo 
effects in this model, and compared those side by side with an established BACE1 knockout mouse model. This 
study broadens our understanding of BACE1 deletion across species, and suggests that some effects of BACE1 
inhibition depend on the biological context (e.g. species, genetic background). The availability of genetic models 
in multiple species, coupled with preclinical pharmacological studies, offers the potential for much stronger pre-
dictive validity in determining the likely effects of prolonged BACE1 inhibition in humans.
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