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Exploring the identification 
of multiple bacteria on stainless 
steel using multi‑scale spectral 
imaging from microscopic 
to macroscopic
Jun‑Li Xu1, Ana Herrero‑Langreo1, Sakshi Lamba1,2,3, Mariateresa Ferone1,2, 
Anastasia Swanson1, Vicky Caponigro1,3,5, Amalia G. M. Scannell2,3 & Aoife A. Gowen1,4*

This work investigates non‑contact reflectance spectral imaging techniques, i.e. microscopic Fourier 
transform infrared (FTIR) imaging, macroscopic visible‑near infrared (VNIR), and shortwave infrared 
(SWIR) spectral imaging, for the identification of bacteria on stainless steel. Spectral images of 
two Gram‑positive (GP) bacteria (Bacillus subtilis (BS) and Lactobacillus plantarum (LP)), and three 
Gram‑negative (GN) bacteria (Escherichia coli (EC), Cronobacter sakazakii (CS), and Pseudomonas 
fluorescens (PF)), were collected from dried suspensions of bacterial cells dropped onto stainless 
steel surfaces. Through the use of multiple independent biological replicates for model validation 
and testing, FTIR reflectance spectral imaging was found to provide excellent GP/GN classification 
accuracy (> 96%), while the fused VNIR‑SWIR data yielded classification accuracy exceeding 80% when 
applied to the independent test sets. However, classification within gram type was far less reliable, 
with lower accuracies for classification within the GP (< 75%) and GN (≤ 51%) species when calibration 
models were applied to the independent test sets, underlining the importance of independent model 
validation when dealing with samples of high biological variability.

Bacterial contamination in food products is a public concern globally, due to its association with increased food 
waste and foodborne illness. Food contact surfaces, which represent all surfaces in contact with food products 
during production, processing, packaging, and storage, are potential sources of  contamination1. Attachment of 
bacteria to equipment surfaces can transmit pathogens to food, particularly when the microorganisms concerned 
are capable of forming  biofilms2,3. In this context, the development of effective detection methods for microbial 
contamination is of significant importance to the food industry, to reduce food contamination, thereby protect-
ing consumers from exposure to bacteria that cause foodborne illnesses. Conventional standard methods for 
the detection of bacterial species are based on microbiological culturing and isolation of the pathogen which is 
subsequently identified by biochemical and/or serological tests. However, these methods are laborious, requir-
ing sample destruction or swabbing, time-consuming and unsuitable for rapid detection and discrimination of 
bacteria attached on the surfaces of equipment. Therefore a need exists to develop fast, reliable, low-cost, and 
non-destructive analytical methods to detect and/or identify bacterial contamination on the  surfaces4.

Spectral imaging, a broad term encompassing optical techniques that combine spectroscopy and imaging, 
has recently emerged as an advanced measurement technique in the food industry, primarily for monitoring 
quality and safety attributes of food products, and its potential for microbial characterisation has been  suggested5. 
Mid-infrared spectra, commonly obtained using the Fourier Transform Infrared (FTIR) technique, contain 
information on the fundamental vibrational modes of functional groups within molecules of biological samples. 
FTIR micro-spectroscopic imaging in transmission mode has previously been applied to the task of microbial 
identification with promising results for bacterial  suspensions6–8 or  microcolonies9 transferred and dried onto IR 
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transparent substrates. Unfortunately, many reports from the literature lack model validation with independent 
biological replicates, which is essential considering the biological variability routinely encountered in microbio-
logical experiments. A notable (though not exclusive) exception to this is the recent study by Lasch et al.9, where 
FTIR transmission imaging was used for identification of multiple GP and GN strains and at least 3 biological 
replicates were tested for each strain. In this landmark study, the authors developed a method comprising of 
cultivation of microcolonies of microorganisms for 6–24 h, followed by transferring the microcolonies’ upper cell 
layers onto IR transparent  CaF2 windows using a custom-designed stamping device. This was followed by FTIR 
transmission imaging and classification with a neural network. Compared to the conventional agar plate cultur-
ing method, the proposed method  in9 consists of a relatively short cultivation step. However,  CaF2 windows are 
usually fragile and costly, and therefore, they are not easily applicable in an industrial setting. In another recent 
study, Martak et al. demonstrated the utility of FTIR spectroscopy for the typing of clinical isolates of Gram-
negative bacilli clones using the lower cost Silicon substrates for transmission  measurement10. However, the IR 
transmission modality approach does not satisfy the considerably more challenging goal of bacterial identifica-
tion on surfaces of relevance to the food industry. Towards this goal, we have recently probed the capability of 
FTIR reflectance micro-spectroscopic imaging to detect and classify bacterial cells that were dried onto metallic 
surfaces, i.e. Aluminium, Stainless Steel 304 and  31611. In our previous work, we found that GP Bacillus subtilis 
and GN Escherichia coli could be reliably detected and distinguished from each other on both aluminium and 
stainless-steel surfaces at pre-application optical densities ranging from 10 to 0.1  OD600.

Spectral information in the near-infrared (NIR) or short-wave infrared (SWIR) wavelength ranges, originates 
from overtones and combinations of the fundamental vibrations of molecular bonds within a sample, typically 
found in the MIR range, and therefore can be used to acquire knowledge on chemical composition. Compared 
to conventional FTIR microscopic systems, macroscopic visible-NIR (VNIR, approximately 400–1000 nm) or 
SWIR (approximately 1000–2500 nm) spectral imaging systems are advantageous in terms of data acquisition 
speed. For example, in the present study, microscopic FTIR imaging required approximately 20 min per drop with 
a coarse resolution of 200 μm per pixel, while macroscopic VNIR or SWIR imaging could obtain a full spectral 
image the same spatial region within 1 min. This enhanced speed enables the rapid scanning of large areas and 
are therefore considered more practical for real-life applications, such as in the detection of disease on  crops12,13.

Macroscopic spectral imaging coupled with chemometrics has been applied in numerous studies to classify 
bacterial colonies grown on agar, as summarised in a recent  review5. Of particular note is a study on the use of 
VNIR macroscopic imaging for the classification of colonies of pathogenic bacteria related to urinary tract infec-
tions, cultured on blood  agar14, in which a variety of chemometric approaches were evaluated to classify colonies 
at the colony level. More recently, spectral imaging has been developed for the identification and quantification 
of lentiviral particles in fluid  samples15 and for primary screening at the point-of-care of SARS-CoV-216.

When analysing spectral imaging data, it is generally advantageous to utilise the information from multi-
ple wavelengths simultaneously using multivariate chemometric approaches. Partial least squares-discriminant 
analysis (PLS-DA) is widely used in classification problems due to its interpretability and capability of handling 
multicollinearity problems in high dimensional  data17. PLS-DA models separate classes according to linear 
boundaries, which is sufficient for linearly separable data; for non-linear data support vector machine (SVM) 
models have the advantage of more complex curved boundaries between classes, however, the risk of model 
overfitting must be avoided through the use of appropriate cross and external data  validation18. In recent years, 
deep learning (DL) models have been introduced for spectral imaging, predominantly in the remote sensing 
 domain19, but more recently in vibrational spectral imaging studies for bacterial  detection20. DL models can 
extract hidden and sophisticated structures/features (both linear and non-linear features) contained in the raw 
data. They also support the extraction of both spectral and spatial features of spectral imaging data and allow 
flexibility in network architectures making DL models attractive and powerful for spectral image data  analysis21; 
however, they lack the interpretability offered by less computationally demanding approaches such as PLS-DA.

This work builds on our previous findings by investigating the performance of microscopic FTIR reflectance 
imaging as compared to macroscopic VNIR and SWIR spectral imaging for classification of multiple bacterial 
species, i.e., Bacillus subtilis, Lactobacillus plantarum, Escherichia coli, Cronobacter sakazakii, and Pseudomonas 
fluorescens on stainless steel 316 surfaces. The performance of object and pixel-wise classification is evaluated 
at two levels: 1) differentiation of GP and GN; and 2) classification of individual bacterial species within the 
same Gram type.

Material and methods
Sample preparation. The bacteria species used in this study, representing a selection of GP and GN bacte-
ria, were: Bacillus subtilis (B. subtilis) DSM 10, Lactobacillus plantarum (L. plantarum) DSM 20174, Escherichia 
coli (E. coli) DSM 11250, Cronobacter sakazakii (C. sakazakii) ATCC 29544, and Pseudomonas fluorescens (P. 
fluorescens) DSM 50090, respectively labelled as BS, LP, EC, CS and PF for the sake of simplicity. These particular 
bacterial species were chosen to represent relevant bacteria in the dairy industry. The bacteria were provided by 
the German Collections of Microorganisms and Cell Cultures (Braunschweig, Germany), except C. sakazakii 
which was purchased from the American Type Culture Collection (ATCC, Manassas, Virginia, United States).

The bacterial suspensions were prepared from − 80 °C glycerol stock by suspending in 4 mL of Tryptic Soya 
Broth (TSB;Oxoid, CM0129). Bacteria precultures were grown overnight at 30 °C followed by growth in fresh 
TSB to reach the mid-exponential phase. Cells were harvested by centrifugation (5000 rpm for 15 min at 4 °C) 
and washed twice in sterile phosphate buffer saline (Gibco, Life Tech. 18912-014), followed by two washing 
steps in sterile water. The concentration of cell suspensions was assessed by optical density (OD) measurements 
(Shimadzu UVmini Spectrophotometer Model 1240) at a wavelength of 600 nm  (OD600).
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For image collection, duplicate 10 µL bacterial suspensions corresponding to 10 OD were deposited on 
stainless steel (STS) slides (AISI 316 finished 2B, purchased from Amari Ireland Ltd., Dublin, Ireland), dried for 
20–30 min in a safety cabinet at room temperature, and stored at 4 °C before scanning. Prior to this, STS slides 
were washed with a solution of ethanol and acetone (1:1 v/v) to remove any trace of adhesive. Each coupon was 
immersed for 10 min in the acetone/ethanol solution and was then rinsed for 5 min with deionised (DI) water, 
followed by sterilization in autoclave at 121 °C for 20 min. For evaluation of reproducibility and replicability, 16 
biological replicates of each species were prepared on different dates spanning 5 months, as reported in Table 1 
(replicate was abbreviated to rep). Model calibration, validation and testing were carried out with samples 
prepared during this time range. As a further test of model robustness, 4 additional biological replicates were 
prepared and measured in June 2022 and models developed on the calibration set were applied to these new data 
points. Two drops of each replicate were placed on the same STS slide. Independent slides were prepared for 
FTIR and macroscopic imaging, in order to avoid any potential sample modifications due to illumination during 
VNIR or FTIR measurement. For the biological replicates obtained in June 2022 (i.e. reps 17–20 in Table 1), six 
drops were applied to each slide for macroscopic imaging.

The plate count method was also applied to estimate the number of viable cells in the bacterial suspensions. 
In detail, resuspended washed cells were serially diluted to  10–8 in sterile water, 100 µL of which was then culti-
vated in duplicate on Tryptic Soy Agar. After incubation at 37 °C for 24 h, the number of colony-forming units 
(CFU) per plate was counted and converted to CFU/mL. As is conventional practice, colony counts in the range 
of 30–300 CFU were considered.

FTIR image acquisition. FTIR imaging measurements were carried out using a Thermo Scientific Nicolet 
iN10 Infrared Microscope. This IR microscope is equipped with a liquid nitrogen cooled mercury-cadmium-tel-
lurium (MCT) detector and a 10 × objective. The instrument was purged by gas nitrogen overnight before scan-
ning. Spectral images were recorded in reflectance mode with 4 cm −1 spectral resolution in the 4000–675  cm−1 
range, taking the average of 4 scans per pixel. The aperture size and step size were 200 × 200 µm and 200 µm. The 
full bacterial drop was imaged with the actual drop size ranging from 3.4 mm × 3.4 mm to 6.4 mm × 6.0 mm. The 
background spectrum was collected every 10 min from a gold disc integrated into the standard sample plate.

Macroscopic spectral image acquisition. Two spectral images were captured simultaneously for each 
bacterial sample using the same instrument installed with two spectral imaging cameras (HySpex by NEO Ltd., 
Oslo, Norway): one recording spectral data in the visible-near-infrared (VNIR) (HySpex VNIR-1800 camera) 
(406–997 nm) range; the other capturing the short-wave infrared (SWIR) (HySpex SWIR-384 camera) range 
(951–2496 nm). The nominal spatial resolution was 160 µm × 160 µm per pixel for VNIR and 730 µm × 730 µm 
per pixel for SWIR images. Two custom-made Hyspex lamps (12 V DC, 150 W), providing illumination in the 
spectral range 400–2500 nm were mounted symmetrically at ~ 45° to the vertical axis (perpendicular to the scan-
ning direction). Samples were scanned with an integration time of 12,500 µs in the VNIR range and 8000 µs in 
the SWIR range. A Spectralon diffuse reflectance reference target (at reflectance of 50%) was included in every 
image to standardize spectra. Relative reflectance was obtained by normalizing radiance images by the radiance 

Table 1.  Details regarding sample replicates deposited on stainless steel. Rep: Replicate. Replicates marked 
in green colour are samples used in validation set and red colour are used in the first test set (‘Test1’) and 
blue colour are used in the second test set (‘Test2’). FTIR images of replicate 2 were not successful because of 
malfunction of the imaging system and for this reason are omitted from further analysis. BS: Bacillus subtilis; LP: 
Lactobacillus plantarum; EC: Escherichia coli, CS: Cronobacter sakazakii; PF: Pseudomonas fluorescens.

Replicates Dates (Day/Month/Year) Bacterial species
Reps 1, 2 11/11/2020 BS, LP, EC, CS, PF

Reps 3, 4 12/11/2020 BS, LP, EC, CS, PF

Reps 5, 6 18/11/2020 BS, LP, EC, CS, PF

Reps 7, 8 19/11/2020 BS, LP, EC, CS, PF

Reps 9, 10 17/12/2020 BS, LP, EC, CS, PF

Rep 11 05/02/2021 BS, LP, EC, CS, PF

Rep 12 12/02/2021 BS, LP, EC, CS, PF

Rep 13 17/02/2021 BS, LP, EC, CS, PF

Rep 14 18/02/2021 BS, LP, EC, CS, PF

Rep 15 19/02/2021 BS, LP, EC, CS, PF

Rep 16
26/02/2021 BS, EC, CS, PF

13/03/2021 LP
Reps 17, 18 09/06/2022 BS, LP, EC, CS, PF

Reps 19, 20 23/06/2022 BS, LP, EC, CS, PF
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values of the Spectralon included in each image. Specifically, each pixel was normalized by the averaged Spec-
tralon radiance value located on the same push-broom pixel position. True reflectance was then calculated by 
multiplying the relative reflectance values by the reference spectra of the Spectralon as provided by the supplier.

Data analysis. Data pre‑processing. All spectral data analysis and modelling were performed in the MAT-
LAB computing environment (release R2020a, The MathWorks, Inc., Natick, MA, USA) incorporating functions 
from Statistics and Machine Learning Toolbox, Image Processing Toolbox and additional functions written in-
house.

Background removal, extraction of spectra and exploratory PCA. Image segmentation is an essential and fun-
damental step in spectral image analysis, as the accuracy of the subsequent modelling is highly influenced by this 
process. In this work, the segmentation task for background removal consists of separating the bacterial pixels 
from the stainless steel pixels. Principal component analysis (PCA), one of the most widely used unsupervised 
techniques for spectral imaging analysis, enables reduction of the many spectral dimensions to a smaller num-
ber of principal components (PC) scores which capture the maximum variation in the  data22. PCA was applied 
to each spectral image, and it was found that the PC1 score image highlighted the major differences between 
the stainless steel and bacterial pixels. Thus, manual thresholding of PC1 was performed to create a mask for 
the segmentation of the bacterial region. Only pixels within the mask representing bacteria were extracted and 
utilized for the following modelling process. In addition, to reduce data load, VNIR and SWIR images were 
cropped to include only the region of two bacterial drops, excluding the ink labels on the STS slides (see Fig. S1). 
Subsequently, mean or pixel spectra from the drops were extracted for exploratory analysis and classification 
model building.

For initial data exploration, PCA was applied to the combined mean spectra of each sample in the calibration 
set, for each modality. Spectra of the validation and test set were projected along the PC loading to produce the 
score values.

Spectral pre-treatment is important in chemometric data analysis because it can remove unwanted variation, 
such as instrumental and experimental artifacts, and thereby the pre-processed spectra are often better suited 
to the data analysis  goals23. In addition, spectral pretreatments can be used to enhance visualisation of spectra; 
for this purpose, for the FTIR spectra, penalised asymmetric least squares  smoothing24,25 was used to correct 
the baseline of the mean FTIR spectra, therefore providing an improved visual comparison of spectra among 
bacterial species. In essence, a baseline was first estimated in an iterative manner and subsequently subtracted 
from the original spectra. The smoothing and weighting (penalizing) parameters respectively were set as  106 
and 0.005. In addition, second derivative spectra (window size = 15 points and the polynomial order = 3) were 
applied to the mean spectra to identify overlapped absorption bands, for better visualization of absorption peaks.

VNIR and SWIR image registration. Since the spatial resolutions of VNIR and SWIR images are not the same, 
it is necessary to perform image registration to allow for data fusion at the pixel level. To achieve this, a geometric 
transformation was applied by selecting four pairs of matching control points to align the moving images with 
the fixed image (see example shown in Fig. S1). The SWIR image was chosen as the fixed image, while the VNIR 
image was considered as a moving image, which means that VNIR spectral images were registered to match the 
same spatial size of SWIR images. Four matching control points (labelled as 1, 2, 3, and 4) were selected on the 
fixed image, and four matching corresponding points (1’, 2’, 3’, and 4’) selected on the moving image. These four 
matching points were selected on the corners of the STS coupon and then labelled clockwise starting from the 
top left corner to the bottom left. Based on these four pairs of matching control points, an affine transformation 
was subsequently applied to align the two images by registering the moving image to the fixed one. An affine 
transformation maps variables, e.g. pixel intensity values located at position ( x1, y1) in an input image, into new 
variables, i.e.,. ( x2, y2 ) in an output image, by applying a linear combination of translation, rotation, scaling, 
and/or shearing (non-uniform scaling in some directions) operations. As can be seen in Fig. S1, after geometric 
transformation, the registered VNIR image has the same size as that of the SWIR image. More importantly, the 
four matching control points (labelled as 1, 2, 3, and 4) are located right on the corners of the stainless steel 
coupon in the registered VNIR image, further confirming the effectiveness of the geometric transformation. The 
same transformation was performed at each wavelength of the VNIR spectral image and subsequent data pro-
cessing was performed on the registered VNIR image, in order to facilitate a fair comparison to the performance 
of the SWIR image.

Classification model development. To compare different models in an unbiased way, the 16 biological replicates 
were partitioned into training, validation, and test sets. Specifically, replicates 1, 2, 4, 5, 7, 8, 10, 11, 13, and 14 
formed the training set, replicates 3 and 15 formed the validation set, and replicates 6, 9, 12, and 16 formed the 
first test set (‘Test1’) while replicates 17–20 formed the second independent test set (‘Test2’). Test set 1 consisted 
of 4 replicates of each of the 5 species, corresponding to 4 × 5 = 20 independent samples; 2 droplets from each 
replicate were used, providing a total of 40 droplet images. Considering the second independent test set (‘Test2’) 
the FTIR data consisted of 4 replicates of each species, corresponding to 4 × 5 = 20 independent samples; 2 drop-
lets from each replicate were used, providing a total of 40 droplet images. In contrast for the macroscopic VNIR 
and SWIR data in Test 2, 6 drops per replicate were used, resulting in a total of 120 droplet images. From the first 
16 replicates, the data partition was based on the simple rule that every third replicate plus Rep 16 were taken out 
of the training set. For the FTIR data analysis, replicate 2 was excluded from the calibration set due to equipment 
malfunctioning on that day (as mentioned in the footnote of Table 1). Models were assessed at two levels: (1) dif-
ferentiation between GP and GN bacterial species, and (3) discrimination between individual bacterial species.
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Prior to classification model development, pixel spectra were extracted from the spectral images after elimi-
nating background and concatenated to form a matrix (X), while a label matrix (Y) was generated by labelling 
the corresponding pixel into a certain class. Data fusion of the VNIR and SWIR data was performed by horizon-
tally concatenating the spatially registered VNIR and SWIR spectra at the pixel level. The performance of each 
classifier was evaluated by the overall classification accuracy, i.e., the percentage of samples correctly classified, 
and the mean accuracy per class was also computed to account for models in which there was not an identical 
number of spectra in each class. In addition to these metrics, classification maps were generated by applying the 
developed models to the spectral imaging data and were displayed to visualize the distribution of correctly and 
incorrectly classified pixels.

Discriminant models were constructed by using partial least squares-discriminant analysis (PLS-DA) and 
support vector machine (SVM) classifiers. PLS-DA and SVM models were applied both for object-level classifica-
tion (using the mean drop spectra) or pixel-level classification (using the pixel spectra obtained after background 
removal). Models were constructed using untreated spectra and six spectral pre-treatments: SNV, 1st derivative 
Savitzky Golay pre-treatment (‘1st der’, window size = 15 points, polynomial order = 3), 2nd derivative Savitzky 
Golay pretreatment (‘2nd der’, window size = 15 points, polynomial order = 3), combinations of SNV followed 
by 1st or 2nd derivative pre-treatment and multiplicative scatter correction (MSC).

For PLS-DA modelling, parameters such as optimal pre-treatment and number of latent variables were 
selected by random cross validation on the data from the calibration set in which 70% of the spectra were ran-
domly selected for model building and the remaining 30% were used for cross validation (the ‘randperm’ function 
in MATLAB was used to randomly permute the data). This process was repeated 100 times and the global and 
mean class accuracies, sensitivity, and specificity were calculated for each combination of spectral pre-treatment 
and number of latent variables. The optimal spectral pre-treatment and number of latent variables were selected 
based on consideration of the mean class accuracy, and product of sensitivity and specificity averaged over the 
100 random folds on the calibration set. The optimal models were then applied to the validation set, from which 
the best spectral range/modality was determined. Finally, the optimal models were evaluated in terms of global 
and mean class accuracy on the independent test set.

While SVM and PLS-DA modelling inherently carry out binary classification, there are various procedures 
for extending them to multiclass problems. For discrimination of the 3 GN bacterial species, nPLS-DA and 
multiclass SVM with error correcting output codes (ECOC) were implemented.

In addition to this, for classification tasks that resulted in a low accuracy with PLS-DA and SVM models, a 
hybrid approach of PCA and LSTM (PCA-LSTM) proposed  by21 was also employed, as follows: PCA was first 
performed on the global training dataset to produce loadings and scores. The first 5 PCs, explaining more than 
95% variance, were selected and the score values were utilized as the input for LSTM. For validation and test 
sets, pixel spectra were projected along with the first 5 PC loadings by matrix multiplication producing score 
values to feed into the LSTM network. The structure of the LSTM network consists of a sequence input layer, two 
blocks containing a bidirectional long short-term memory (BiLSTM) layer and a dropout layer, a fully connected 
(FC) layer, a softmax layer, and finally an output layer. Details of the entire set of training options are provided 
in Table S1 and Fig. S2. To avoid overfitting during LSTM training, we applied early termination via setting the 
validation patience to 10, meaning that the training stops when it reaches 10 times that the loss on the validation 
set is not lower than the previously smallest loss.

Results and discussion
Spectral profiles and exploratory analysis. FTIR microscopic spectra. Figure 1 shows the mean spec-
tra of all bacterial species in the training set (the number of pixels can be found in Table S4) investigated after 
applying asymmetric least squares smoothing to correct the baseline. Since the acquired mean FTIR spectra are 
a superposition of contributions from diverse biomolecules present in a cell, the spectral bands are observed to 
be broad and difficult to distinguish, which makes assessment of the specific contribution from any particular 
biomolecule rather challenging. As can be seen, the mean spectral profiles of bacterial species have a resem-
blance to each other, suggesting the similarity of the functional group chemistry of the selected bacterial species. 
A broad band covering 3700  cm−1 to 3000  cm−1 is mostly due to contributions from O–H and N–H stretching. 
A series of peaks can be noticed in the 3000–2800  cm−1 range due to C–H stretching coming from fatty  acids8,26. 
This spectral region corresponds to the ‘‘lipid region’’ as it reflects information mostly from membrane lipids and 
some side chains of amino acids, since this region is dominated by C–H symmetrical or asymmetrical stretching 
vibrations of –CH3 and –CH2 functional  groups7.

The next prevalent features in these spectra correspond to the ‘‘protein region’’ which relates to Amide I and 
Amide II vibrations of proteins in the range of 1700–1500  cm−1. As can be seen in Fig. 1, Amide I band posi-
tions are distinctive between GP and GN species. Specifically, the position of the Amide I band shifts from a 
position around 1672  cm−1 for GN species (i.e., 1674  cm−1 of E. coli, 1670  cm−1 of C. sakazakii, and 1672  cm−1 
of P. fluorescens) to 1657  cm−1 for GP species i.e., B. subtilis and L. plantarum. To further enable the separation 
of overlapping bands, second derivative spectra (window size = 15 points and the polynomial order = 3) were 
obtained, as presented in Fig. 1 (lower panel). Notably, all bacterial species exhibit a major band at 1689  cm−1, 
while an absorption band at 1659  cm−1 is exclusively observable for GP species. An intense band centered at 
1541  cm−1 representing N–H bending and C–N stretching in amide (Amide II)27 is obvious from all bacterial 
species. Another pronounced band that appears at 1240  cm−1 (Fig. 1) can be ascribed to asymmetric stretching 
vibrations of P = O related to  phospholipids8.

Spectral features in the range of 1200–900  cm−1 are dominated by a combination of polysaccharides in the cell 
wall and phosphate-containing compounds, possibly nucleic acids from bacteria whose membrane has been dam-
aged due to stretching vibrations of C–O–C, C–O–P, and  PO2

−  groups28. Within this range, a notable difference 
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between GP and GN bacterial species can be perceived from the second derivative spectra of Fig. 1. In more 
detail, GN bacteria demonstrate a strong absorption at 1171  cm−1 and trivial absorption at 1153  cm−1, whereas 
GP bacteria show an intense absorption at 1153  cm−1 and minor feature at 1171  cm−1. This spectral distinction 
is linked to phosphate groups in bacteria according  to29. GP bacteria have a thick peptidoglycan layer lacking an 
outer lipid membrane, with two other important constituents of cell walls being teichoic and teichuronic acids,. 
bacterial copolymers of glycerol phosphate. The cell envelope of GN bacteria is more complex. It is comprised 
of lipid outer membrane and a thin peptidoglycan which does not contain either teichoic or teichuronic acids.

Given the physical and biochemical dissimilarity between the GP and GN bacterial groups, it is reasonable 
to infer that the differing contributions of phosphate groups could serve as a point of spectral differentiation 
between the two bacterial groups.

It was also observed that the overall absorption is stronger for GN bacteria than that of GP bacteria (Fig. 1), 
possibly due to the higher cell counts in GN bacterial species (see Table S2). Taken together, although FTIR 
spectral profiles suggest the similarity of the functional group chemistry of bacteria, there is a clear spectral 
difference between GP and GN bacteria, which can be used in distinguishing them.

To examine reproducibility, the mean spectrum of each sample replicate after baseline correction was obtained 
and is plotted in Fig. S3. The general spectral features are similar over the whole spectral range, yet a considerable 
spectral variation among replicates is noticeable, indicating compositional and/or structural changes. Particularly, 

Figure 1.  (Top panel): Mean FTIR spectra (after applying asymmetric least squares smoothing to remove 
baseline) of each bacterial species. The offset is manually added for better visualisation. (Bottom panel): 
Resultant FTIR spectra after applying the second derivative (window size = 15 points and the polynomial 
order = 3) on the mean spectrum of each bacterial species. R = Reflectance. Arb.units = Arbitrary units. BS: 
Bacillus subtilis; LP: Lactobacillus plantarum; EC: Escherichia coli, CS: Cronobacter sakazakii; PF: Pseudomonas 
fluorescens. 
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bacterial samples (reps 1–6) prepared on dates of November 11, 12, 18 2020 exhibited a much weaker absorp-
tion compared to the remaining samples. In addition to the difference in the intensity of absorption, some peak 
positions are also evidenced to be dissimilar among replicates of the same type of bacterial species, indicating 
the compositional changes in bacterial cells cultured from different experiments, which ultimately increases 
the difficulty for the classification modelling process. This is probably due to the highly complex, dynamically 
changing microbial environment, cellular activities, variations in the age of the bacterial population, and cell to 
cell relationships, contributing to the variations in the types and levels of proteins and metabolites present among 
experimental replicates. Table S2 demonstrates that samples of reps 1–4 had generally a lower cell count for indi-
vidual bacterial species, possibly due to a difference between samples in which the bacterial populations exhibit 
a different mean “age”, meaning that the samples with a lower count probably contain more dead bacteria. How-
ever, this does not necessary explain differences in peak intensity, as dead cells should also give a spectral signal.

VNIR and SWIR macroscopic spectra. Mean spectra of individual bacterial species in the training set (the num-
ber of pixels can be found in Table S4) collected from the suspensions dried on stainless steel are shown in Fig. 2. 
As can be seen, the spectral shapes over the entire spectral range are distinctive between GP, i.e., B. subtilis and L. 
plantarum,and GN types, i.e., E. coli, C. sakazakii and P. fluorescens. In this study, the GP species exhibited higher 
reflectance, suggesting the potential to discriminate these two groups. It can also be noted that there are no major 
differences in the spectral features obtained from bacteria species with the same Gram type.

To evaluate the spectral variation among different biological replicates, the mean spectrum of each replicate, 
consisting of two bacterial suspension drops deposited on the same STS slide, was computed and is exhibited 
in Fig. S4. High variability in the spectra collected from all replicates is evidenced. In particular, replicates 1–6 
are observed to present a different spectral trend compared to the remaining replicates, which is consistent with 
FTIR spectral profiles (see Fig. S3). Although care was taken to ensure that the same experimental protocol was 
used for each replicate, there are still variations in bacterial cells cultured from different experiments, related to 
uncontrolled variations in laboratory conditions during sample preparation (such as temperature and relative 

Figure 2.  Mean VNIR (A) and SWIR (B) spectra of all bacterial species collected from stainless steel. 
R = Reflectance. Arb.units = Arbitrary units. BS: Bacillus subtilis; LP: Lactobacillus plantarum; EC: Escherichia 
coli, CS: Cronobacter sakazakii; PF: Pseudomonas fluorescens. 
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humidity) which will pose challenges for the subsequent classification. This high spectral variability contrasts with 
the high spectral reproducibility over three independent biological replicates reported  by9, in which FTIR spectra 
were collected from cultivated bacterial colonies, transferred onto IR transparent slides; however, as the authors 
of this study point out, the need for strict standardisation of cultivation and sample preparation conditions is 
a drawback for the practical application of this technique. In contrast, in a study of suspensions of Salmonella 
colonies using darkfield VNIR microscopic spectral  imaging30, no significant difference in S.typhimurium spectra 
was found using four different agar types and 4 different incubation temperatures; however incubation pH was 
found to influence the spectra shape measured in the wavelength range 400–800 nm.

Principal components analysis applied to mean spectra. In order to explore the spectral variation in an unsuper-
vised manner, a PCA model was developed from the mean spectra obtained from the masked image of each sam-

Figure 3.  Score and loading plots (PC1 and PC2) of the PCA model built from the calibration sets of mean 
spectra for each modality. Note: A circle marker refers to the observation in the training set, while a diamond 
marker denotes the sample in the validation or test set. BS: Bacillus subtilis; LP: Lactobacillus plantarum; EC: 
Escherichia coli, CS: Cronobacter sakazakii; PF: Pseudomonas fluorescens. 
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ple in the calibration set. Figure 3 shows the loadings and score plots of the first two PCs representing over 85% 
variance in the FTIR data and more than 98% variance of the VNIR and SWIR data. Spectra of the validation 
and test set were projected along the PC loading to produce the score values, as depicted by diamond-shaped 
markers. It is apparent from the PC score plots that the FTIR and VNIR mean spectra allow for a somewhat bet-
ter separation between GP and GN types, compared with SWIR. GN samples tend to have positive score values 
on PC2, while GP samples mostly locate at the negative axis of PC2. This could be explained by the fact that PC2 
loading bears some resemblance to the spectral profile of the GN samples (see Fig. 2). It can also be observed that 
it is challenging to separate bacterial species of the same Gram type, consistent with the mean spectral profiles 
in Fig. 2. The separation of mean FTIR spectra according to species, as seen in the PC score plots in Fig. 3, is 
less impressive than has been reported in earlier studies, for  example8 found good separation among PC scores 
of IR spectra measured for gram negative species when bacterial suspensions were dried onto gold coated glass 
slides; however, only 12 spectra were measured per drop. Our results indicate the high intra-species variability 
in the measured spectra of the independent biological replicates, which justifies the use of further chemometric 
analysis to investigate the capability of each reflectance technique for gram and sub-gram discrimination.

Table 2.  Model performances for discrimination between Gram-positive and Gram-negative types based on 
mean spectra. For each modality/spectral region, the model yielding maximum accuracy in the validation set 
is bolded.

Modelling Modality Spectral region Pre-treatment nLV

Accuracy Mean class accuracy

Validation Test1 Test2 Validation Test1 Test2

PLS-DA

FTIR

1350–675  cm−1 SNV + SG1 2 100.0 100.0 89.5 100.0 100.0 91.7

1722–910  cm−1 SNV + SG1 8 100.0 100.0 100 100.0 100.0 100

3500–2600  cm−1 SNV + SG1 3 100.0 100.0 57.9 100.0 100.0 66.7

4000–675  cm−1 SNV + SG2 7 100.0 100.0 100 100.0 100.0 100

Macroscopic

406–997 nm SNV 6 90.0 95.0 25.0 89.6 94.8 27.1

951–2496 nm SNV 2 60.0 57.5 50.0 62.5 57.3 52.1

406–2496 nm SNV + SG1 5 100.0 85.0 60.0 100.0 82.3 52.1

SVM

FTIR

1350–675  cm−1 SNV 100.0 100.0 97.4 100.0 100.0 97.9

1722–910  cm−1 SNV 100.0 100.0 92.1 100.0 100.0 89.3

3500–2600  cm−1 SNV 100.0 100.0 100 100.0 100.0 100

4000–675  cm−1 SNV 100.0 100.0 100 100.0 100.0 100

Macroscopic

406–997 nm SNV 100.0 95.0 45.0 83.3 93.8 43.8

951–2496 nm SNV 55.0 52.5.0 55.0 58.3 56.3 58.3

406–2496 nm SNV 80.0 90.0 40.0 83.3 87.5 37.5

Table 3.  Model performances for discrimination between Gram-positive and Gram-negative types based on 
pixel spectra. For each modality/spectral region, the model yielding maximum accuracy in the validation set is 
bolded.

Modelling Modality Spectral region Pre-treatment nLV

Accuracy Mean class accuracy

Validation Test1 Test2 Validation Test1 Test2

PLS-DA

FTIR

1350–675  cm−1 SNV + SG2 6 93.9 98.2 98.0 93.4 98.3 98.0

1722–910  cm−1 SNV + SG2 7 94.2 98.9 98.0 93.7 99.1 98.0

3500–2600  cm−1 SNV + SG2 7 96.5 99.2 93.6 96.8 99.2 93.6

4000–675  cm−1 SNV + SG2 8 91.9 96.7 94.2 91.7 96.4 94.2

Macroscopic

24,631–10,030  cm−1 (406–997 nm) None 1 79.6 77.6 85.2 75.2 73.8 85.6

10,515–4006  cm−1 (951–2496 nm) None 1 70.0 74.8 73.4 71.1 76.3 73.6

24,631–4006  cm−1 (406–2496 nm) None 1 88.7 83.2 84.0 87.0 80.7 84.4

SVM

FTIR

1350–675  cm−1 SNV 98.0 98.6 96.1 98.9 98.6 96.2

1722–910  cm−1 SNV 99.3 99.0 94.8 99.3 99.0 94.8

3500–2600  cm−1 SNV 98.9 99.5 90.7 98.9 99.5 90.7

4000–675  cm−1 SNV 99.7 99.4 96.6 99.7 99.5 96.5

Macroscopic

24,631–10,030  cm−1 (406–997 nm) None 88.5 90.8 80.2 91.2 88.4 80.4

10,515–4006  cm−1 (951–2496 nm) None 81.4 74.8 67.2 77.4 70.2 67.6

24,631–4006  cm−1 (406–2496 nm) None 91.2 92.0 73.4 91.2 89.9 73.7
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Classification according to Gram type. Initial models for classification were built on mean spectra from 
each drop of bacterial suspension. The accuracy for each spectral imaging modality/chemometric method/wave-
length range when applied to the validation and test sets is shown in Table 2. Clearly, the classification models 
built on microscopic FTIR spectra were superior to those built on macroscopic VNIR or SWIR data, achieving 
classification accuracies of 100% on the validation and test sets in some spectral domains. Despite the consider-
able measurement challenges involved in the present study (i.e. the use of bacterial suspensions dried onto stain-
less steel substrates, the high intra-species spectral variability and the larger number of independent biological 
replicates), the high accuracy of gram level classification reported is consistent with the results reported  by8, in 
which mean FTIR spectra of bacterial colonies transferred onto IR transparent substrates were perfectly classi-
fied according to gram type.

As for the macroscopic spectra, there was an apparent advantage in fusing the VNIR and SWIR data when 
PLS-DA modelling was applied to the validation set, leading to a classification accuracy of 100% in the validation 
set; however this was reduced to 85% in Test1 which further decreased to 60% for Test2, while the SVM built 
on VNIR data after SNV pre-treatment yielded 100% accuracy in the validation set and 95% accuracy in Test1, 
yet reduced to 45% on Test 2. The lower classification accuracies obtained when applying the calibration models 
built from macroscopic VNIR or combined VNIR-SWIR data to the second test set indicate potential model 
overfitting (especially for the SVM model) and a lack of discrimination ability based on the mean spectra. These 
results can be compared to a recent study in which it was shown that VNIR spectral imaging could be used to 

Figure 4.  Classification maps for samples in the test sets obtained from the best mean (top panel) and 
pixel-level (bottom panel) FTIR models for GP/GN classification. Pixels classified as GP/GN are shown in 
blue or orange respectively. Each replicate has two drops. BS: Bacillus subtilis; LP: Lactobacillus plantarum; 
EC: Escherichia coli, CS: Cronobacter sakazakii; PF: Pseudomonas fluorescens. White scalebar indicates 1 mm 
(width) × 0.2 mm (height).
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Figure 5.  Classification maps for samples in the test set (reps 6, 9, 12, and 16) obtained from the best mean 
and pixel-level VNIR/SWIR models for GP/GN classification. Pixels classified as GP/GN are shown in blue 
or orange respectively. Each replicate has two drops. BS: Bacillus subtilis; LP: Lactobacillus plantarum; EC: 
Escherichia coli, CS: Cronobacter sakazakii; PF: Pseudomonas fluorescens. White scalebar indicates 1 mm 
(width) × 0.25 mm (height).



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15412  | https://doi.org/10.1038/s41598-022-19617-3

www.nature.com/scientificreports/

identify and quantify the presence of lentiviral particles in dried fluid  samples15 and to previous work on VNIR 
microscopic imaging for the classification of live bacterial  cells31.

Subsequently, models were built for the classification of the sample according to Gram type, using pixel spec-
tra. The accuracy for each spectral imaging modality/chemometric method/wavelength range was calculated 
through random cross validation on the calibration set (see an example in Fig. S5 for FTIR data in the region 
1350–675  cm−1), and the optimal pretreatment/number of latent variable as determined on the calibration set 
was then applied to the validation and test sets as reported in Table 3. Overall, for the models built on FTIR pixel 
spectra, model performance appears to be worse than is the case for the models built on mean spectra as shown in 
Table 2. This is due in part to the larger number of pixel spectra as compared to mean spectra, and is also related 
to the improved signal to noise ratio inherent in averaging over all pixels, which benefits the models based on 
mean spectra. However, in terms of real-life application, where there could be multiple bacterial species present 
on a surface, pixel-wise prediction would be desirable, therefore it is essential to also inspect the performance of 
pixel-wise models. It is found that the overall performance for validation, Test1 and Test2 are comparable for all 
cases, which are different from using mean spectra where in some cases the Test2 performance is considerably 
inferior to validation and Test1. This implies the use of pixel spectra improves the model’s generalization ability 
in response to unseen data. In terms of the microscopic FTIR data, the best performing model for gram type 
was found to be in the full wavenumber region 4000–675  cm−1, for a SVM model based on SNV pre-treated 
spectra, leading to an accuracy of 99.7% in the validation set and an accuracy of > 96% in the test sets. PLS-DA 

Table 4.  Model performances for discrimination between gram-positive BS and LP based on mean spectra. 
For each modality/spectral region, the model yielding maximum accuracy in the validation set is bolded.

Modelling Modality Spectral region Pre-treatment nLV

Accuracy Mean class accuracy

Validation Test Test2 Validation Test Test2

PLS-DA

FTIR

1350–675  cm−1 SNV + SG1 5 100.0 100.0 35.7 100.0 100.0 31.3

1722–910  cm−1 SNV + SG2 9 100.0 87.5 71.4 100.0 87.5 75.0

3500–2600  cm−1 MSC 10 100.0 87.5 57.1 100.0 87.5 50.0

4000–675  cm−1 SNV + SG2 7 100.0 100 57.1 100.0 87.5 50

Macroscopic

24,631–10,030  cm−1 (406–997 nm) None 6 100.0 75.0 62.5 100.0 75.0 62.5

10,515–4006  cm−1 (951–2496 nm) None 1 62.5 68.8 37.5 62.5 68.8 37.5

24,631–4006  cm−1 (406–2496 nm) SG1 5 62.5 81.3 62.5 62.5 81.3 62.5

SVM

FTIR

1350–675  cm−1 SNV 100.0 87.5 42.9 87.5 87.5 37.5

1722–910  cm−1 SNV 62.5 68.8 42.9 62.5 68.8 37.5

3500–2600  cm−1 SNV 87.5 87.5 57.1 87.5 87.5 50.0

4000–675  cm−1 SNV 25.0 56.3 42.9 25 56.3 37.5

Macroscopic

24,631–10,030  cm−1 (406–997 nm) SNV 62.5 81.3 50.0 87.5 81.3 50

10,515–4006  cm−1 (951–2496 nm) None 50.0 81.3 62.5 50 81.3 62.5

24,631–4006  cm−1 (406–2496 nm) SNV 87.5 75.0 37.5 87.5 75.0 37.5

Table 5.  Model performances for discrimination between gram-positive BS and LP based on pixel spectra. For 
each modality/spectral region, the model yielding maximum accuracy in the validation set is bolded.

Modelling Modality Spectral region Pre-treatment nLV

Accuracy Mean class accuracy

Validation Test Validation Test

PLS-DA

FTIR

1350–675  cm−1 SNV + SG2 9 91.9 93.2 39.0 91.9 93.5 34.0

1722–910  cm−1 SNV + SG2 6 85.6 88.9 43.2 85.6 88.9 37.1

3500–2600  cm−1 SNV + SG2 7 89.0 96.1 54.8 89.0 96.2 46.5

4000–675  cm−1 SNV + SG2 7 75.5 92.5 41.4 75.5 92.4 35.9

Macroscopic

24,631–10,030  cm−1 (406–997 nm) None 7 59.0 65.2 47.6 57.4 65.3 46.7

10,515–4006  cm−1 (951–2496 nm) None 1 67.4 59.9 46.3 71.2 59.3 46.1

24,631–4006  cm−1 (406–2496 nm) None 10 72.3 64.9 49.4 73.0 65.0 48.5

SVM

FTIR

1350–675  cm−1 SNV 93.0 96.4 49.4 92.6 96.5 41.9

1722–910  cm−1 SNV 88.7 92.3 55.5 88.7 92.7 47.0

3500–2600  cm−1 SNV 92.6 95.3 59.8 92.6 95.5 50.6

4000–675  cm−1 SNV 90.6 96.5 57.3 90.6 96.4 48.7

Macroscopic

24,631–10,030  cm−1 (406–997 nm) SNV 58.5 57.9 47.2 71.9 58.3 47.0

10,515–4006  cm−1 (951–2496 nm) None 64.9 62.5 52.9 67.4 62.2 52.7

24,631–4006  cm−1 (406–2496 nm) SNV 70.2 61.8 50.3 71.9 61.9 49.6
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models built on FTIR pixel spectra resulted in lower, yet still high classification accuracies, for example, a 7 latent 
variable PLS-DA model built on spectra in the 1722–910  cm−1 range with SNV followed by second derivative 
pre-treatment resulted in an accuracy of 94.2% in the validation set and > 98% in the test sets. At the pixel level, 
the classification of GP/GN bacteria was generally lower for fused VNIR/SWIR or VNIR spectral imaging data 
as compared to FTIR, with a pixel based PLS-DA models built on VNIR or fused VNIR-SWIR data producing 
classification accuracies > 84% in the validation and test sets. Confusion matrices for the optimal classification 
models for Gram type are shown in Table S5.

After model development, the best performing models, as selected by inspection of classification accuracy on 
the validation set, were applied to the pixels of all images in the test sets. Figure 4 shows the performance of the 
best prediction models built on both the mean and pixel FTIR spectra when applied to the pixels of the test set. 
In the prediction maps, pixels in blue colour are those predicted as being GP, while those in orange are the pixels 
predicted as being GN by the model. Although the models built on mean spectra appeared to perform well when 
applied to the mean spectra, they do not translate well to the pixel spectra, resulting in many misclassified pixels, 
particularly in the interior regions of the GN drops, as shown in Fig. 4. In contrast, the models built using the 
pixel spectra, which resulted in a very slightly lower accuracy in prediction i.e., 99 v’s 100%, perform much better 
at the pixel level, indicating the importance of building pixel-level models to predict at the pixel level (Tables 2 
and 3). In general, all pixels of GP samples were correctly classified, while, even for models developed on pixel 
spectra, some pixels of the GN samples were incorrectly classified, and this misclassification mainly occurred 
sporadically in the central regions of the drops.

Similarly, prediction maps were generated from the macroscopic spectral imaging data, as shown in Fig. 5. 
Here, the advantage of using pixel-based classification is even more clear than was the case for the microscopic 
FTIR data: clearly a high level of pixel misclassification is found for the model built on mean spectra, while in 
general the classification is improved when using the model built on pixel spectra. In addition, in some cases, 
the masking process did not detect pixels in the central region (this was particularly evident for some of the GN 
Test 2 samples; this highlights variation in the drying process over experimental replicates.

Classification within Gram type. Classification of Gram‑positive samples. Having explored the capabil-
ity for classification between GP and GN bacteria using the studied spectral imaging modalities, we then decided 
to investigate the considerably more challenging task of classification within gram types. Initially, the capability 
for classification between the two GP species (BS and LP) was studied. Models were built again using mean and 
pixel spectra, with the results as summarised in Tables 4 and 5. Here we can see that the task of classifying BS 
and LP was somewhat achievable using mean FTIR data, and PLS-DA models generally performed better than 
SVM models for this task. The best model performance on the validation set was found for a 6 LV PLS-DA model 
built on the 1350–675  cm−1 range after SNV followed by  1st derivative Savitzky-Golay pre-treatment, resulting 
in an accuracy of 100% in both the validation and Test 1 sets. However, this model did not perform well on the 
second test set, with a massive reduction in classification accuracy to 31.3%. In contrast, a 9 LV PLS-DA model 
built on the 1722–910  cm−1 range after SNV followed by 2nd derivative Savitzky-Golay pre-treatment, resulted 

Figure 6.  Classification maps for samples in the test set (reps 6, 9, 12, and 16) obtained from the best pixel-
level FTIR models for GP species BS/LP classification. Pixels classified as BS/LP are shown in orange or blue 
respectively. Each replicate has two drops. BS: Bacillus subtilis; LP: Lactobacillus plantarum. White scalebar 
indicates 1 mm (width) × 0.2 mm (height).
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in a classification accuracy > 70% in the validation and both test sets. By comparison, a 6 LV model built on the 
raw VNIR data resulted in an accuracy of 100% in the validation set, and considerably lower accuracies (< 63%) 
in the test sets.

As for classification models built on pixel spectra, as shown in Table 5, the FTIR microscopic data yielded 
a relatively high accuracy (93% for the validation set and 96% for Test 1) for an SVM model built on the 
1350–675  cm−1 range after SNV pre-treatment, while the best performing model using the macroscopic data 
was based on Fused VNIR SWIR, where a 10 LV PLS-DA model built on pixel spectra without pre-treatment 
led to accuracies of 72% and 65% in the validation and test sets respectively. However, the performance of these 
models on the Test 2 dataset provided unacceptably low classification accuracies (50% for FTIR and 48% for the 
fused VNIR SWIR data). The corresponding prediction maps are shown in Figs. 6, 7 and Figs. S6, S7 for pixel and 

Figure 7.  Classification maps for samples in the test set (reps 6, 9, 12, and 16) obtained from the best pixel 
level VNIR/SWIR models for GP BS/LP classification (pixels classified as BS/LP are shown in orange or blue 
respectively). Each replicate has two drops. BS: Bacillus subtilis; LP: Lactobacillus plantarum. White scalebar 
indicates 1 mm (width) × 0.25 mm (height).
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mean-level models, respectively. Clearly, the pixel level models provide prediction maps with fewer misclassified 
pixels, while the advantage of FTIR over fused VNIR SWIR is also clear, with fewer misclassified pixels in the 
FTIR prediction maps, and many misclassified pixels present in the fused VNIR SWIR prediction maps, includ-
ing interior drop regions of some of the BS samples and the majority of pixels in 2 of the LP samples. Confusion 
matrices for the optimal classification models for Gram-positive samples are shown in Table S6.

Classification of Gram‑negative samples. Following the investigation of the capability of each technique for sub-
classification of the GP species examined, the GN samples were analysed to determine whether spectral imaging 
could be used to classify them, with the results shown in Tables 6 and 7. In general, all modalities and models 
performed relatively poorly for classification within the GN group. In terms of models built on the mean spectra, 
the best model within the FTIR data was an SVM model built on spectra in the 1722–910  cm−1 region with SNV 
pre-treatment, resulting in accuracies of 92%, 58% and 43% in the validation and test sets respectively. In con-
trast, a 9 LV PLS-DA model built on macroscopic VNIR data resulted in a modest 58% accuracy in the validation 
set and 54% accuracy in Test 1, reducing to 33% in Test 2. Surprisingly, the best SVM model on the macroscopic 
systems, which resulted in a poor 50% accuracy in the validation set, led to a reasonable accuracy of 71% in Test 
1, but .reducing to 42% in Test 2. As for models built on pixel spectra, optimal performance on the validation 
set was found for an SVM built on FTIR spectra in the 3500–2600  cm−1 region, leading to accuracies of 62, 64% 
and 50% on the validation and test sets. Meanwhile, the optimal model within the macroscopic techniques was 

Table 6.  Model performances for discrimination between GN species EC, CS and PF based on mean spectra. 
For each modality/spectral region, the model yielding maximum accuracy in the validation set is bolded.

Modelling Modality Spectral region Pre-treatment nLV

Accuracy Mean class accuracy

Validation Test1 Test 2 Validation Test1 Test2

PLS-DA

FTIR

1350–675  cm−1 SNV + SG2 12 66.7 66.7 50.0 66.7 66.7 50.0

1722–910  cm−1 SNV 7 75 54.2 41.7 75 54.2 41.7

3500–2600  cm−1 SNV + SG1 5 75.0 58.3 33.3 75.0 58.3 33.3

4000–675  cm−1 SNV 7 66.7 45.8 37.5 66.7 45.8 37.5

Macroscopic

24,631–10,030  cm−1 (406–997 nm) SNV 9 58.3 54.2 33.3 58.3 54.2 33.3

10,515–4006  cm−1 (951–2496 nm) SG1 8 33.3 29.2 25 33.3 29.2 25

24,631–4006  cm−1 (406–2496 nm) SG2 8 33.3 41.7 41.7 33.3 41.7 41.7

SVM

FTIR

1350–675  cm−1 SNV 83.3 50.0 42.9 33.3 50.0 37.5

1722–910  cm−1 SNV 91.7 58.3 42.9 91.7 58.3 37.5

3500–2600  cm−1 SNV 33.3 45.8 57.1 33.3 45.8 50.0

4000–675  cm−1 SNV 83.3 54.2 42.9 83.3 54.2 37.5

Macroscopic

24,631–10,030  cm−1 (406–997 nm) SNV 50.0 70.8 42.7 41.7 70.8 42.7

10,515–4006  cm−1 (951–2496 nm) SNV 33.3 25.0 33.3 33.3 25.0 33.3

24,631–4006  cm−1 (406–2496 nm) SNV 41.7 45.8 33.3 41.7 45.8 33.3

Table 7.  Model performances for discrimination between GN species EC, CS and PF based on pixel spectra. 
For each modality/spectral region, the model yielding maximum accuracy in the validation set is bolded.

Modelling Modality Spectral region Pre-treatment nLV

Accuracy Mean class accuracy

Validation Test1 Test2 Validation Test1 Test2

PLS-DA

FTIR

1350–675  cm−1 SNV + SG2 9 38.0 52.9 46.5 37.7 53.3 47.1

1722–910  cm−1 SNV + SG1 7 53.3 52.4 38.1 53.1 52.7 38.6

3500–2600  cm−1 SNV + SG2 5 56.2 55.4 31.5 56.7 55.8 31.9

4000–675  cm−1 None 8 43.9 44.4 36.5 42.9 44.7 36.9

Macroscopic

24,631–10,030  cm−1 (406–997 nm) None 9 41.7 43.3 31.3 41.9 43.3 34.0

10,515–4006  cm−1 (951–2496 nm) None 13 34.3 28.1 37.4 31.4 28.2 31.9

24,631–4006  cm−1 (406–2496 nm) None 10 38.5 42.3 26.6 38.8 42.5 30.7

SVM

FTIR

1350–675  cm−1 SNV 0 57.4 63.3 49.4 61.0 63.5 41.9

1722–910  cm−1 SNV 0 61.5 64.4 55.5 60.4 64.6 47.0

3500–2600  cm−1 SNV 0 62.0 64.0 59.8 61.0 64.3 50.6

4000–675  cm−1 SNV 0 54.4 66.0 53.2 53.2 66.1 48.7

Macroscopic

24,631–10,030  cm−1 (406–997 nm) SNV 0 38.0 45.2 35.9 38.3 44.8 36.4

10,515–4006  cm−1 (951–2496 nm) SNV 0 32.4 32.3 34.9 31.6 32.4 33.1

24,631–4006  cm−1 (406–2496 nm) SNV 0 38.2 42.1 34.4 38.3 42.0 35.5
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found for an SVM based on fused VNIR SWIR data after SNV pre-treatment, leading to low accuracies of 38.2, 
42% and 35% on the validation and test sets respectively, although this was comparable to the SVM model built 
on the VNIR data alone (which led to accuracies of 38, 45% and 36% in the validation and test sets respectively).

Despite the poor model performance for GN subclassification, the prediction maps corresponding to the 
optimal FTIR and VNIR/SWIR models, as shown in Figs. 8, 9 and Figs. S8, S9, are worth inspection. Here again, 
the advantage of pixel based classification models is clear, and it is interesting to examine the GN pixel classifica-
tion maps based on FTIR data (Fig. 8), where it is clear that CS (middle row, blue pixels) is well classified for the 
validation and Test 1, but EC and PF cannot be clearly distinguished from each other. Meanwhile, the prediction 
maps for the models based on mean VNIR spectra (see Fig. S9) are very poor, and have the appearance of noise. 
Those based on pixel spectra (Fig. 9) are also poor; however, most of the CS samples appear to have more blue 
pixels than do the EC and PF, indicating a capability, albeit weak, of distinguishing these pixels from the EC and 
PF. Confusion matrices for the optimal classification models for Gram-negative samples are shown in Table S7.

Deep learning. Due to the relatively poor performance of both PLS-DA and SVM models on the macro-
scopic spectral data, an advanced deep learning (DL) classification approach was applied to the data. DL mod-
els often lead to improved classification results due to their capability for extracting hidden and sophisticated 
structures/features within a data matrix while also supporting the extraction of both spectral and spatial features 
of spectral imaging  data21. Herein, a hybrid approach of PCA and LSTM (PCA-LSTM) was also employed on 

Figure 8.  Classification maps for samples in the test set (reps 6, 9, 12, and 16) obtained from the best pixel-
level FTIR models for GN EC/CS/PF classification (pixels classified as EC/CS/PF are shown in orange, blue 
or magenta respectively). Each replicate has two drops. EC: Escherichia coli, CS: Cronobacter sakazakii; PF: 
Pseudomonas fluorescens. White scalebar indicates 1 mm (width) × 0.2 mm (height).
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the set of images obtained using the macroscopic VNIR and SWIR modalities. The classification accuracies for 
the developed PCA-LSTM models for the three classification problems studied in this work, i.e. classification 
between GP or GN, classification between the GP samples (BS/LP), and classification between the GN samples 
(EC/CS/PF), are summarised in Table 8. Clearly, the deep learning approach improved accuracy for the GP/GN 
classification task when applied to the validation and test set 1 data, reaching a classification accuracy of 97 and 
96% on the validation and test sets (respectively) when applied to the fused VNIR/SWIR data, comparing very 
favourably to the SVM model developed on the same dataset (which resulted in accuracies of 91 and 92% on the 
validation and test sets); however, this model performed less well than the original PLS-DA model when applied 
to the second independent test set, reaching an accuracy of 80% (as compared with 84% for the PLS-DA model). 
Pixel level prediction maps for the PCA-LSTM GP/GN model are shown in Fig. 10. A subset of pixels distributed 
along the edge of drops of the GP BS samples are incorrectly classified as GN (see top right section of Fig. 10) 
whereas misclassified pixels in the GN class are less prominent.

As for the more challenging task of discriminating between the GP species, the PCA-LSTM model built on 
fused data, with a classification accuracy of 71% when applied to Test 1, resulted in much higher classification 
accuracies than the PLS-DA model developed at the pixel level, which achieved an accuracy of 64%; however 
the PCA-LSTM model achieved similar classification accuracy of 65% when applied to Test 2. The correspond-
ing pixel-level prediction maps are shown in Fig. 11. While most pixels are correctly predicted, and there is a 
significant improvement in the BS pixel-level prediction vis-à-vis the PLS-DA model prediction maps (Fig. 7), 
substantial incorrect classification can be seen in half of the LP test set samples (see Fig. 11 bottom left). Finally, 

Figure 9.  Classification maps for samples in the test set (reps 6, 9, 12, and 16) obtained from the best pixel level 
VNIR/SWIR models for GN species EC/CS/PF classification (pixels classified as EC/CS/PF are shown in orange, 
blue or magenta respectively). Each replicate has two drops. EC: Escherichia coli, CS: Cronobacter sakazakii; PF: 
Pseudomonas fluorescens. White scalebar indicates 1 mm (width) × 0.2 mm (height).

Table 8.  Model performances for PCA-LSTM models. For each spectral region, the model yielding maximum 
accuracy in the validation set is bolded.

Classification Spectral region

Accuracy Mean class accuracy

Validation Test1 Test2 Validation Test1 Test2

G+/G−

406–997 nm 90.2 93.5 37.0 91.1 92.0 42.8

951–2496 nm 80.2 83.3 72.6 83.5 83.9 72.5

406–2496 nm 97.6 96.0 80.9 97.4 95.0 81.1

BS/LP

406–997 nm 65.9 69.2 62.3 66.3 69.3 63.1

951–2496 nm 67.2 61.9 56.2 69.1 61.6 56.1

406–2496 nm 78.6 70.7 65.7 81.8 70.4 65.5

EC/CS/PF

406–997 nm 28.2 29.2 27.9 27.7 29.3 27.5

951–2496 nm 25.4 25.7 24.1 23.5 25.9 30.1

406–2496 nm 28.4 28.6 23.1 27.9 28.8 28.4
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the PCA-LSTM approach did not improve classification accuracy between the GN species, reaching a classifica-
tion accuracy of 29% for fused data when applied to Test 1, as compared to the SVM model on the same dataset, 
which achieved an accuracy of 42%; when applied to Test 2, the PCA-LSTM model also performed worse than 
PLS-DA or SVM models, which seems to indicate overfitting of the deep learning approach due to the limited 
number of biological replicates.

Conclusions
This work compares three spectral imaging modalities i.e. microscopic FTIR, macroscopic VNIR, and SWIR, in 
reflectance, for the discrimination of multiple bacterial species deposited and dried onto stainless steel. Classifica-
tion models were developed at an object and pixel level. For the object level models built on mean spectra, two 
methods were compared for their classification accuracy, PLS-DA, and SVM. In addition to these two approaches, 
a deep learning method (PCA-LSTM) was applied to the pixel level models developed on macroscopic VNIR/
SWIR data. In terms of object-level classification, PLS-DA and SVM were comparable in terms of model per-
formance; however, SVM models generally outperformed PLS-DA when built on pixel spectra. PCA-LSTM 
models generally outperformed both SVM and PLS-DA; however,the PCA-LSTM requires hundreds of learnable 
parameters (see Fig. S2), the number of which is higher than the independent test samples but comparable to the 
number of pixels in each set and can thus lead to overfitting. Object-level models developed on mean spectra 
resulted in higher overall accuracies than those built on pixel spectra, however, they did not translate well to 
pixel-level classification, resulting in a higher proportion of misclassified pixels.

Overall, we found microscopic FTIR reflectance to be a more powerful technique than either of the mac-
roscopic methods tested. Classification modelling performance validated and tested on independent replicates 
confirmed that the FTIR technique is capable of reliably discriminating between GP and GN bacteria, with 
accuracies in the independent test sets exceeding 98% for models developed on either mean or pixel spectra. 
However, macroscopic VNIR also achieved a reasonably high level of classification accuracy of 85% for PLS-DA 
models developed on pixel spectra and applied to independent test sets.

Further sub-classification of individual bacterial species within gram types indicated a lower robustness 
capability for classification between the GP B. subtilis and L. plantarum species with FTIR, with classification 
accuracies on the independent test set not exceeding 75%. The macroscopic techniques struggled with this clas-
sification task, reaching no higher than 62% accuracy for models developed on mean fused VNIR SWIR spectra. 
Bacteria from this work were grown in fresh TSB followed by washing and drying on stainless steel, the spectral 
signatures of which may be different from that of bacteria attached to equipment surfaces or in biofilms in the 
food industry. Therefore, future work is planned to validate and update the established models to facilitate the 
application in real-life. Overall, this work highlights the importance of validating with independent test sets, espe-
cially in the case of biological samples with high variability. Furthermore, more bacterial species that are relevant 
to foodborne illness (e.g. such as Campylobacter, Salmonella and Listeria) should be included in future work.

Figure 10.  Classification maps for samples in the test set (reps 6, 9, 12, and 16) obtained from the best pixel-
level PCA-LSTM VNIR/SWIR model for GP/GN classification. Pixels classified as GP/GN are shown in blue 
or orange respectively. Each replicate has two drops. BS: Bacillus subtilis; LP: Lactobacillus plantarum; EC: 
Escherichia coli, CS: Cronobacter sakazakii; PF: Pseudomonas fluorescens. 
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Data availability
The datasets generated and analysed during the current study are not publicly available due to potential com-
mercial value but are available from the corresponding author on reasonable request.
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