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Objective: Heat shock proteins (HSPs) modulate the intensity of the inflammatory
and synthetic response to stress in wound healing. Induction of HSPs at the site of
wounds improves healing by acting as a molecular chaperone. However, the role of HSPs
may augment the inflammatory response, leading to an uncontrolled synthetic process.
Propensity for keloid development involves genetic predisposition, physical factors,
and an aggressive inflammatory response. The aim of this study is to demonstrate the
differential expressions of HSPs in keloid and normal tissues. Methods: Twenty-five
keloid and adjacent normal tissue samples were removed from 24 patients who were
between 16 and 45 years of age. Western blot, enzyme-linked immunosorbent assay, and
immunofluorescence studies were performed to examine hsp27, hsp47, hsp60, hsp70,
and hsp90 levels in keloid and normal tissue. Results: Our results demonstrated a
significant overexpression of hsp27, hsp47, and hsp70 in keloid tissue compared to that of
normal tissue. Statistical analysis using the Student t test revealed a significant difference
between these 2 groups (P < .01), while the expression of hsp60 and hsp90 were not
significantly different between the keloid and normal tissue samples. Conclusion: The
overexpression of HSPs indicates that both a proliferative (hsp70) and a matrix synthesis
(hsp47, hsp27) component are present in keloid tissue. From this point of view, it
is probable that HSPs play a pivotal role in keloid formation. Unveiling HSP-keloid
interactions may allow us to manipulate the inflammatory and proliferative phases of
wound healing with the potential to control keloid formation.

Keloid scars represent an abnormal healing response in wounded tissue, which can
create significant distress for the patient. Keloids are most frequently seen between the first
and third decades of life and have a strong correlation with darkly pigment skin, which
carries a 15- to 20-fold increased risk for keloid formation.1 A variety of skin injuries can
result in keloid formation including surgery, traumatic lacerations and abrasions, injections,
burns, and any disease causing inflammation in the skin, such as folliculitis or zoster.2-5

This benign, proliferative disorder is characterized by increased collagen content, as well
as increased collagen turnover.4-7 Because keloids routinely have an inciting traumatic or
inflammatory event leading to their formation, the dysregulation of intracellular proteins
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during the wound healing process likely plays a role in the uncontrolled wound healing
response.

The heat shock proteins (HSPs) are probably the most well-studied intracellular molec-
ular chaperones. They are ubiquitous among all living organisms, protecting cells from
physiologic stress by stabilizing protein synthesis, transport, and function. The heat shock
response was initially described more than 30 years ago in the Drosophila, where the upreg-
ulation of HSPs were noted.8 The expression of HSPs provides a protective cellular response
to the encountered stressors. Heat shock proteins also have important regulatory roles in
the control of apoptosis; and the regulation of steroid receptors, kinases, and other protein
remodeling events.9 The conditions found in wounds generate a stressful environment for
the cells involved in the repair process. The induction of HSP expression in wounded tissue
has been shown to improve healing; however, an altered expression in keloid-prone patients
may partially explain their pathogenesis.

Currently, no single therapeutic modality exists that has been shown to be superior
in the treatment of keloids, as the complex nature of wound healing and the lack of a
proper animal model hinders the development of effective treatment methods. We designed
this study with the hypothesis that the overexpression of HSPs in keloid tissue may be
responsible for prolonging the extensive inflammatory events that lead to an uncontrolled
collagen synthesis. A comparative study utilizing keloid and normal tissue from patient-
matched samples was undertaken to evaluate the expression of HSPs to elucidate their roles
during the wound healing process.

METHODS

General design

This study was approved by the institutional review board for Human Subject Research
for Baylor College of Medicine and its affiliated hospitals. Twenty-five keloid samples
from 24 patients, who had been scheduled for keloid excision, were included in the study.
Keloid tissues were removed by elliptical excision. A part of the keloid sample was sent to
pathology for examination and confirmation of the clinical diagnosis. Then the rest of the
specimen was processed for the project. Samples were dissected to separate keloid tissue
from adjacent normal tissue. After this dissection, keloid and normal tissue samples were
processed separately.

Tissue processing

The keloid and normal tissue samples were minced separately into small 1-mm pieces.
Approximately 0.5 cm3 of the minced tissue samples were placed into a 50-mL plastic
test tube containing 1 mL of radioimmunoprecipitation assay (RIPA) buffer solution. The
tissue samples were then homogenized. Each homogenate was centrifuged for 10 minutes
to retrieve the supernatant liquid. All protein extracts were normalized to a 1-mg/mL
concentration. Enzyme-linked immunosorbent assay (ELISA) and Western blot analyses
were performed to determine hsp27, hsp47, hsp60, hsp70, and hsp90 expressions in the
keloid and normal tissue samples.
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Western blotting

The gels were soaked in transfer buffer at room temperature, and proteins were elec-
trophoretically transferred to nitrocellulose membranes for 60 minutes. The blots were
blocked with 5% nonfat milk in phosphate buffered saline (PBS) solution at room temper-
ature for 60 minutes and subsequently incubated with an anti-HSP antibody (2 μg/mL) at
4˚C overnight. After 3 washes with PBS, the secondary antibody was added to the mem-
brane at room temperature for an hour. After intensive washing periods with PBS, positive
antigen-antibody binding was detected using luminal reagent. This process was preformed
for hsp27, hsp47, hsp60, hsp70, and hsp90.

Enzyme-linked immunosorbent assay

Protein extract (50 μL of 1-mg/mL solution per well) was incubated overnight at 4˚C. The
protein solution was then removed, and 200 μL per well of blocking buffer (PBS containing
1% bovine serum albumin (BSA) and 0.02% azide) was placed to block nonspecific protein
binding. The plate was washed once with PBS, and 50 μL per well primary antibody
(2 μg/mL) was added for 1 hour at room temperature. Then the plate was washed 3 times
with PBS containing 0.05% Tween-20. The secondary antibody was added using the same
dilution as the primary antibody and incubated for an hour at room temperature. At the
end of the incubation period, each plate was washed 3 times with PBS containing 0.05%
Tween-20. Illuminol solution was placed into each well, and luminescence was quantitated
using a Perkin-Elmar HTS-300 plate reader (Perkin-Elmer, San Jose, CA). This process
was performed for hsp27, hsp47, hsp60, hsp70, and hsp90.

Histology and immunofluorescence

Tissue samples were fixed with 10% Zinc Formalin and stained with Hematoxylin and
Eosin (H & E) for tissue histology. Immunofluorescence staining was performed using
Texas Red to demonstrate HSP expression on the tissue sections. Cell nuclei were labeled
using Hoechst staining.

Immunohistochemical staining of the twenty-five keloid samples and the patient-
controlled normal tissue samples were performed following the sectioning of the samples.
The tissue sections were rinsed with PBS and then incubated with PBS containing 1.5%
normal horse serum for 30 minutes. The mouse antihuman antibody to hsp27 was then
incubated for 30 minutes. The tissue sections were rinsed with PBS 3 times for 5 minutes
each, and then the Texas Red–labeled horse anti-mouse immunoglobulin G (IgG) was incu-
bated for 30 minutes. The tissue sections were rinsed with PBS 3 times for 5 minutes each.
Counterstaining of the cellular nuclei in the tissue sections was performed by incubating
the samples in Hoechst solution (1 μg/mL) for 10 minutes. The tissue sections were rinsed
with PBS 3 times for 5 minutes each. This process was repeated for hsp47, hsp60, hsp70,
and hsp90.

Immunofluorescence was observed with a Nikon E600 fluorescence microscope, and
all photographs were taken at the same exposure time. Digitized morphometric analysis
was performed to analyze the differential expression of HSPs in normal and keloid tissue
slides using ImagePro software (Media Cybernetics, Inc, Bethesda, Maryland).
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Data management

The statistical significance for the expression of each HSP was determined by comparing
the results between the keloid and normal tissue groups using the Student t test.

RESULTS

Hematoxylin and Eosin staining confirmed that all of the keloid samples had a typical keloid
pattern on histological examination. Immunofluorescence staining, utilizing Texas Red,
revealed that the keloid tissue samples were strongly bound with anti-hsp27, anti-hsp47,
and anti-hsp70 antibodies (Figs 1-3). Although the tissue expression of hsp27, hsp47, and
hsp70 was also detected in normal skin, it was significantly lower than the keloid samples.
Hsp60 and hsp90 expression in keloid tissues did not differ significantly from the normal
skin. Hoechst nuclear staining was also performed to define the cell population in the same
HSP expressing tissue regions of each sample. The number of pixels in the HSP-positive
areas was calculated, and the ratio of the HSP expression area to the total pixel count in
each image was determined. According to these calculations, we demonstrated that tissue
expressions of hsp27, hsp47, and hsp70 increased 10-, 16-, and 3-fold, respectively, in
keloid tissue when compared to normal skin.

Western blot and ELISA analyses supported our findings in immunofluorescence
microscopy by demonstrating overexpression of hsp27, hsp47, and hsp70 in keloids relative
to normal skin (P < .01). Tissue expression of hsp60 and hsp90 in keloid tissue was not
significantly higher than normal tissue as determined by Western blot (Fig 4) and ELISA
analyses (Table 1).

Table 1. The expression of the different heat shock proteins in keloid and normal
tissue samples (n=25). The two samples were compared with the Student t test

Normal Tissue (mg/mL) Keloid Scar (mg/mL) P

hsp27 12478 (SD = 3495) 18598 (SD = 2643) <.01∗

hsp47 4707 (SD = 831) 6874 (SD = 1641) <.01∗

hsp60 5015 (SD = 1158) 5316 (SD = 978) .11
hsp70 4645 (SD = 864) 6566 (SD = 1047) <.01∗

hsp90 4597 (SD = 937) 4799 (SD = 1038) .07

∗Statistically significant.

DISCUSSION

Wound repair is a complex process involving a highly regulated cascade of events requiring
coordinated interactions between cells, soluble factors, and extracellular matrix compo-
nents. Activation of the clotting cascade leads to the release of several vasoactive peptides
and chemotactic factors that stimulate inflammatory cell migration. The migrating neu-
trophils and macrophages cause the release of several growth factors, including platelet
derived growth factor, transforming growth factor-β, and insulin-like growth factor-1.10,11

Ultimately, the transition of an acute wound into granulation tissue requires an equilibrium
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between the degradation and synthesis of extracellular matrix. Disruption of the equilibrium
between these components results in an abnormal healing response. In predisposed indi-
viduals, the wound healing process shows overhealing and excessive extracellular matrix
production, which can lead to keloid formation.4,6,7

Figure 1. Hoechst Nuclear (top row) and Texas Red (bottom row) immunofluorescence staining
of keloid and normal skin tissues. Double staining was performed in each slide. Images A and C
(keloid) are the same microscopic areas in each HSP group which were viewed by different filters.
It is also true for Images B and D (normal tissue). Hoechst stain shows the cell population. Texas
Red demonstrates hsp27 expression.

Heat shock proteins are constitutively expressed in tissues under normal conditions,
where they act as molecular chaperones; thereby, providing a positive influence on cellular
protein configuration and location within the cytosol. They help new or distorted proteins
fold into their optimal functional configuration and directly participate in the translocation
of proteins from one compartment to another inside the cell. These proteins are also believed
to play a role in the presentation of proteins fragments on the cell surface to help the immune
system recognize diseased cells. More importantly, during the wound-healing process, they
modulate the intensity of the inflammatory and synthetic signal in response to stress.12

Delayed and downregulated heat shock response has been demonstrated in people with
diabetes, which may contribute to the impaired wound healing in this patient population.13

Certain HSPs are rapidly induced in the wound environment, and they play a critical
role in the overall process of wound healing.12,14-16 Hsp27, hsp47, hsp60, hsp70, and hsp90
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are known to be constitutively expressed in normal healthy skin; however, their expressions
are upregulated in stressful conditions as seen in the wound environment.12,13,17-19

Figure 2. Hoechst Nuclear (top row) and Texas Red (bottom row) immunofluorescence staining
of keloid and normal skin tissues. Double staining was performed in each slide. Images A and C
(keloid) are the same microscopic areas in each HSP group which were viewed by different filters.
It is also true for Images B and D (normal tissue). Hoechst stain shows the cell population. Texas
Red demonstrates hsp47 expression.

Hsp27 and hsp47 are closely related to collagen synthesis,20,21 and their levels of
expression are important to elucidate in keloid scars. Tissue expressions of hsp60, hsp70,
and hsp90 are closely related to inflammation and inflammatory cytokines;22-26 therefore,
they were also investigated in this study.

Heat shock protein 27

Heat shock protein 27, in several studies, has been declared as a marker of cellular differen-
tiation and is found in stratum spinosum and stratum granulosum of normal skin or in the
suprabasal cell layers of hyperproliferating epidermis.27-30 Interestingly, its expression is
decreased in basal and squamous cell carcinomas,31 which are known to present as nonheal-
ing skin ulcers. In wounded tissue, hsp27 is known to regulate endothelial cell migration
by affecting the formation and stabilization of actin microfilaments.32-34 It modulates actin
filament dynamics in response to various stimuli through mitogen-activated protein (MAP)
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kinases.35 Through this process, it also regulates fibroblast adhesion, elongation, and migra-
tion, causing increased wound contraction.36 The wound contraction process is controlled
through the extracellular signal-regulated kinases (ERK) and p38 kinases cascades,35,37

where mechanical stress increases hsp27 expression through the phosphorylation of p38.38

A recent study demonstrated that the inhibition of hsp27 phosphorylation lead to a de-
creased expression of connective tissue growth factor and collagen type I production in
keloid fibroblasts.20

Figure 3. Hoechst Nuclear (top row) and Texas Red (bottom row) immunofluorescence staining
of keloid and normal skin tissues. Double staining was performed in each slide. Images A and C
(keloid) are the same microscopic areas in each HSP group which were viewed by different filters.
It is also true for Images B and D (normal tissue). Hoechst stain shows the cell population. Texas
Red demonstrates hsp70 expression.

Heat shock protein 47

Located in the endoplasmic reticulum of collagen-producing cells, hsp47 acts as a collagen-
specific molecular chaperone during the biosynthesis and secretion of procollagen. It specif-
ically regulates collagen processing and the formation of collagen type I and III during
wound healing.21,39 The formation of the triple-helical structure is an important posttrans-
lational event in collagen synthesis.40 In the endoplasmic reticulum, hsp47 binds to the
alpha polypeptide chains to align the formation of the triple helix, then dissociates from the
procollagen molecule, and then enters into Golgi apparatus.17,19,22,41-44 Hsp47 is a good
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marker of proper wound healing as an indicator of collagen biosynthesis. Elevated levels of
hsp47 are associated with increased collagen production, which contributes to scar
formation and wound strength. Prolonged expression is associated with disease states
such as a Dupuytren’s contracture, which is known for its proliferation of fibroblasts and
collagen.45 Naitoh et al46 demonstrated upregulation of hsp47 in keloid tissues, and our re-
sults revealed similar findings regarding hsp47 expression. Other studies have demonstrated
that suppression of hsp47 decreased scar formation and wound strength.47,48 Although these
results suggest that hsp47 is one of the possible triggering factors in keloid formation, its

Figure 4. Western blot analysis demonstrating the
HSP expression in keloid and normal skin tissue.
(N = normal skin, K = keloid).
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role seems to be limited to the collagen synthesis phase and fails to explain the inflammatory
response in wound healing, which plays an important role in keloid pathogenesis.

Heat shock protein 60

Heat shock protein 60 predominantly facilitates the folding and assembly of proteins within
the mitochondrial matrix and stabilizes preexisting proteins under stressful conditions.49,50

During wound healing, hsp60 is elevated in the basal and low suprabasal cells of the
epidermis.9,51 Both endogenous52 and exogenous53 hsp60 expression during the inflam-
matory process has shown to increase epithelial cell migration; however, with aging its
response appears to diminish.54 Unfortunately, the expression of this regulatory protein
was not found to be differentially regulated in the keloid samples from our study.

Heat shock protein 70

The heat shock protein 70 family comprises an abundant and highly conserved group of
molecular chaperones. Heat shock protein 70 functions by binding to the hydrophobic side
chains of nonnative peptides in extended conformations and folds them into their native
state. Heat shock protein 70 prevents protein aggregation by shielding the hydrophobic
sites on the new synthesized, unfold polypeptides.55 In times of stress, this process inhibits
apoptosis by increasing the cells ability to deal with elevated concentrations of unfolded
or denatured proteins.49 However, decreased cellular levels of hsp70 was associated with
delayed wound healing in diabetics,56,57 hypercortisolic states,58 and the elderly people.59

In several studies, a strong correlation between wound healing and an upregulation of
hsp70 has been emphasized,60-62 which is correlated with greater tensile strength in the
healing wound.63 Positive correlations were observed between the serum levels of hsp70 and
various markers of inflammation, such as IL-6, TNF-α, and IL-10.25 Our results supported
these findings that because the healing response during keloid formation is aggressive, an
upregulation of hsp70 is expected.

Heat shock protein 90

Heat shock protein 90, an abundant cytosolic protein, acts as a molecular chaper-
one in vitro that promotes refolding of denatured proteins, holds denatured proteins
in a folding-competent state for other chaperones, and prevents protein unfolding and
aggregation.17,64-66 This study has demonstrated that hsp90 expression in tissues is not
significantly different between keloids and normal skin. Although hsp90 is present in skin,
it is not found in large amounts compared to other tissues.12 Therefore, it may not have an
important regulatory function in wound healing.

This study demonstrated that the expression of hsp27, hsp47, and hsp70 is upregulated
in keloid tissue. This overexpression of HSPs may cause an overactive response in the
healing parameters during wound healing, leading to keloid formation. However, the exact
localization of these regulatory proteins in the molecular pathway has yet to be elucidated.
The Rho kinase signaling cascade may have a regulatory role in the modulation of keloid
formation through HSPs.
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Future directions

Future studies for understanding the role of HSPs in keloid formation will look in to the
rho kinase signaling cascade. Rho is a small GTPase in the rho family, which is involved in
many aspects of cell behavior, such as motility, proliferation, size regulation, centrosome
positioning, and apoptosis.67 It has also been demonstrated that the signaling pathway
underlying the effects of Prostaglandin E2 acts through Rho activation.68 Segain’s The
experiment of Segain et al69 presented more evidence in support of this enzyme’s role with
inflammation, in which he demonstrated that a Rho kinase blockade prevents inflammation
via nuclear factor-κB (NF-κB) inhibition. Murata et al70 demonstrated that Rho kinase
inhibition has a significant therapeutic effect on established liver fibrosis in rats. These
findings demonstrate the role of the Rho kinase system in inflammation and fibrosis, which
are important processes during wound healing and more specifically keloid formation.
Recently, several studies have correlated the Rho kinase system to HSPs. Wang and Bitar71

demonstrated that inhibition of Rho A leads to the disappearance of hsp27 distribution
within the cell, which suggests that Rho A may exert its effect on cytoskeletal reorganization
via hsp27. Another study demonstrated that inhibitors of 3-hydroxy-3-methylglutaryl CoA
reductase (statins) upregulate endothelial nitric oxide synthase (eNOS) by inhibition of Rho
GTPase.72 It has also been shown that binding of hsp90 to eNOS enzyme results in its rapid
activation and nitric oxide release.72 However, to date, there is no scientific data to clearly
define the role of Rho kinases in skin wound healing and scar formation. More studies will
need to be performed before a clear connection between Rho kinase and keloid formation
can be determined.

CONCLUSION

In this study, we demonstrated the differential expression of HSPs in keloid samples and
normal tissues samples with patient-matched controls, specifically the upregulation of
hsp27, hsp47, and hsp70. This correlates with the pathophysiological development of a
keloid, which demonstrates increased collagen (hsp27, hsp47) and inflammation (hsp70).
It was surprising that the hsp60 and hsp90 expressions in the keloid tissue samples were
not significantly different than the basal levels in the normal skin. Their roles as molecular
chaperones in the mitochondria (hsp60) and cytosol (hsp90) may not be as critical for keloid
formation.

The close functional relationship between HSPs and Rho kinases may further support
our aforementioned hypothesis, which needs to be further investigated.
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