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Abstract: A reconfigurable intelligent surface (RIS) is a promising technology that can extend short-
range millimeter wave (mmWave) communications coverage. However, phase shifts (PSs) of both
mmWave transmitter (TX) and RIS antenna elements need to be optimally adjusted to effectively
cover a mmWave user. This paper proposes codebook-based phase shifters for mmWave TX and RIS
to overcome the difficulty of estimating their mmWave channel state information (CSI). Moreover, to
adjust the PSs of both, an online learning approach in the form of a multiarmed bandit (MAB) game
is suggested, where a nested two-stage stochastic MAB strategy is proposed. In the proposed strategy,
the PS vector of the mmWave TX is adjusted in the first MAB stage. Based on it, the PS vector of the
RIS is calibrated in the second stage and vice versa over the time horizon. Hence, we leverage and
implement two standard MAB algorithms, namely Thompson sampling (TS) and upper confidence
bound (UCB). Simulation results confirm the superior performance of the proposed nested two-stage
MAB strategy; in particular, the nested two-stage TS nearly matches the optimal performance.

Keywords: millimeter wave; reconfigurable intelligent surface; multiarmed bandit; Thompson
sampling; upper confidence bound

1. Introduction

A reconfigurable intelligent surface (RIS) is a promising technology to extend the
coverage of the communication systems by means of passive antenna arrays [1]. This
can be done by configuring the phase shifts (PSs) of the antenna elements to reflect the
incoming electromagnetic wave towards an intended destination. Compared with the
conventional amplify and forward (AF) and decode and forward (DF) relays, RIS has the
advantages of low cost and ease of installation as no RF chains are needed [2]. Millimeter
wave (mmWave) communication, i.e., 30~300 GHz band, is another promising technology
for fifth-generation (5G) wireless communications and beyond due to its vacant frequencies
enabling multi-Gbps transmissions [3–6]. However, due to its high operating frequencies,
mmWave is characterized by a short-range transmission with increased susceptibility to
path blockage [7]. This necessitates the use of directional antennas in the form of antenna
beamforming training (BT) [8–11].

A symbiotic relationship exists between both technologies. On one side, RIS is con-
sidered an efficient solution for mmWave challenges, where RIS can extend the mmWave
coverage and route around blockages. On the other side, mmWave can directly tune its
beam direction towards the RIS location, and the RIS reflects this beam towards the in-
tended mmWave receiver (RX) via adjusting its PSs. However, jointly optimizing the PSs
of both mmWave transmitter (TX) and RIS antenna elements is challenging due to the
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complex estimation of the massive mmWave channel state information (CSI) at both RIS
and mmWave users. Moreover, as RIS is entirely passive, it does not support any channel
estimation operations.

In this paper, for practical realization of the mmWave–RIS communication system and
to avoid the estimation of the massive mmWave CSI, antenna codebooks are suggested for
both mmWave TX and RIS. Without loss of generality, we follow the mmWave codebook
design given in [12,13], where the codebooks are generated with 90-degree phase resolution
without amplitude adjustment. We choose this codebook design due to its simplicity and
standardization by mmWave standards, i.e., Wireless Gigabit (WiGig) standard [12,13].
Furthermore, to maximize the spectral efficiency at the intended mmWave user, PS vectors
of both mmWave TX and RIS should be jointly optimized. However, this will consume a
considerable beamforming training (BT) overhead, especially when using many PS vectors
of sizeable antenna arrays. To efficiently address this problem, an online learning approach
is proposed using a single-player multiarmed bandit (MAB) game.

MAB is an online learning strategy where an agent tries to maximize its profit via
playing over the bandit’s available arms. The agent attempts to compromise between
consistently exploiting the arm, giving the maximum profit so far, or exploring new ones,
known as exploitation–exploration trade-off. Based on the reward’s distribution, MAB
games can be categorized as stochastic or adversarial MAB, where in the former the rewards
come from a pre-known distribution while in the latter the rewards come arbitrarily. A
complete survey of the MAB approach, including its categories and algorithms, can be
found in [14,15]. In the formulated MAB game, the mmWave TX will be the player, the
available space of the candidate PS vectors will be the arms of the bandit game, and the
achievable spectral efficiency at the mmWave user will be the reward. Thus, one set of joint
PS vectors can be tested at a time, which highly relaxes the BT overhead. Furthermore, a
nested two-stage MAB methodology is proposed to reduce the complexity and increase the
convergence rate of the proposed MAB game. Thus, the main contributions of this paper
can be summarized as follows:

• The RIS-assisted mmWave communication system is considered, where an optimization
problem is formulated to jointly adjust the PS vectors of both mmWave TX and RIS.

• Discrete PSs in the form of codebook design are suggested to relax the complicated CSI
estimation problem at both mmWave TX and RIS. In this design, the PSs are assumed
to be generated with 90-degree phase resolution with constant amplitude like the
codebook design used by WiGig standards [12,13].

• A stochastic single-player MAB game is constructed to jointly optimize the PS vectors
of mmWave TX and RIS. This facilitates the adjustment of both PS vectors successively
in a time-by-time fashion, which highly reduces the required BT overhead. Typically,
the only available information for a MAB player is its reward observation, without
any details about the environment. Thus, considering mmWave PSs optimization
as a MAB game eliminates the need for CSI estimation as the observed achievable
spectral efficiency, i.e., the reward of the game, is the only needed information. This
information can be easily obtained via the feedback channel between the mmWave RX
and TX. Moreover, the suggested codebook design facilitates the implementation of the
MAB game, where the PS vectors are considered as its arms. To reduce the complexity
of the arm optimization as we have two sets of arms, one belonging to the mmWave
TX and the other to the RIS, a nested two-stage MAB game is proposed in this paper.
In this approach, the PS vector of mmWave TX is adjusted in the first MAB stage, and
based on it, the PS vector of the RIS is modified in the next stage and vice versa over
the time horizon. Thus, at each trial, the player needs to only explore one set of the PS
vectors, either that belonging to the mmWave TX or that belonging to the RIS, which
reduces the computational complexity of the constructed MAB game. Two common
MAB algorithms, namely Thompson sampling (TS) [16] and upper confidence bound
(UCB) [17], are used to implement the proposed nested two-stage MAB and compare
their performances under the mmWave–RIS environment.
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• Numerical analyses are conducted to prove the effectiveness of the proposed mmWave–RIS
communication system over benchmarks against the optimal performance under
different simulation scenarios.

The rest of this paper is constructed as follows: Section 2 summarizes the related
works, and Section 3 discusses the system model and the problem formulation. Section 4
proposes the antenna codebook design and the nested two-stage MAB approach. Section 5
delivers the numerical analysis, followed by the concluding remarks in Section 6.

2. Literature Review

One way to overcome the continuously increasing capacity in the wireless communica-
tion systems is to control the channel itself to develop an intelligent radio environment be-
sides other existing solutions (diversity, high-frequency waves, etc.). RIS is a programmable
arrangement that controls the propagation of electromagnetic waves by varying its surface’s
electric and magnetic characteristics. Furthermore, RIS can sense the radio environment
by installing intelligent surfaces within the wireless system environment, which entirely
or partially controls the features of the radio channels. Hence, RIS-assisted systems can
improve the reliability and energy efficiency of wireless systems [1]. Lately, RIS has drawn
much consideration as an up-and-coming technology that can suit future wireless systems
demands [18], i.e., 6G and beyond. Hence, RIS has promoted wireless applications such as
RIS-aided wireless power transfer [19], RIS-aided mobile edge computing [20], RIS-aided
physical layer security [21,22], RIS-aided UAV communications [23,24], and mobility and
handover management for RIS-aided wireless communications in high-speed trains [25].

There are limited related research works investigating the impact of RIS deployment
in mmWave networks. A general tractable model for the coverage performance of the
RIS-assisted mmWave networks focused on RIS and base station (BS) densities using
stochastic geometry was proposed in [26]. A privacy-preserving design paradigm combin-
ing federated learning (FL) with RIS in the mmWave communication system was proposed
in [27]. A deep learning algorithm was proposed in [28] to set up a relation between CSI
and RIS configurations for better optimal communication rate performance. An efficient
cascaded channel estimation model for an RIS-assisted mmWave MIMO system, with the
wideband effect on the transmission model, was considered in [29]. A hybrid precoding
(HP) design for the RIS-aided multiuser (MU) mmWave communication systems was
investigated in [30]. Artificial intelligence (AI)-empowered mmWave communications,
especially using RIS, were studied in [31]. To the best of our knowledge, all the current
research works on RIS-assisted mmWave assume perfect CSI information. Based on it,
the PS vectors of BS and RIS are adjusted to maximize the achievable spectral efficiency
at the RX. Without this CSI information, these PS vectors cannot be optimized due to the
assumption of continuous PS. However, perfect CSI is a strong assumption violating the
RIS hypothesis of being utterly passive without any channel estimation functionality.

3. System Model

Figure 1 shows the system model of the RIS-assisted mmWave communication, where
RIS is used to connect the mmWave BS with a single-antenna mmWave user equipment
(UE) by routing around the blocker. RIS is equipped with a uniform planner array (UPA) of
M antenna elements, while mmWave BS is equipped with a uniform linear array (ULA) of
N antenna elements. An RIS controller is used to control the PSs of RIS antenna elements
based on the selected PS vector. In addition, mmWave BS and RIS are connected through a
dedicated communication link for controlling and information exchange. As a result, the
received signal at the UE can be expressed as follows:

x = hH
RUΦiHBRfjs + n, (1)
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In (1), s is the transmitted symbol, and x is the received one where E
[
ssH] = P, and

P is the TX power. (.)H means Hermitian transpose and n ∼ CN
(
0, σ2

0
)

is the complex
additive white Gaussian noise (AWGN) with zero mean and variance of σ2

0 . fj ∈ CN×1

is the analog precoder vector of size N × 1 applied at the mmWave BS, and Φi ∈ CM×M

is a diagonal matrix of size M×M containing the PSs of the RIS antenna elements in its
diagonal. {i,j: 1 ≤ i ≤ |R|, 1 ≤ j ≤ |F|} are the indices of the used Φ and f, where R
and F are their finite sets. HBR ∈ CM×N is the channel matrix of size M× N between BS
and RIS, while hRU ∈ CM×1 is the channel vector of size M× 1 between the RIS and UE.
Following the geometric channel models with limited scatterers given in [30], HBR and hRU
can be expressed as follows:

HBR =

√
MN
LBR

LBR

∑
l=1

ξlΛR

(
χ
(AoA)
l , δ

(AoA)
l

)
ΛB

(
χ
(AoD)
l

)
, (2)

hRU =

√
M

LRU

LRU

∑
l=1

νlΛR

(
θ
(AoD)
l , φ

(AoD)
l

)
, (3)

where LBR and LRU are the number of channel paths between BS and RIS and between RIS
and UE, respectively. ξl ∼ CN

(
0, σ2

ξl

)
and νl ∼ CN

(
0, σ2

νl

)
are the complex path gains

of the l-th path in LBR and LRU , respectively. ΛR

(
χ
(AoA)
l , δ

(AoA)
l

)
, and ΛB

(
χ
(AoD)
l

)
are

the response vectors of the l-th path array at the RIS and BS, where χ
(AoA)
l

(
δ
(AoA)
l

)
and

χ
(AoD)
l are the azimuth (elevation) angle of arrival (AoA) and angle of departure (AoD),

respectively. In addition, ΛR

(
θ
(AoD)
l , φ

(AoD)
l

)
is the response vector of the l-th path at the

RIS, where θ
(AoD)
l and φ

(AoD)
l are the corresponding azimuth and elevation AoD. Generally,

for any θ and φ, ΛR(θ, φ ) can be expressed as follows [30]:

ΛR(θ, φ ) =
1√
M

[
1, . . . , ej 2π

λ d(p sin (θ)+q cos (φ)), . . .
]T

, (4)

where d is the antenna spacing and λ is the carrier wavelength and 0 ≤ {p, q} ≤
(√

M− 1
)

.

By analogy, ΛB

(
χ
(AoD)
l

)
is defined as follows [30]:

ΛB(θ ) =
1√
N

[
1, . . . , ej 2π

λ dn sin (χ
(AoD)
l ), . . .

]T
, (5)

where 0 ≤ n ≤ (N − 1).
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The mmWave–RIS optimization problem aims to jointly optimize Φ and f for maxi-
mizing the achievable spectral efficiency ψ in bps/Hz at the UE. Mathematically speaking
this can be expressed as follows:

{i∗, j∗} = max
i,j

(
ψΦifj

)
, (6)

where

ψΦifj
= log2

1 +
P
(

hH
RUΦiHBRfj

)(
hH

RUΦiHBRfj

)H

σ2
0


Herein, ψΦifj

is the spectral efficiency at the UE resulting from using Φi and fj, and the
indices of the optimal values of Φ and f are represented by {i∗, j∗}. Most of the existing
literature assumes perfect CSI information; i.e., HBR and hRU are well known at both
BS and RIS. Based on that, both Φ and f can be jointly adjusted using different iterative
techniques [30–32]. However, this is a strong assumption as it is too difficult to estimate
HBR and hRU due to the use of massive antenna elements at both BS and RIS. Furthermore,
RIS should be utterly passive without any channel estimation functionality.

4. Proposed Antenna Codebook and MAB Approach

In this section, antenna codebook and MAB approach are suggested for the mmWave–
RIS system to overcome mmWave CSI estimation and jointly adjust the PS vectors of BS
and RIS.

4.1. Antenna Codebook Design

To eliminate the need for CSI estimation, discrete PSs are considered for both mmWave
BS and RIS, where they constitute the antenna codebook of both. In this context, we will
utilize the antenna codebook of WiGig standards for PS design at both BS and RIS [12,13].
This codebook-based beam switching involves fixed beam patterns and can be realized
using a predefined pool of antenna weight vectors maintained at TX and RX. Columns of a
codebook matrix specify the beamforming weight vector that corresponds to a unique beam
pattern. The TX–RX beam pattern pair that optimizes a certain cost function is searched
during beamforming according to an agreed criterion. Codebooks support a variety of
antenna array geometries and offer flexibility in terms of the number, size, and spacing
between antenna elements. For phased array antennas, the columns of the codebook matrix
specify the discrete PSs applied to individual antenna elements. The patterns may be
generated without amplitude adjustment to obtain processing power savings. As a guiding
principle, the columns of the codebook are made orthogonal to each other so that multiple
beams can be generated simultaneously without significant interference. These beams can
also be synthesized to create a wider beam. Thus, in this codebook design, the PS vectors
for K ≤ A, where A is the total number of antenna elements and K is the total number of
PS vectors (i.e., beam directions), are given by column vectors of the following matrix:

V(a, k) = jfloor{ a×mod(k+K/2,K)
K/4 }, (7)

a = 0, . . . , A− 1, k = 0, . . . , K− 1

In the case that K = M/2, the PS vector at k = 0 becomes

V(a, 0) = (−j)mod(a,K), a = 0, . . . , A− 1 (8)

Thus, the columns in V are the available space for constructing f and the diagonal of Φ.
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4.2. Proposed Nested Two-Stage MAB Approach

Jointly optimizing the values of Φ and f using the prementioned codebook design will
consume a considerable BT overhead due to the search over |R||F | different candidate
beams. Instead, an online learning approach is proposed to successively obtain the optimal
solution over the time horizon. This results in considerably reducing the BT overhead as
only one pair Φi and fj will be tested at a time. In this context, an online single-player
MAB game is constructed to address this problem efficiently. In this formulation, the BS is
considered as the player of the bandit game; the available joint values of Φi and fj are the
arms of the bandit; and the achievable spectral efficiency at the UE, i.e., ψΦifj

, is the reward.
This MAB-based optimization problem can be mathematically formulated as follows:

max
I(1),...,I(TH)

1
TH

∑
t

∑
i,j

Iit jt

(
ψΦit fjt

)
, (9)

s.t.

(1) TH ∈ (0, Z+),
(2) ∑i,j Iit jt = 1,

where TH indicates the time horizon and Z+ is the set of all positive integers. ψΦit fjt
is

the spectral efficiency resulting from using Φi and fj combination at time t, i.e., Φit and fjt .
Iit jt is a selection indicator, which is equal to 1 if the combination Φi and fj is selected at time
t and 0 otherwise. The constraint ∑i,j Iit jt = 1 means that only one Φ and f combination is
allowed to be selected at time t. To reduce the computational complexity of the constructed
MAB game, a nested two-stage MAB strategy is proposed. In the proposed algorithm, the
value of Φ is adjusted in the first MAB stage for a particular value of f. Then, based on the
adjusted value of Φ, the value of f is adjusted in the second MAB stage, and so on over the
time horizon. In this context, two common MAB algorithms are proposed to implement
the suggested nested two-stage MAB approach, namely TS and UCB algorithms.

4.2.1. Proposed Nested Two-Stage TS Algorithm

TS is based on a pure Bayesian strategy [16], where prior/posterior distributions are
considered for the arms’ rewards. The parameters of the assumed probabilistic model
are initialized for each arm at the beginning of the algorithm. Then, random samples
are taken from the constructed distributions, and the arm related to the highest random
sample is selected and played. After obtaining the rewards corresponding to the played
arm, its parameters are updated for the posterior distribution of the next round of the MAB
game. In the proposed TS algorithm, normal distributions are considered for the spectral
efficiency corresponding to each value of Φ and f at time t, i.e., ψΦit fjt

, where 1 ≤ i ≤ |R|,

1 ≤ j ≤ |F|. This means that ψΦit fjt
∼ N

(
ψΦit fjt

, σ2
Φit fjt

)
, where ψΦit fjt

and σ2
Φit fjt

are the

mean and variance of the assumed normal distribution, and ψΦit fjt
is the average value of

ψΦit fjt
. This assumption comes from the AWGN term given in (1). Algorithm 1 gives the

proposed nested two-stage TS algorithm, where the inputs to the algorithm are the spaces
of codebooks R. and F and the outputs are the adjusted values of Φi∗ and fj∗ . At the
beginning of the algorithm, i.e., t = 1 the average spectral efficiencies ψΦit fjt

, the variances

σ2
Φit fjt

, and the number of selections ZΦit fjt
corresponding to all values of Φi and fj. are

set to 0, 1, and 0, respectively. In addition, a PS vector f, i.e., fj∗t
, is initialized by picking it

uniformly from its corresponding PS codebook. For 2 ≤ t ≤ TH , where TH is the total time
horizon, nested two-stage TS algorithms are performed as follows:
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Algorithm 1. Nested Two-Stage TS Algorithm

Output: Φi∗ and fj∗

Input: R, F
Initialization: At t = 1,

1. ψΦit fjt
= 0, σ2

Φit fjt
= 1, ZΦit fjt

= 0, 1 ≤ i ≤ |R|, 1 ≤ j ≤ |F|
2. Select a value of fj∗t

at random from its finite set F
For t = 2, . . . ., TH
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• Sample 𝜏𝚽౪షభ𝒇ೕ౪షభ∗ , 1 ≤ 𝑖 ≤ |ℛ| from normal distributions 𝒩 ቀ𝜓ത𝚽౪షభ𝒇ೕ౪షభ∗ , 𝜎𝚽౪షభ𝒇ೕ౪షభ∗ଶ ቁ  

• Evaluate 𝑖୲∗, and select 𝚽౪∗  𝑖୲∗ = arg max ቀ𝜏𝚽౪షభ𝒇ೕ౪షభ∗ ቁ      
• Obtain 𝜓𝚽౪∗𝒇ೕ౪షభ∗  

2. Update 𝒁𝚽𝒊𝐭∗𝒇𝒋𝐭ష𝟏∗ , 𝝍ഥ 𝚽𝒊𝐭∗𝒇𝒋𝐭ష𝟏∗ , and 𝝈𝚽𝒊𝐭∗𝒇𝒋𝐭ష𝟏∗𝟐  

• 𝑍𝚽౪∗𝒇ೕ౪షభ∗ = 𝑍𝚽౪షభ∗ 𝒇ೕ౪షభ∗ + 1 

• 𝜓ത𝚽౪∗𝒇ೕ౪షభ∗ = ଵ𝚽౪∗𝒇ೕ౪షభ∗ ∑ 𝜓𝚽ೝ∗ 𝒇ೕ౪షభ∗௭𝚽౪∗𝒇ೕ౪షభ∗ୀଵ  

• 𝜎𝚽౪∗𝒇ೕ౪షభ∗ଶ = ଵ𝚽౪∗𝒇ೕ౪షభ∗ ାଵ 

 Second Stage TS 

3. Based on the value of 𝚽𝒊𝐭∗, select a value of 𝒇𝒋𝐭∗ and obtain its corresponding reward 𝝍𝚽𝒊𝐭∗𝒇𝒋𝐭∗  

• Sample 𝜏𝚽౪∗𝒇ౠ౪షభ , 1 ≤ 𝑗 ≤ |ℱ| from normal distributions 𝒩 ቀ𝜓ത𝚽౪∗𝒇ౠ౪షభ , 𝜎𝚽౪∗𝒇ౠ౪షభଶ ቁ  

• Evaluate 𝑗୲∗, and select 𝒇౪∗ 𝑗୲∗ = arg max୨ ቀ𝜏𝚽౪∗𝒇ౠ౪షభ ቁ      
• Obtain 𝜓𝚽౪∗𝒇ೕ౪∗  

4. Update 𝒁𝚽𝒊𝐭∗𝒇𝒋𝐭∗ , 𝝍ഥ 𝚽𝒊𝐭∗𝒇𝒋𝐭∗ , and 𝝈𝚽𝒊𝐭∗𝒇𝒋𝐭∗𝟐  

• 𝑍𝚽౪∗𝒇ೕ౪∗ = 𝑍𝚽౪∗𝒇ೕ౪∗ + 1 

• 𝜓ത𝚽౪∗𝒇ೕ౪∗ = ଵ𝚽౪∗𝒇ೕ౪∗ ∑ 𝜓𝚽౪∗𝒇ೕ౪∗
௭𝚽౪∗𝒇ೕ౪∗ୀଵ  

• 𝜎𝚽౪∗𝒇ೕ౪∗ଶ = ଵ𝚽౪∗𝒇ೕ౪∗ ାଵ 

END For 

In the first stage and based on the value of 𝒇షభ∗ , a value of 𝚽∗ is selected and its 
corresponding reward 𝜓𝚽∗𝒇ೕషభ∗  is obtained. This is done by sampling the prior distribu-

tions of 𝜓𝚽షభ𝒇ೕషభ∗ , i.e., 𝜏𝚽షభ𝒇ೕషభ∗ ~ 𝒩 ൬𝜓ത𝚽షభ𝒇ೕషభ∗ , 𝜎𝚽షభ𝒇ೕషభ∗ଶ ൰ , 1 ≤ 𝑖 ≤ |ℛ|. Then, the in-

dex 𝑖௧∗ corresponding to the maximum 𝜏𝚽షభ𝒇ೕషభ∗  is selected as follows: 𝑖௧∗ = arg max ቀ𝜏𝚽షభ𝒇ೕషభ∗ ቁ ,   (10)

END For

In the first stage and based on the value of fj∗t−1
, a value of Φi∗t is selected and its

corresponding reward ψΦi∗t
fj∗t−1

is obtained. This is done by sampling the prior distributions

of ψΦit−1
fj∗t−1

, i.e., τΦit−1
fj∗t−1
∼ N

(
ψΦit−1

fj∗t−1
, σ2

Φit−1
fj∗t−1

)
, 1 ≤ i ≤ |R|. Then, the index

i∗t corresponding to the maximum τΦit−1
fj∗t−1

is selected as follows:

i∗t = arg max
i

(
τΦit−1

fj∗t−1

)
, (10)

Next, the value of Φ matrix corresponding to this index, i.e., Φi∗t , is obtained. Af-
terward, its corresponding reward ψΦi∗t

fj∗t
is achieved, and its model parameters ZΦi∗t

fj∗t−1
,
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ψΦi∗t
fj∗t−1

, and σ2
Φi∗t

fj∗t−1
are updated for its posterior distribution as given in Algorithm 1,

where the methodology presented in [33] is used for updating ψΦi∗t
fj∗t−1

and σ2
Φi∗t

fj∗t−1
.

In the second stage TS and based on Φi∗t coming from the first stage, a value of fj∗t
is adjusted, and its corresponding reward ψΦi∗t

fj∗t
is obtained. In this procedure, random

samples τΦi∗t
fjt−1

∼ N
(

ψΦi∗t
fjt−1

, σ2
Φi∗t

fjt−1

)
, 1 ≤ j ≤ |F|, are taken, and the index j∗t

corresponding to the maximum sample value is chosen as follows:

j∗t = arg max
j

(
τΦi∗t

fjt−1

)
, (11)

Again, the value of f matrix corresponding to this index, i.e., fj∗t
, is obtained. Then, its

corresponding reward ψΦi∗t
fj∗t

is achieved, and its model parameters are updated for the

posterior distribution of the next round of the MAB game as given in Algorithm 1.

4.2.2. Proposed Nested Two-Stage UCB Algorithm

UCB is based on increasing the confidence of the chosen arm by decreasing its uncer-
tainty. This is done by exploiting the arm with the maximum achievable average reward so
far while exploring the less selected ones. Algorithm 2 summarizes the proposed nested
two-stage UCB algorithm. Like the TS algorithm, the inputs to the algorithm are the spaces
of codebooksR and F , and the outputs are the adjusted values of Φi∗ and fj∗ . For initializa-
tion, at t = 1, the average spectral efficiencies ψΦit fjt

corresponding to all values of Φi. and

fj are set to uniform random values in the range of [0, 1], where 1 ≤ i ≤ |R|, 1 ≤ j ≤ |F|,
and their corresponding numbers of selections, i.e., ZΦit fjt

, are set to 1. Moreover, a PS
vector f, i.e., fj∗t

, is picked uniformly from its corresponding PS codebook, i.e., F . For
2 ≤ t ≤ TH , nested two-stage UCB algorithms are conducted as follows:

In the first UCB stage, based on the value of fj∗t−1
and index of the Φ matrix, i∗t is

selected based on the UCB policy as follows [17]:

i∗t = arg max
i

ψΦit−1
fj∗t−1

+

√√√√ 2ln(t)
ZΦit−1

fj∗t−1

 (12)

where ψΦit−1
fj∗t−1

represents the exploitation term, while the term
√

2ln(t)
ZΦit−1

fj∗t−1

represents

the exploration term of the UCB policy. After selecting Φi∗t , its corresponding reward
ψΦi∗t

fj∗t−1
is obtained and its related parameters ZΦi∗t

fj∗t−1
and ψΦi∗t

fj∗t−1
are updated as given

in Algorithm 2. Based on the selected value of Φi∗t , the value of fj∗t
is adjusted in a nested

manner via the second stage UCB as given in Algorithm 2. Then, its corresponding reward
ψΦi∗t

fj∗t
is obtained and its related parameters ZΦi∗t

fj∗t
and ψΦi∗t

fj∗t
are updated as given in

Algorithm 2.
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Algorithm 2. Nested Two-Stage UCB Algorithm

Output: Φi∗ and fj∗

Input: R, F
Initialization: At t = 1

1. Set ψΦit fjt
based on uniform random in the range [0, 1], and ZΦit fjt

= 1, 1 ≤ i ≤ |R|,
1 ≤ j ≤ |F|

2. Select a value of fj∗t
at random

For t = 2, . . . ., TH

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18 
 

 

Algorithm 2. Nested Two-Stage UCB Algorithm  

Output: 𝚽∗ and 𝒇∗ 
Input: ℛ, ℱ  

Initialization: At 𝑡 =1 

1. Set 𝜓ത𝚽𝒇ೕ  based on uniform random in the range [0,1], and 𝑍𝚽𝒇ೕ  = 1, 1 ≤ 𝑖 ≤ |ℛ|, 1 ≤ 𝑗 ≤ |ℱ| 
2. Select a value of 𝒇౪∗ at random  

For 𝑡 = 2, … . , 𝑇ு  

 First Stage UCB 

1. Based on the value of 𝒇౪షభ∗ , select a value of 𝚽౪∗ and obtain its corresponding reward 𝜓𝚽౪∗𝒇ೕ౪షభ∗  

• 𝑖୲∗ = arg max୧ ቌ𝜓ത𝚽౪షభ𝒇ೕ౪షభ∗ + ඨ ଶ (௧)𝚽౪షభ𝒇ೕ౪షభ∗ ቍ
   

 

• Obtain 𝜓𝚽౪∗𝒇ೕ౪షభ∗  

2. Update 𝑍𝚽౪∗𝒇ೕ౪షభ∗  and 𝜓ത𝚽౪∗𝒇ೕ౪షభ∗  

• 𝑍𝚽౪∗𝒇ೕ౪షభ∗ = 𝑍𝚽౪షభ∗ 𝒇ೕ౪షభ∗ + 1 

• 𝜓ത𝚽౪∗𝒇ೕ౪షభ∗ = ଵ𝚽౪∗𝒇ೕ౪షభ∗ ∑ 𝜓𝚽ೝ∗ 𝒇ೕ౪షభ∗௭𝚽౪∗𝒇ೕ౪షభ∗ୀଵ  

 Second Stage UCB 

3. Based on the value of 𝚽౪∗, select a value of 𝒇౪∗ and obtain its corresponding reward 𝜓𝚽౪∗𝒇ೕ౪∗  

• 𝑗୲∗ = arg max୨ ቌ𝜓ത𝚽౪∗𝒇ౠ౪షభ + ඨ ଶ (௧)𝚽౪∗𝒇ౠ౪షభቍ
   

 

• Obtain 𝜓𝚽౪∗𝒇ೕ౪∗  

4. Update 𝑍𝚽౪∗𝒇ೕ౪∗  and 𝜓ത𝚽౪∗𝒇ೕ౪∗  

• 𝑍𝚽౪∗𝒇ೕ౪∗ = 𝑍𝚽౪∗𝒇ೕ౪షభ∗ + 1 

• 𝜓ത𝚽౪∗𝒇ೕ౪∗ = ଵ𝚽౪∗𝒇ೕ౪∗ ∑ 𝜓𝚽∗𝒇ೕೝ∗
𝚽౪∗𝒇ೕ౪∗ୀଵ  

END For 

5. Numerical Analysis  
In this section, Monto Carlo (MC) numerical simulations are conducted to prove the 

effectiveness of the proposed nested two-stage MAB algorithms compared to the random 
PS selection, where values of 𝚽 and 𝒇 are picked uniformly, against the optimal perfor-
mance. The optimal performance is obtained by testing all available candidate pairs of 𝚽 
and 𝒇 and selecting the best one maximizing 𝜓.  Table 1 summarizes the utilized simula-
tion parameters unless otherwise stated. In addition, it is assumed that the line-of-sight 
(LoS) path is 10 dB higher than the other paths [34]. 

Figure 2 shows the spectral efficiency performances of the compared schemes i.e., 
nested two-stage TS, UCB, and random at no blockage against the used number of PS 
vectors (K), where K = M = N. Generally speaking, as the number of K increases, the spec-
tral efficiencies of all schemes increase due to the increase in the received power affected 
by the increment in the beamforming gain. Although the proposed nested two-stage MAB 
algorithms do not need CSI estimation and only use the observed spectral efficiency, they 

END For

5. Numerical Analysis

In this section, Monto Carlo (MC) numerical simulations are conducted to prove the
effectiveness of the proposed nested two-stage MAB algorithms compared to the random PS
selection, where values of Φ and f are picked uniformly, against the optimal performance.
The optimal performance is obtained by testing all available candidate pairs of Φ and
f and selecting the best one maximizing ψ. Table 1 summarizes the utilized simulation
parameters unless otherwise stated. In addition, it is assumed that the line-of-sight (LoS)
path is 10 dB higher than the other paths [34].

Table 1. Simulation parameters.

Parameter Value

P 10 dBm [2]
BW 2.16 GHz [2]
LBR 5
LRU 5
TH 1000
d λ/2

σ2
0 (dBm) −174 + 10log10(BW) + 10 [4]
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Figure 2 shows the spectral efficiency performances of the compared schemes i.e.,
nested two-stage TS, UCB, and random at no blockage against the used number of PS
vectors (K), where K = M = N. Generally speaking, as the number of K increases, the spectral
efficiencies of all schemes increase due to the increase in the received power affected by
the increment in the beamforming gain. Although the proposed nested two-stage MAB
algorithms do not need CSI estimation and only use the observed spectral efficiency, they
have good performances against the optimal performance compared to random PS selection.
Moreover, the proposed nested two-stage TS algorithm outperforms all other compared
schemes due to its Bayesian policy, which constructs prior/posterior distributions to the
achievable spectral efficiency. As the assumed normal distribution highly matches the
actual distribution of the attainable spectral efficiency, the proposed nested two-stage TS
outperforms UCB-based one. Random PS selection shows the worst performance because
it selects the PS vectors arbitrarily without any optimization objective. At K = 4, about
98.5%, 97%, and 85.3% of the optimal performance are obtained by the proposed nested
two-stage TS, UCB, and random selection, respectively. These values become 94.3%, 86%,
and 71.7% when K = 64, where the number of alternative beam pairs is highly increased.
As TS is a Bayesian-based approach, its performance is still near the optimal one, while the
performance of the other two schemes is highly degraded compared to the case of K = 4.
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Figure 2. Spectral efficiency against the used number of beams when M = N = K at zero blockage.

Figure 3 shows the spectral efficiency of the schemes involved in the comparison
at 80% blockage, where it simulates a harsh blockage environment. In this context, four
paths out of the five channel paths between BS and RIS and between RIS and UE undergo
blockage, including the LoS path. Compared to Figure 2, more than 50% decrease in spectral
efficiency occurs in this harsh blockage environment compared to the zero blockage case.
This is due to the low power received from the only surviving path out of the five paths.
Despite this harsh blockage environment, the proposed two-stage MAB algorithms still
show good spectral efficiency performance against the optimal one. Yet, the proposed
two-stage TS outperforms other schemes due to the aforementioned reason. At K = 4,
about 98.6%, 95.7%, and 72% of the optimal performance are obtained by the proposed
nested two-stage TS, UCB, and random selection, respectively. These values become 95.35%,
84.4%, and 58.3% at K = 64, respectively. By comparing these ratios with those given in
the previous paragraph and shown in Figure 2, it is clearly shown that the performance of
random PS selection is highly degraded compared to the optimal performance due to the
blockage effect. However, the proposed two-stage MAB algorithms almost have the same
ratios of the optimal performance even in this harsh blockage environment.
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Figure 3. Spectral efficiency against the used number of PS vectors when M = N = K at 80% blockage.

This means that the proposed algorithm can efficiently withstand the blockage effect
due to its hypothesis of maximizing the achievable spectral efficiency irrespective of the
environmental conditions.

Figures 4 and 5 show the spectral efficiency performance of the compared schemes
against the number of PS vectors (K) while M and N are different and fixed, where N = 36
and M = 64, at zero and 80% blockage, respectively. Again, the spectral efficiencies of all
compared schemes are decreased under harsh blockage effect. By comparing Figure 4 with
Figures 2 and 5 with Figure 3, the spectral efficiencies of K = 4, 16, and 36 in Figures 4 and 5
are slightly higher than those represented in Figures 2 and 3, respectively. However,
the spectral efficiencies of K = 49 and 64 in Figures 4 and 5 are less than those given in
Figures 2 and 3 due to the use of a lower number of antenna elements at both BS and
RIS. Typically, the half-power beamwidth is inversely proportional to the used number of
antenna elements. Thus, increasing the number of antenna elements for generating the
same codebook pattern, i.e., the same number of beams, has two opposite effects. On one
hand, it generates narrower beams with larger antenna gains [12,13], and on the other hand,
it is more vulnerable to phase shift errors. This increases the gain loss at the maximum
gain [12] due to the increase in the interbeam null angles [13]. This is the reason why
spectral efficiency is not highly increased when increasing the used number of antenna
elements for generating the same number of PS vectors. Interested readers can check the
detailed analysis given in [12,13] in this regard. Still, the proposed nested two-stage TS has
the best performance that nearly matches the optimal performance due to the prementioned
reasoning. At K = 4 and zero (80%) blockage, about 99% (97.4%), 97.5% (92%), and 83.5%
(63.6%) of the optimal performance are obtained by the proposed nested two-stage TS,
UCB, and random selection, respectively. These values become 97% (95%), 87% (87%), and
74.5% (61%) when K = 64, respectively. Again, the random selection is highly affected by
the blockage effect more than the proposed nested two-stage MAB schemes.

Figures 6 and 7 show the spectral efficiency against the TX signal-to-noise ratio

(SNR), i.e., 10 log10

(
P
σ2

0

)
, by changing the value of TX power P at zero blockage, when

K = M = N = 16, and when N = 36, M = 64, and K = 16. Generally, as the value of P is in-
creased, the spectral efficiency of all schemes is linearly increased. In addition, the spectral
efficiencies in the case of N = 36 and M = 64 are slightly higher than those in the case when
N = 16 and M = 16 due to the increase in beamforming gain resulting from increasing
the number of antenna elements. From Figures 6 and 7 and at TX SNR = 10 dB, about
93.8% (94%), 84.9% (86.9), and 51% (49.7%) of the optimal performance are obtained by
the proposed nested two-stage TS, UCB, and random selection, respectively. These values
become 96.5% (96%), 94.2% (94.16%), and 81.4% (78.8%) at SNR = 100 dB, respectively.
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Figure 4. Spectral efficiency against the used number of PS vectors when N = 36 and M = 64 at
zero blockage.
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Figure 5. Spectral efficiency against the used number of PS vectors when N = 36 and M = 64 at
80% blockage.
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Figure 6. Spectral efficiency against TX SNR when M = N = K = 16 at zero blockage.
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Figure 7. Spectral efficiency against TX SNR when N = 36, M = 64, and K = 16 at zero blockage.

Figures 8 and 9 show the spectral efficiency convergence rate of the proposed nested
two-stage MAB schemes against the time horizon t using K = N = M = 16 at zero and
moderate blockage effect with blockage probability of 50%, respectively. Due to the effect
of blockage, the spectral efficiency performance given in Figure 9 is lower than that repre-
sented in Figure 8. From these figures, it can be seen that the proposed nested two-stage TS
has a faster convergence rate than the UCB-based one due to its Bayesian strategy. Interest-
ingly, the proposed nested two-stage UCB has better convergence than the TS-based one at
low values of t, where the TS algorithm starts to build up the prior/posterior distributions
of the achievable reward. As these distributions are constructed, the TS converges faster
than UCB, as shown by these figures. At t = 400, about 99% (99%) and 95.12% (94.8%)
of the optimal performance are obtained using the proposed nested two-stage TS and
UCB-based one at zero (50%) blockage, respectively.
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Figures 10 and 11 show the spectral efficiency convergence rate using N = 36, M = 64, and
K = 16 at zero and 50% blockage, respectively. By comparing Figure 8 with Figures 9 and 10
with Figure 11, it is interesting to observe that the spectral efficiency and the convergence
rate performances represented by Figures 10 and 11 are better than those represented
by Figures 8 and 9, respectively. This comes from the increased number of antenna el-
ements. At t = 400, about 99.4% (99.1%) and 95.5% (95%) of the optimal performance
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are obtained using the proposed nested two-stage TS and UCB-based one at zero (50%)
blockage, respectively.
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The suggested scheme of the perfect CSI-based approach presented in [30] reaches
about 87~88% of the upper bound performance in the highest SNR scenario. This comes
while assuming perfect mmWave CSI information, which is impractical in real scenarios.
However, the proposed nested two-stage TS reaches about 94~99% of the optimal perfor-
mance in the different simulation scenarios. Figure 12 shows the spectral efficiency ratio of
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the proposed nested two-stage TS, nested two-stage UCB, and the scheme proposed in [30]
compared to the random performance against TX SNR. For fair comparisons, we used the
same simulation parameters given in [30], i.e., N = 48, M = 100, and K = 6, and the same TX
SNR values. As shown by this figure, the spectral efficiency ratio of the proposed nested
two-stage TS has the best performance. In addition, both MAB schemes outperform the
scheme presented in [30]. At SNR = −25 dB, the spectral efficiency ratios of the proposed
nested two-stage TS, nested two-stage UCB, and the scheme given in [30] become 5.5, 4.8,
and 4, respectively. This means that about 37.5% and 20% improvements in spectral effi-
ciency performance are obtained by the proposed MAB schemes over the scheme presented
in [30]. This comes without any need for knowing the CSI of both mmWave BS and RIS.
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Figure 12. Spectral efficiency comparisons between the proposed nested two-stage MAB schemes
and the scheme proposed in [30].

The complexity analysis clearly shows that the proposed nested two-stage MAB
scheme has low BT and computational complexities compared to the optimal solution. This
is because the optimal strategy explores all available {R,F} pairs, which obtains its BT and
computational complexities of orderO(|R||F |). However, in the proposed MAB approach,
the sets R and F are explored alternatively at every time t. Thus, the BT complexity
of the proposed schemes is of order O(1). Regarding the computational complexities,
for the proposed nested two-stage TS, the primary source of computational complexity
comes from sampling a 1-dimensional Gaussian random variable and updating its related
parameters with the complexity of O(|R|+ |F |+ 1). In addition, the computational
complexity of the proposed nested two-stage UCB comes from selecting the optimal PS and
updating its corresponding parameters with the same computational complexity order of
O(|R|+ |F |+ 1). For example, when |F | = 36 and |R| = 64, the BT and computational
complexities of the optimal solution are of order O(2304) while the BT and computational
complexities of the proposed nested two-stage MAB approach will be O(1) and O(101),
respectively. This means that about 99.96% and 96% reductions in BT and computational
complexities are obtained, respectively. Consequently, the proposed nested two-stage MAB
approach has a near-optimal performance with much lower complexity.

6. Conclusions

In this paper, we have explored RIS-assisted mmWave communications. To avoid
estimating the massive mmWave CSI at both RIS and UE, we proposed using antenna
codebooks. Moreover, the problem of jointly optimizing the PS vectors at both mmWave
BS and RIS was formulated as a MAB game, which contributes to relaxing the required
BT overhead. In this context, a nested two-stage MAB strategy was suggested, and nested
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two-stage TS and UCB algorithms were proposed to implement the proposed strategy. Sim-
ulation analyses confirm the superior performance of the proposed two-stage TS compared
to the UCB-based one. Moreover, the proposed nested two-stage MAB schemes outperform
random selection and other benchmarks with a high convergence rate and low BT and
computational complexities.
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