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In aerobic cell cultivation processes, dissolved oxygen is a key process parameter, and

an optimal oxygen supply has to be ensured for proper process performance. To achieve

optimal growth and/or product formation, the rate of oxygen transfer has to be in right

balance with the consumption by cells. In this study, a 15 L mammalian cell culture

bioreactor was characterized with respect to kLa under varying process conditions. The

resulting dynamic kLa description combined with functions for the calculation of oxygen

concentrations under prevailing process conditions led to an easy-to-apply model, that

allows real-time calculation of the oxygen uptake rate (OUR) throughout the bioprocess

without off-gas analyzers. Subsequently, the established OUR soft-sensor was applied in

a series of 13 CHO fed-batch cultivations. The OUR was found to be directly associated

with the amount of viable biomass in the system, and deploying of cell volumes instead

of cell counts led to higher correlations. A two-segment linear model predicted the

viable biomass in the system sufficiently. The segmented model was necessary due to a

metabolic transition in which the specific consumption of oxygen changed. The aspartate

to glutamate ratio was identified as an indicator of this metabolic shift. The detection of

such transitions is enabled by a combination of the presented dynamic OUR method

with another state-of-the-art viable biomass soft-sensor. In conclusion, this hyphenated

technique is a robust and powerful tool for advanced bioprocess monitoring and control

based exclusively on bioreactor characteristics.

Keywords: kLa, oxygen transfer rate, oxygen uptake rate, biomass prediction, metabolic states, quality by control,

CHO

INTRODUCTION

The primary role of a bioreactor is to provide a suitable environment for cell growth and product
formation. Stirred tank reactors (STRs) are currently the most widely used bioreactor type to
cultivate aerobic organisms in suspension culture or on carriers. In aerobic upstream bioprocesses,
the oxygen uptake rate (OUR) is crucial for cellular activity and a good indicator of changes in
the metabolic state of the culture (Deshpande and Heinzle, 2004; Wahrheit et al., 2015), which
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can be induced by changing substrate availabilities (Toye
et al., 2010; Niklas et al., 2011; Young, 2013; Zhang et al.,
2016). Thus, in the context of implementing Quality by
Design and Process Analytical Technology (QbD/PAT) in
bioprocesses, the OUR could be an informative process indicator
(Sommeregger et al., 2017).

According to the QbD/PAT concept real-time measurements
of meaningful process variables are a necessity. Soft(ware)-
sensors can provide information about the actual state and
quality of the process. Thereby on-line process variables are
measured by associated sensors (hardware) using an estimation
algorithm (software) to deliver estimated unmeasured bioprocess
variables (Luttmann et al., 2012).

Before being consumed by cells, oxygen disperses through
the culture medium in a series of transport resistances from
gas bubbles to each individual cell. The highest resistance
occurs during the transport through the liquid film surrounding
the gas bubbles, which is described by the volumetric mass
transfer coefficient (kLa). This coefficient and the concentration
gradient (c∗L-cO2) in the liquid phase defines the gas-liquid
transfer rate and the oxygen transfer rate (OTR), respectively
(Villadsen et al., 2011).

Precise OTR calculations during a bioprocess are challenging,
because different phenomena occur simultaneously. Process
conditions (e.g., pressure, temperature, mixing, and gas-flow)
in a previously chosen operational mode (e.g., batch or fed-
batch cultivation) together with physicochemical properties (e.g.,
media composition or viscosity) may change over time and
influence the overall OTR (Garcia-ochoa and Gomez, 2009).
Temperature and pressure greatly impact the maximum oxygen
solubility in aqueous solutions, and therefore mainly influence
the concentration gradient. Regarding the physicochemical
properties of the medium, the amount of electrolytes (salts,
ions) in so-called non-coalescing fluids can have beneficial
effects on kLa, due to suppressing bubble coalescence (Villadsen
et al., 2011). Other additives, such as Pluronic F68, which
is typically added for shear protection, have been shown to
reduce bubble size at high concentrations (Sieblist et al., 2013).
Moreover, certain antifoam agents, such as silicone oils, can act
as oxygen vectors, resulting in a significant increase in oxygen
transfer and the oxygen transfer capacity in STRs (Quijano
et al., 2009). In contrast, in bubble column reactors, kLa
values decrease with the addition of hydrophilic or hydrophobic
surface active compounds (Mcclure et al., 2015). In addition,
increasing biomass particle size and by-product formation
can reduce kLa values due to enhanced bubble coalescence
(Vandu and Krishna, 2004).

Abbreviations: Ala, Alanine; Asn, Asparagine; Asp, Aspartate; ATP, Adenosine
tri phosphate; BAC, Bacterial artificial chromosome; CHO, Chinese hamster
ovary; CFD, Computational fluid dynamics; DoE, Design of experiments;
FMOC, Fluorenylmethoxycarbonyl; Gln, Glutamine; Glu, Glutamate; HPLC,
High performance liquid chromatography; IgG, Immunoglobulin G; mAb,
Monoclonal antibody; NADPH, Nicotinamide adenine dinucleotide phosphate;
OPA, o-Phthalaldehyde; PA, Process Air; PAT, Process Analytical Technology;
PCV, Packed Cell Volume; PID, Proportional Integral Derivative; QbD, Quality
by Design; RO, Reverse Osmosis; STR, Stirred Tank Reactor; TCA, Tricarboxylic
acid cycle.

In aerobic bioprocesses the dissolved oxygen concentration
should not drop below a certain threshold. Therefore, a
PID control circuit is usually used to counteract shortages.
The output parameters of such a controller can be different
among processes but usually includes stirrer speed, gas-flow
or composition, pressure, or combinations thereof. By utilizing
design of experiments (DoE), the influence of those parameters
on kLa and c∗L can be determined within the operational process
space. Consequently, OTR can be estimated at each time point
during the process.

Though the OTR and kLa in particular are decisive parameters
for the design of bioreactors, the OUR calculated in real-time
provides information about the cells being cultured and the
overall process performance. The OUR is a good indicator of
cellular activity that closely correlates with the viable biomass.
Within a bioprocess, the OUR is usually calculated via oxygen
mass balancing. Therefore, the use of gas-analyzers is required
to determine the oxygen and CO2 concentration in the off-
gas stream, and these compounds can be quantified using flow
rates. Another approach is to use the combination of OTR
and the time-progression of the actual dissolved oxygen (DO)
concentration (Lovrecz and Gray, 1994; Eyer et al., 1995).
However, the published methods usually do not correct for
changes in either kLa or c∗L due to process dynamics, or rely on
empirical kLa calculations based on water experiments.

In this study, a soft-sensor was established for real-time
estimation of the OTR and respectively, OUR. For this purpose,
a 15 L bioreactor was thoroughly characterized to develop a
dynamicmodel for kLa that can account for changing operational
(temperature, PID controller output) and physicochemical
properties of the medium (oxygen transfer and solubility). The
model was applied, to a wide-spread dataset of 13 recombinant
Chinese hamster ovary (CHO) cell culture fed-batch processes
producing a monoclonal antibody (mAb) to elucidate the
association of OUR with biomass and the metabolic states
throughout the process. In summary, this study presents an
estimation of the OUR based on standard measurements (PA
and CO2 inlet gas flow-rates, temperature, volume, pressure)
and precise system characterization that takes into account the
dynamic kLa throughout progression of the process. This OUR
soft-sensor was then used for biomass prediction. We also show
an advanced technique for monitoring metabolic transitions of
cells during cultivation simply by combining the dynamic OUR
with a state of the art capacitance sensor.

MATERIALS AND METHODS

Operational Conditions
A 15 L (max. working volume) stainless steel stirred tank
bioreactor with a tank diameter (D) of 0.242m and total
height (H) of 0.484m (LabQube, Bilfinger Industrietechnik
Salzburg GmbH, Austria) was equipped with two three-bladed
elephant ear impellers (di = 0.1m) connected to a bottom-
driven magnetic impeller shaft. Aeration was maintained by a
submerged I-shaped frit and calibrated mass flow controllers
(8711, Burkert, Germany). The temperature was measured using
the built in Pt100 resistance thermometer. The DO concentration
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was monitored using an optical oxygen sensor (VisiFerm DO
Arc120, Hamilton Switzerland) and pH by a pH probe (EasyFerm
Plus PH Arc120, Hamilton, Switzerland). The oxygen and CO2

content in the off-gas stream was measured using a gas analyzer
(BlueInOneFERM, BlueSens, Germany). A capacitance probe
(Incyte, Hamilton, Switzerland) was used to evaluate the biomass
estimations and establish the metabolism sensor.

kLa Measurements
The experimental determination of kLa was performed using
the dynamic gassing in/gassing out method (Van’t Riet, 1979).
Dissolved oxygen was measured by step changes in the oxygen
concentration of the inlet gas. kLawas determined from the slope
of the natural logarithmic DO concentration over time in an
oxygen saturation range of 20–80%. Application of this method
is restricted when the oxygen transfer is faster than the probe
response. As proposed by (Van’t Riet, 1979), the time constant
of the measurement probe can be neglected if the following
condition in Equation (1) is fulfilled:

τp ≤
1

kLa
(1)

As the mass transfer coefficients within the chosen process
space for mammalian cell culture bio-production are relatively
low, the response time determined for the used probe
(τp = 49.6 s, experimentally) was sufficient. All measurements
were performed according to a pre-defined experimental set-
up with varying parameters (working volume, impeller speed,
aeration rates, and culture temperature).

Two liquids, RO-H2O and a chemically defined culture
medium (Dynamis AGT, A26175-01, Thermo Fisher Scientific,
USA) both supplemented with 0.1% (v/v) antifoam C (A8011,
Sigma Aldrich, Germany), were used to determine kLa. All
measurements were performed in triplicate. Data accuracy was
within ±5% for all measurements; thus, only the average values
are shown in the respective depictions.

Oxygen Transfer
Methods to quantify OUR and OTR are based on a gas-liquid
mass balance of oxygen as described in Equation (2),

dC

dt
= kLa

(

cL
∗ − cO2

)

− qO2∗X (2)

where the timely changes in oxygen concentration are influenced
by the oxygen mass transfer coefficient (kLa), maximum
solubility of oxygen (c∗L), actual oxygen concentration (cO2),
specific OUR (qO2), and viable cell concentration (X). The OUR
(OUR= q∗O2X) and OTR are equal during steady-state conditions
(controlled DO concentration), hence dC/dt= 0, leaving OTR as
described in Equation (3):

OTR = kLa (cL
∗ − cO2) (3)

The OUR model described in this work is based on a detailed
bioreactor characterization, in which physiological and kinetic
changes from a dynamic process, resulting in varying dynamic

kLa values are considered. The on-line bioprocess data including
the O2 and CO2 aeration rates, temperature, filling level and DO
concentrations measured by an oxygen probe, as well as pre-
determined oxygen solubility in water and cell culture medium
were used for the model derivation.

OUR Calculation by Oxygen Mass
Balancing
One possibility for acquiring the consumed mass of oxygen on-
line involves balancing the oxygen mass between the gas entering
and leaving the bioreactor, which applies to animal cell cultures
(Eyer et al., 1995). An accurate gas analyzer is required for this
technique to measure the Vol.O2,out% in the off-gas stream. In
addition, the gas flow rate (Gin= Gout) and composition of the
aeration gas that enters the bioreactor together with the liquid
volume (VL) and molar gas volume [Vm,in (p,T,R); assumed Tin=

22◦C, Tout=measured gas outlet temperature], needs to be taken
into account to calculate the OUR as described in Equation (4):

OURMB =
O2 in− O2 out

VL
=

(

Vol.O2in%∗Gin
Vm,in

)

−

(

Vol.O2out%∗Gout
Vm,out

)

VL
(4)

Maximum Oxygen Solubility: The
Thermodynamic Approach
The maximum solubility of oxygen in water (c∗) under ambient
air was calculated using Equation (5), the temperature and
pressure dependent thermodynamic equation described by
Tromans (1998):

c∗(T) = pO2∗ exp























0.046 T2 + 203.357 T ln
(

T
298

)

− (299.378+ 0.092 T) (T − 298) − 20.591∗103

R T























(5)

R represents the ideal gas constant and T the temperature in K.

Determination of Oxygen Solubility in
Medium
To investigate the solubility of oxygen in the presence of
(non)ionic compounds and sugars, the solubility in the cell
culture medium was determined experimentally as described by
(Storhas, 2018). Briefly, in two steps, either oxygen saturated or
degassed RO-H2O with known Henry coefficient was mixed in
equal amounts with the cell culture medium and the resulting
dissolved oxygen concentration was measured (DO1). The
second value (DO2) is determined using the same liquids with
vice versa oxygen saturations. The obtained difference was used
to correct the maximum absolute oxygen saturation in media.

CO2 Influence on Solubility in Medium
Changing CO2 concentrations in the gas inlet due to pH
control influence the oxygen solubility in the culture. To analyze
the maximum saturation in the presence of CO2, gassing
experiments applying up to 20% (v/v) CO2 in process air were
performed and the maximum oxygen solubility in cell culture
medium recorded.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 August 2019 | Volume 7 | Article 195

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Pappenreiter et al. Oxygen Uptake Rate Online Sensor

TABLE 1 | Overview of all bioprocess runs at different parameter settings.

Bioprocess run Shift 1

(72 h)

Shift 2

(120h)

Shift 3

(192h)

Shift 4

(240h)

1 36.3◦C/F3 – – –

2 36.3◦C/F3 – – –

3 34◦C/F1 – – –

4 37◦C/F3 - 37◦C/F1 -

5 34◦C/F2 37◦C/F2 34◦C/F1 31◦C/F1

6 31◦C/F2 34◦C/F2 37◦C/F3 34◦C/F3

7 34◦C/F1 31◦C/F1 31◦C/F2 34◦C/F2

8 37◦C/F2 34◦C/F3 31◦C/F2 34◦C/F1

9 34◦C/F3 37◦C/F2 31◦C/F2 37◦C/F3

10 34◦C/F2 – – –

11 34◦C/F2 – – –

12 34◦C/F2 – – –

13 34◦C/F2 – – –

Intra-experimental variations were performed at four shifts in temperature (31, 34, or
37◦C), additional D-glucose concentration in the feed medium (+10, +20, or +30g L−1;
identified as F1, F2, F3), or both.

Fed-Batch Experiments
Cell Line Propagation
We used a recombinant monoclonal Chinese Hamster Ovary
(CHO) cell line (Antibody Lab GmbH, Austria) generated by the
Rosa26 Bacterial Artificial Chromosome (BAC) strategy (Zboray
et al., 2015) using a serum-free derivate of CHO-K1 (ATCC
CLL-61) as the host. The cells produce an IgG1 monoclonal
antibody. The cell line was cultured in chemically defined cell
culture medium (Dynamis AGT, A26175-01, Thermo Fisher
Scientific, USA) supplemented with 8mM L-glutamine. The cells
were maintained in shake flask cultures at 37◦C in a humidified
incubator under 5% (v/v) CO2 in air, shaken at constant rpm
and passaged every 3–4 days for propagation and scale-up. After
four passages, the bioreactor was seeded at a density of 2.5× 105

cells mL−1.

Bioprocess
Thirteen CHO cultivations were performed in a chosen (DoE)
setting with either static or dynamic changes (intra-experimental
shifts) in two varying parameters. The changeable parameters
were temperature and variable D-glucose concentration in the
feed medium (see Table 1). For simplification, runs 1 and 2 were
treated as processes performed at 37◦C.

The feed medium (CHO CD EfficientFeed A, A1442001,
Thermo Fisher Scientific, USA) was supplemented with 0.1%
(v/v) antifoam C (A8011, Sigma Aldrich, Germany) and
additional 10, 20, or 30 g L−1 D-glucose and 7 g L−1 L-asparagine
monohydrate. Temperature was maintained at 37◦C during the
batch phase and changed after 72 h to 31 or 34◦C or remained
constant according to the pre-defined experimental set-up. The
minimum DO level was set to 30% of saturation and maintained
by gassing with process air (PA) flow and increasing stirrer speed.
The agitation rate was variable, from 91 to 228 rpm and the gas-
flow range was 0.3–1.5 L min−1 (maximum values at maximum

PID controller output). The culture pH was kept constant at
7.0 and controlled via the CO2 gas flowrate. Base addition was
not necessary.

Off-line Analyses
The total cell concentration (TCC) was determined by counting
the cell nuclei using the particle counter Z2 (Beckman Coulter,
USA). Therefore, an appropriate amount of cell suspension was
centrifuged at 200 g for 10min. The cell pellet was resuspended
in 0.1M citric acid monohydrate and 2% (v/v) Triton X-
100 buffer to lyse the cells, for a minimum of 1 h before
measurement. Sample dilution was performed using a 0.9%
(m/m) NaCl solution.

Culture viability was assessed using a hemocytometer and
trypan blue exclusion. The viable cell concentration (VCC) was
calculated by multiplying viability by TCC.

Packed cell volume (PCV) was measured using PCV tubes
(#87007, TPP, Switzerland) after spinning the cell suspension
for 1min at 2,000 g. PCV is expressed as a percentage (%v/v)
of the total culture volume. Determinations were performed
in duplicates. Viable PCV was determined by multiplying the
viability by the PCV.

Carbohydrates were determined via ion exclusion
chromatography (HPX 87H, 300 × 7.8mm, #1250140, BioRad,
USA) on an Agilent 1200 series (Agilent, USA) at 25◦C. The
mobile phase consisted of 5mM sulfuric and the flow rate was
set to 0.45mL min−1. Measurement was performed using a
Refractive Index detector (35◦C). The calibration range for
D(+)-glucose was 100–2,000mg L−1. The chromatograms
were evaluated using Chemstation software (revision B.04.01,
Agilent, USA).

The amino acid concentrations were determined by HPLC.
After using an automated pre-column derivatization method,
amino acids were separated on a chromatography column
(Eclipse Plus C18 column) at 40◦C using a flow rate of
0.64mL min−1. As solvent A 10mM K2HPO4 and 10mM
K2B4O7 and Solvent B an acetonitrile, methanol, water mix
(45/45/10; %v/v/v) was used. Amino acids were excited
at 230 nm and the fluorescence signal was detected at
450 nm for OPA derivatives and at 266/305 nm for FMOC
derivatives. Samples were quantified using an internal
standard calibration.

Assessing Model Accuracy
To compare the model’s quality, accuracy, and overall
performance, the mean absolute percentage error (MAPE)
was calculated. Errors were normalized by the inverse of the
number of fitted points (n) regarding the sum of deviation from
actual values (xi) to forecast values (xtarget) divided by the actual
value again, calculated as a percentage error (%) as described in
Equation (6):

MAPE =

∑n
i=1 |

xi−xtarget
xi

|

n
∗100 (6)
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RESULTS

Assessing Parameters for Dynamic
kLa Estimation
As oxygen transfer is determined by the system’s operational and
physicochemical characteristics, varying process conditions can
affect the oxygen solubility andmass transfer properties and need
to be taken into account for kLamodel development.

Viscosity behavior was investigated using the harvest samples
of bioprocess run 2 and media supplemented with antifoam
at two different temperatures (30 and 37◦C; Figure 1A). The
viscosity was close to that of water and significant changes
between the media and harvest sample were not observed. Due
to the insignificance of the divergence, viscosity changes were not
implemented in the present model.

Osmolality within all presented fed-batch processes was
295 ± 26 mOsm kg−1. Similar to the viscosity, the minor
osmolality variations were assumed to only minimally influence
themaximumoxygen solubility in culturemedium or the kLa and
therefore, were neglected.

Volumetric mass transfer coefficients were measured in
a chosen process design space (Figure 1B). Process air and
stirrer speed variation were linked in the PID controller
output; therefore, the influence on kLa was quantified based
on the percentage of the PID controller output. During
all fermentations, the main operational space increased to
a maximum PID controller output of 65%. At maximum
operational stirrer speed (PID65 = 160 rpm), a specific agitation
power of 12Wm−3 was calculated.

The volume dependency of kLa between 10 L (inoculum) and
15 L (max. working volume) was investigated experimentally.
No significant volume influence on kLa was determined in the
bioreactor system.

As the pH in mammalian cell culture processes is typically
controlled by varying the CO2 concentration in the inlet gas,
the maximum oxygen solubility in cell culture medium was
determined under varying CO2 molar fractions in the gas in-flow
(Figure 1C). Gassing with ambient air led to a maximum relative
solubility of ∼95 % in media compared to water under the same
settings. This result is in accordance with the experimentally
determined maximum oxygen solubility in medium compared to
water using the method described by (Storhas, 2018), resulting
in a decrease of 5.2% in culture medium compared to RO-H2O.
With increasing molar fractions of CO2 the oxygen solubility
dropped to 82% at a molar CO2 fraction of 20%. The resulting
linear fit was incorporated into the model to account for O2

displacement by CO2 (Equation 8).
The physicochemical properties of the culture medium had

a strong positive impact on kLa values in this bioreactor setup
(Figure 1D). The kLa values determined with medium were
more than 3-times higher than those generated with water in
the presence of 0.1% v/v antifoam solution. A linear increase
was observed in kLa in cell culture medium with increasing
PID (PID = f(vs,rpm). The increase in superficial gas velocity
together with increasing stirrer speed as a function of PID output
had the greatest impact, whereas temperature had only a slight
effect. A linear curve fit was created with averaged triplicate

values. The kLa determination in medium was performed up
to a PID controller output of 60%, with linear extrapolation of
higher values. This function was used to estimate kLa in real-
time throughout the process as the PID set-up was the same
for all fed-batches. By determining factors that directly influence
oxygen solubility, several correlations have been developed for
the prediction of kLa (Gill et al., 2008; Garcia-ochoa and
Gomez, 2009). The most common and conventional approach
is based on the energy input criterion. However, direct relation
of kLa dependence to volumetric power consumption (Pg/VL) or
superficial gas velocity (vs) was not necessary due to coupling via
the PID controller. The simplified model kLa = f(T, PID) is only
true within the chosen process space and needs to be adapted for
prevalent use. As an alternative, computational fluid dynamics
(CFD) simulations can provide a tool for predicting kLa on larger
scales in which the location of the oxygen probe in the bioreactor
plays a significant role (Kerdouss et al., 2008; Wutz et al., 2016).

OUR Model Set-Up
OUR at time point t is a function of the dynamic kLa and the
oxygen solubility at given temperature c∗(T) as described in
Equation (7) (adapted from Equation 2).

OUR (t) = kLadyn. (t) ∗
(

c∗M (t) − cDO (t)
)

−
dC

dt
(7)

Dissolved oxygen concentrations with the subscript DO were
obtained from the DO values measured by the oxygen probe. The
dC/dt term equals zero if DO is constant. At the beginning of the
processes, when DO was not constant, dC/dt in the short interval
of on-line recording (seconds) was much smaller than OUR.
Therefore, dC/dt was neglected for the on-line OUR calculations
described in this work.

Oxygen solubility in fermentation medium c∗M(t1) was
calculated using the thermodynamic equation in the presence
of medium solutes (Equation 8) and accounts for the O2

displacement by CO2.

c∗M (t1) = c∗(T)

(

−0.638∗yCO2 (t1)+ 95.63

100

)

(8)

with

yCO2 =
QCO2

(QPA + QCO2)
∗100 (9)

Q represents the inlet gas flowrate of CO2 (QCO2) and process
air (QPA) gathered from the mass flow controller. Therefore,
c∗M(t1) is dependent on the process temperature and amount of
dissolved CO2.

DO(t1) is the dissolved oxygenmeasured at the respective time
point. In addition, as the used DO probe performs an internal
temperature correction, a correction factor was introduced for
the temperature dependence of the actual oxygen saturation.
cDO(t1) is then defined as described in Equation (10):

cDO (t1) = c∗M (t1) ∗

(

DO (t1) ∗
c∗ (T1)

c∗ (T2)

)

(10)
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FIGURE 1 | (A) Viscosity as a function of shear rate measured in cell suspension and media supplemented with antifoam at 30 and 37◦C. (B) Stirrer speed and

process air (PA) output as a function of PID controller output (%). (C) Relative dissolved oxygen saturation (DO%) determined in medium upon variation of the molar

CO2 fractions in the inlet gas compared to RO-H2O. (D) kLa as a function of temperature (T ) and PID controller output (%) for water and culture medium

supplemented with 0.1% v/v antifoam solution.

Assessing the Model Performance
During the dynamic fed-batch processes (see Table 1) up to four
temperature shifts were applied to capture the process dynamics
(Figure 2A). Process air-flow at the beginning of the process was
usually set to 0.3 L min−1 to constantly strip CO2, and increased
with cell density when the set point of 30% DO was reached
(Figures 2A,B).

Temperature-shifts influenced the PID output, as a reason of
the temperature dependency of the maximum oxygen solubility.
It follows that the temperature shifts are also evident in the
concentration gradient (Figures 2A,C). With changing PID
output and temperature, kLa changes over the progression
of the fed-batch process. These dynamic profiles are very
similar to those of the PID and PA-flow, as the main factor

influencing kLa within the chosen process space is the superficial
gas velocity (Figures 2B,C). After temperature correction and
incorporating oxygen solubility, the OUR profile is calculated in
real-time (Figure 2D).

Total amounts of mol O2 consumed during each process
were determined for five bioprocesses (Figure 3A). The results
obtained with the generated model and values calculated by
the mass-balance method were in good agreement (Equation 4).
The O2 solubility approach in medium compared to the mass-
balance method for all runs obtained slightly lower values.
The mean relative deviation of the model compared to off-gas
analysis was 8%. Due to humidity in the off-gas stream as well
as handling errors, not all reactor runs could be evaluated by
mass balance.
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FIGURE 2 | Process variables (A) temperature (T), dissolved oxygen (DO% sat), and PID output (%), (B) process air (PA) and CO2 flow rates, (C) calculated solubility

difference (c*M-cDO), kLa and (D) OUR over the time course of an intensified fed-batch process (run 9).

For example, Figure 3B shows the calculated OUR trend
of a static fed-batch (run 3) in the developed model and the
mass-balance method over the duration of cultivation. The
same trends were gathered from both methods. However, the
generated model seems to be unaffected by process disturbances.
In particular, the rate calculation at the beginning of the
processes, was mostly negative for the gas balancing method,
whereas the soft-sensor illustrates the initial process phase in
an exponential increase. Step changes and fluctuations during
the process (especially temperature shifts) also impacted other
reactor runs for the mass-balance method.

Linking OUR to Cell Numbers
In principle, estimation of the OUR provides broad information
on cell performance during the process. The OUR is the
direct product of specific consumed oxygen rates (qO2) and the
number of viable metabolically active cells. Thus, the OURs
calculated by the model can be theoretically given as a function
of VCCs measured off-line at each time point (Figure 4A).
However, the OUR was linearly dependent only up to a cell
concentration of ∼107 cells mL−1. At higher cell densities and
later process stages, variations occur and the data are widely
scattered: OURs no longer exhibit a clear relationship with the
VCC. The data distribution indicates two process stages in the
cells. Volumetric oxygen uptake is temperature-independent in a

sigmoidal progression of cell numbers. The cell-specific oxygen
consumption rate (qO2) is independent on the growth rate (µ)
and the cell cycle, with constant, but temperature-dependent
behavior (Figure 4B). Linear regression was carried out for each
culture temperature.

Linking OUR to Cell Volume
An alternative means for biomass quantification in cell culture
processes is the determination of PCV, which represents the
average cell volume and closely correlates with oxygen uptake
(Wagner et al., 2012). A growth profile comparison of cell
numbers and PCV showed different curve characteristics (see
Appendix Figure 1). Due to intra-experimental shifts in two
parameters (added D-glucose in the feed medium and culture
temperature), the viable PCV data as a function of time in all
fermentation runs spanned a broad range. Nevertheless, these
variations are not visible when correlating the viable cell volumes
measured off-line to the OURs of all runs (Figure 5A).

Figure 5A shows that the magnitude of the OUR was highly
dependent on PCV. No significant temperature dependence or
association to the cell viability (>80%) was evident. The data are
less scattered and a more accurate correlation, in comparison
to cell number is observed. However, the OUR as a function of
PCV exhibited a sharp kink at ∼1.4% (v/v) PCV. Thus, a linear
regression was calculated for each section. For this purpose,
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FIGURE 3 | (A) Total oxygen consumption determined by the two different methods for five bioprocesses (B) Volumetric oxygen uptake rates (OURs) over the time

course of fed-batch run 3. For clarity, only every 20th data point is displayed.

FIGURE 4 | (A) Volumetric oxygen uptake rates (OURs) as a function of viable cell concentrations (VCCs) measured off-line for all bioprocesses. Data <80% viability

were excluded. (B) Specific consumed oxygen rates (qO2) as a function of the growth rate (µ) for three culture temperatures (31, 34, and 37◦C).

the data were divided into a training data set and a test data
set. The test set consisted of three similar experiments with
static conditions (runs 10, 11, and 12). All other experiments
were used for development of the model. The optimal point of
intersection between the two linear fits was calculated iteratively
at 1.395% (v/v) PCV. For the first section, a linear function
of f1= 0.042∗x−0.011 and for the second one f2 = 0.001∗x +

0.032 was calculated, where the slope k represents the specific
uptake rate per cell volume in the respective section. After
the transition, the OUR decreased and k2 was roughly one-
fourth the value of k1. The error for the biomass prediction
was calculated as MAPE = 19% for the training data set and
14% for the test data set (Figure 5B). Good performance of
the predicted PCV was also seen in comparisons with the real
PCV data for the test data sets (Figure 5C) over the time
course of the process. Interestingly, two growth curves (runs
12 and 13) were still during exponential growth phase when
reaching a PCV of ∼1.4% (v/v). Therefore, partitioning the data
into two stages could not be linked to the cell cycle (growth
and maintenance).

Capacitance Measurements for
Soft-Sensing of Cell Volumes
Off-line PCV data correlated with the permittivity and
conductivity signals of an on-line capacitance probe (Figure 6A).
The permittivity exhibited linear behavior relative to the viable
PCV, and conductivity output was used to correct the model
for temperature changes. The cell factor determined by linear
regression was used to predict the viable PCV. Again, data
were split into a training data set and a test data set and
the model’s performance was evaluated using MAPEtraining =

15% and MAPEtest = 18% for the on-line biomass soft-sensor
(Figure 6B). The on-line soft sensor estimated the PCV trends for
the test data sets over time in a meaningful manner (Figure 6C).

Monitoring Metabolic Transitions
The transition step in the OUR profile indicated that a metabolic
shift occurred (see Figure 5A) at a viable PCV of 1.4% (v/v) in
the given process set-up.

The evolved OUR model combined with the viable PCV
predictions via on-line permittivity and conductivity signals from
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FIGURE 5 | (A) Linear correlation of OUR and viable PCV for three culture temperatures (31, 34, and 37◦C). Data with <80% viability were excluded. (B) PCV

estimated by the segmented linear model vs. viable off-line PCV data. (C) PCV model predictions over time for the test data compared to values measured off-line.

a capacitance sensor of all fed-batch runs is shown (Figure 7A).
The combination of the two models led to the development
of an on-line metabolic soft-sensor (see Appendix Figure 3).
Hereby, the objective function is that the linear function PCVOUR

(function 1) must intercept with PCVOUR (function 2) and
the PCVcapacitance. The sensor specifies the first metabolic state
with the value 0 and the second with the value 1. If both
conditions are fulfilled, hence, a metabolic shift is evident, the
sensor jumps from 0 to 1. For 12 runs the application of the
metabolic sensor was successful. In average, the metabolic shift
was detected at a viable PCV of ∼1.4% (v/v). As an example,
the performance of run 12 is depicted in Figure 7B. During the
process the metabolic shift can be traced by the output signal of
the metabolic sensor.

The variations in the amino acid concentrations of glutamine
(Gln), glutamate (Glu), asparagine (Asn), aspartate (Asp), and
alanine (Ala) are of particular importance in mammalian cell
culture (Zhang et al., 2016). Though Glu and Gln exhibited
a similar trend over the course of the fed-batch for all
experimental runs, Ala, Asn, and Asp progressed differently (see
Appendix Figure 2).

In a recent study, the ratio of asparagine and glutamine
was found to be important, to some extent, in terms of
process performance (Zhang et al., 2016). However, glutamine

was depleted and asparagine concentrations were sufficiently
high throughout the process (Figure 7C) and did not exhibit
significant dependence. In the metabolic fate of glutamine
and asparagine, glutamate and aspartate, respectively follow as
secondary key products (Figure 7D). The Asp concentration
decreased, whereas the Glu concentration increased consistently.
These amino acids exhibited a linear relationship with OUR (data
not shown).

Glu and Gln as a function of PCV exhibited reciprocal
behavior. At ∼1.4% (v/v) PCV, glutamine was almost completely
consumed and glutamate plateaued at∼6mM (Figures 7C,D).

The Asp/Glu ratio as a function of PCV exhibited a significant
pattern (Figure 7E). The Asp/Glu ratio decreased linearly. At a
PCV value of ∼1.4% (v/v), the progression bent and resulted
in a shallower slope. Accordingly, at an Asp/Glu ratio of 2, cell
volumes and specific OURs changed after a metabolic alteration.
The observed inflection point was at the same value as in the
OUR vs. PCV regression (1.4% (v/v) PCV; see Figure 5A).

The Ala profile suggested the same metabolism switch
(Figure 7F). The Ala concentration slightly increased at
high Asp/Glu ratios until a certain point (around 2), when
Ala production started to increase steeply (Asp/Glu =

low). Ala accumulated in the cell culture supernatant to a
great extent.
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FIGURE 6 | (A) Linear model of on-line capacitance signals as a function of viable PCV off-line data. (B) Estimated vs. real off-line PCV. (C) PCV capacitance model

predictions over time for the test data.

DISCUSSION

Benefit of Dynamic kLa Determination and
Real-Time OUR Calculation
The dynamic technique for kLa determination provided reliable
results. We showed that the assumption of a dynamic volumetric
mass transfer coefficient is necessary to calculate the OTR
and, subsequently, the OUR throughout a changing process.
Temperature and PID controller output were the two main
bioreactor operating variables affecting the OTR in this setting.
The influence of physicochemical properties of certain substances
in the cell culture medium led to a strong kLa increase more than
3-times higher compared to water. This is probably due to the
presence of Pluronic F68 within the medium, which has been
reported to mainly change bubble size at higher concentrations.
Smaller bubbles lead to an increase in gas holdup and available
surface areas for overall mass transfer (Sieblist et al., 2013).
Similar results were reported in the presence of ionic solutes,
which generally exhibit coalescence-inhibiting characteristics,
resulting in smaller bubbles and greater surface area and overall
kLa (Puthli et al., 2005). Moreover, the effects of so-called oxygen
vectors (e.g., hydrocarbons, oil as antifoam agents) can enhance
mass transfer rates to significantly higher levels than in water.

The enhancement was mainly due to an increase in the air/water
transfer rate, which is partially explained by the change in the
water surface tension (Morao et al., 1999; Quijano et al., 2009).

According to these observations, the influence of culture
medium composition on oxygen mass transfer has to be
considered. Moreover, a maximum decrease was recorded in the
relative oxygen saturation of ∼18% in fed-batch medium during
CO2 stripping. These results demand particular consideration
of solubility changes with shifts in gas composition and
temperature. Considering only the saturation O2 concentration
in water instead of determining the prevailing saturation
concentrations would lead to inaccuracies during specific OUR
calculations (Henzler and Kauling, 1993).

The application of the dynamic OTR as a soft-sensor for
calculating the OUR is demonstrated by the highly linear
relationship between OUR calculated by a global mass-balance
and OUR calculated by the model for a wide range. The
presented model enables real-time prediction of the OUR
without sophisticated off-gas measurements. The advantage of
this approach is that it is simply based on DO measurement,
knowledge of oxygen solubility properties in the medium,
and recording process temperatures, pressure and volumetric
inlet flow- rates of PA and CO2. The established model
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FIGURE 7 | (A) OUR combined with PCV prediction by on-line capacitance probe signal of all bioprocesses. (B) The performance of the metabolic sensor in run 12

predicts the metabolic shift occurring in the culture. (C) Metabolic profiles of all fed-batch runs of glutamine (Gln) and asparagine (Asn) (D) glutamate (Glu) and

aspartate (Asp) as a function of viable PCV. (E) The ratio of aspartate/glutamate (Asp/Glu) vs. viable PCV. (F) Alanine concentration (Ala) vs. the Asp/Glu ratio.

is in good agreement with the conventional technique. The
minor off-set due to the inlet gas flow temperature for
the mass-balance method was not determined, as it was
generally assumed to be 22◦C. More importantly, the generated
profiles were smooth and, even at temperature shifts, no great
disturbances were observed. Due to fluctuations from the off-
gas analyzer, the methods could not be compared for every
process run.

Overall, the established model with incorporated dynamic
kLa determination demonstrated high potential for online
monitoring of (specific) OURs during a cell culture bioprocess.

This concept can be realized for all aerobic bioprocesses.
However, in the field of microbial fermentation, where the kLa
values can be up to more than 10-times higher, the probe
response time used for kLa determination needs to be considered.

Moreover, the developed method has high potential in parallel
bioreactor systems since it only relies on physical parameters.
Therefore, once one bioreactor is characterized, the model may
be transferred to all equivalent ones. However, in small-scale
systems the experimental design may need to be adapted due
to diverging influence factors arising from difference in scales
or media.
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Application of Dynamic OUR for Cell
Monitoring
In principle, an estimation of the OURs provides broad
information on the overall process performance during the
process but does not report detailed information about cell
growth and physiology. The OUR is the direct product of the
specific consumed oxygen rate qO2 and the biomass (Wagner
et al., 2012). Conclusively, the prediction of biomass via oxygen
consumption should be possible if qO2 was constant over the
process progression.

Temperature changes impact cell growth and size, and this
applies to respiration as well (Moore et al., 1997; Goudar et al.,
2011). By presenting the OUR as a function of viable cell
concentration, no clear temperature dependency was observed
(see Figure 4A). Data from all bioprocesses were equally
distributed in a sigmoidal progression. At later process stages
no linear behavior was observed between the OUR and VCC.
After a switch in the cellularmetabolism, OURs seem to approach
a plateau, independently of increasing cell concentrations.
However, the cell physiology changed during the progression,
affecting the OUR but this was not accounted for by the model. A
minor temperature influence on qO2 was observed when plotted
against the growth rate,µ, of the viable cells. Cells seem to require
less oxygen at lower temperatures. Nevertheless, a dependency on
cell cycle and growth was ruled out.

Applying the model for accurately predicting viable cell
number has its limitations, especially during later process stages,
most likely due to changes in the cell size. In this study,
we showed that oxygen consumption is rather related to cell
volume than to cell count. Another study has also pointed
to this fact (Wagner et al., 2012). A segmented linear model
was established, able to cope with the metabolic shift occuring
during the process. Remarkably, the clear metabolic shift was
evident for all process runs despite massive variations within
the design space and the segmented linear model could cope
with it. The prediction error was calculated using a MAPEtraining
of 19% and MAPEtest of 14%, but due to the shallower slope
in the second segment, the PCV prediction was more prone
to error at higher cell volumes. This can be explained by
the fact that cell growth includes an increase in both cell
volume and number. Thus, deviations occur, particularly in
stationary and death phases, when cell lysis is followed by the
presence of cell fragments and increased aggregates (Lovrecz
and Gray, 1994). The shift in the metabolic state of the
cells led to roughly a quarter less oxygen consumption in
the second stage, which may be driven by a truncated TCA
cycle (Figure 8). Glutamine and other amino acids can have
alternative fates entering the citrate cycle to supply ATP and/or
NADPH. In a truncated cycle, less energy is produced and
less oxygen is consumed. The OUR soft-sensor allows the

FIGURE 8 | A simplified metabolic network of CHO-K1 cells. The detection of two metabolic states led to possible pathway assumptions in the TCA cycle and amino

acid metabolisms for product synthesis.
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viable cell volume to be predicted with reasonable accuracy.
The method represents a simple and economic solution for
bioprocess monitoring as no additional (off-gas) sensor systems
are required.

On-line Soft-Sensing of Cell Volumes Using
a Capacitance Probe
The on-line monitored permittivity signal during each
bioprocess was converted directly into a more meaningful
dimension, the viable PCV, using the correlation (cell)
factor predetermined with a linear regression. As a result,
a temperature-independent function was generated using
the conductivity signal for temperature correction, but no
metabolic transition was observed. The estimated vs. measured
values exhibit a normal distribution and, with respect to
accuracy, all states could be determined with an adequate
MAPE which is comparable to deviations in the two-segment
linear model predictions (Figure 6B). The trends for the test
data set were calculated with acceptable estimated errors: a
drift in the estimation was observed only in the stationary
and death phases. The time-resolved information obtained by
the soft-sensor could be linked to the OUR soft-sensor for
real-time identification of metabolic behavior in mammalian cell
culture processes.

OUR as a Metabolic Sensor
We assumed that varying process conditions (e.g., altered
temperature profiles and D-glucose concentrations) during all
bioprocesses may trigger different cellular responses with respect
to oxygen consumption. However, all cells tended to alter
their metabolic activity to a different state at a certain point,
regardless of whether they were cultured in a dynamic or
static process. In all fed-batch cultivations, we observed a clear
effect of Gln consumption on the excretion of ammonia, Ala
and Glu, as expected due to their direct connection to Gln
metabolism (Doverskog et al., 1997; Zhang et al., 2016). A clear
link was also evident between Asp and Glu (see Figure 7D).
Both amino acids could be linearly linked to viable PCV;
Glu increased constantly, whereas Asp was fleetly consumed.
Asn can be converted into Asp and then further into Glu,
followed by the building of alpha ketoglutarate. However, after
a certain threshold [1.4% (v/v) PCV] presumably caused by
a high glutamate concentration, the cells were assumed to be
pressured to break down Glu and build alpha ketoglutarate out
of pyruvate. Accordingly, Ala was produced and transported
out of the mitochondria (see Figures 7F, 8). This behavior
has been described in several publications (Altamirano et al.,
2001; Sellick et al., 2011; Duarte et al., 2014; Pereira et al.,
2018). Most interesting is the fact that this switch happened
at an Asp/Glu ratio of ∼2 (Figure 7E). We propose that,
at this threshold, the cells tend to by-pass the citrate cycle,
resulting in less oxygen consumption (see Figure 8). The results
indicate that Asp and Glu, in particular, need to be taken
into consideration to maintain the respiratory activity and
energy metabolism.

The combined technique presented here (capacitance and
OUR) will add great value for process characterization and allow

the development of control algorithms, especially to maintain
respiratory activity. The technique exemplifies a simple tool for
metabolic sensing. The metabolic status of the cultured cells
can be tracked in real-time. To the best of our knowledge,
real-time estimation of a metabolic transition in mammalian
cell culture processes has not been reported previously. Future
research in this field could include investigations of detailed
amino acid fluxes, as well as the dependence of product titer
on OURs.

CONCLUSION

We have demonstrated that simple bioreactor characterization
in terms of kLa coefficients and measurement of standard
parameters can provide broad information about the cells
cultured in this system. Compared to conventional off-gas
analyses, the dynamic kLa strategy was equally or better suited
to calculate OUR trends. Thus, the strategy is highly applicable
and easy to implement on multiple scales and in a wide
variety of processes, organisms, and cell lines. The generated
model allows for real-time visualization of OURs, enabling
enhanced understanding of growth characteristics and metabolic
reactions with varying process conditions. The presented soft-
sensors provide numerous insights: (i) a dynamic kLa model
needs to be considered in a varying process, (ii) OURs are
related more to cell volume than viable cell counts, and
(iii) the model cell line switches to another metabolic state
when the proportion of Asp to Glu drops in the chosen
process setting.

The OUR profile alone gives a first indication of the cellular
activity in a process and will add great value to process
development. Moreover, a combined soft-sensor with an on-
line capacitance measurement presents opportunities for more
advanced process optimization through real timemonitoring and
control of metabolic states.
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NOMENCLATURE

a Specific interfacial area [m–1]
c∗ Maximum solubility in water at

equilibrium
[mol L–1]

cDO Temperature corrected actual
oxygen concentration

[mol L–1]

cL∗ Maximum solubility of oxygen in
the broth under prevailing
gas-phase composition,
temperature, and pressure

[mol L–1]

cM∗ Maximum oxygen solubility in
media

[mol L–1]

cO2 Actual oxygen concentration in the
broth

[mol L–1]

D Tank diameter m
di Impeller diameter m
DO Dissolved oxygen [%]
Gin/out Gas flow rate at real conditions

in/out of bioreactor
[mL min–1]

H Tank height m
kL Mass transfer coefficient [m s–1]
kLa Volumetric oxygen mass transfer

coefficient
[s–1]

MAPE Mean absolute percentage error [%]
N stirrer speed [s–1 or rpm]
OTR Oxygen transfer rate [mol L–1 d–1]
OUR Oxygen uptake rate [mol L–1 d–1]
pO2 Partial pressure of oxygen [Pa]
Q Gas flow rate [m3 s–1]
qO2 Specific oxygen uptake rate [mol cell–1 day–1]
R Gas constant [J mol–1 K–1]
T Temperature [◦C];[K]
TCC Total cell concentration [cells mL–1]
τP Response time [s]
vs Superficial gas velocity [m s–1]
VCC Viable cell concentration [cells mL–1]
VL Volume of the liquid in vessel [m3]
xtarget target value
xi value of sample
n number of samples
X Biomass concentration [g L–1]
yCO2 Molar fraction of CO2 [%]
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