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The refinement of a molecular model is a computational

procedure by which the atomic model is fitted to the

diffraction data. The commonly used target in the refinement

of macromolecular structures is the maximum-likelihood

(ML) function, which relies on the assessment of model

errors. The current ML functions rely on cross-validation.

They utilize phase-error estimates that are calculated from a

small fraction of diffraction data, called the test set, that are

not used to fit the model. An approach has been developed

that uses the work set to calculate the phase-error estimates in

the ML refinement from simulating the model errors via the

random displacement of atomic coordinates. It is called ML

free-kick refinement as it uses the ML formulation of the

target function and is based on the idea of freeing the model

from the model bias imposed by the chemical energy restraints

used in refinement. This approach for the calculation of error

estimates is superior to the cross-validation approach: it

reduces the phase error and increases the accuracy of

molecular models, is more robust, provides clearer maps and

may use a smaller portion of data for the test set for the

calculation of Rfree or may leave it out completely.
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1. Introduction

Structural biology has immensely impacted our understanding

of biological processes by providing insight into molecular

structures at the atomic level. The oldest and most widely used

approach, which has delivered the majority of structural data

to date, is macromolecular crystallography. After diffraction

data have been measured and the phase problem has been

solved, structural models are built, rebuilt and refined to best

interpret the measured data. Every macromolecular model

from the last few decades has been subjected to crystallo-

graphic refinement, in which the positions of individual atoms

are fitted to experimental observations to make the model

represent the data in the best way possible. The least-squares

(LSQ) formulation of the target function was initially used

for refinement in reciprocal space (Sussman et al., 1977;

Hendrickson & Konnert, 1980). In the 1980s, an initial attempt

to use the maximum-likelihood (ML) target function (Lunin &

Urzhumtsev, 1984) was unsuccessful because the phase-error

estimates were too low. The success of the ML target was

made possible by cross-validation in the form of the Rfree

factor (Brünger, 1992), which was introduced to monitor

overfitting (Brünger, 1993; Kleywegt & Brünger, 1996).

Use of the partial free data concept (Lunin & Skovoroda,

1995) showed that the refinement was successful. As a

consequence, ML refinement has been widely adopted by the
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crystallographic community (Pannu & Read, 1996; Bricogne &

Irwin, 1996; Murshudov et al., 1997; Adams et al., 1997; Pannu

et al., 1998). Today, the free, model-unbiased fraction of data

typically consists of 5% of the diffraction data.

In contrast to the current refinement practice using the

ML target, where the model structure factors are compared

against the free part of the data, we decided to do the oppo-

site: to free the model by a kick and use the work set of data to

calculate phase-error estimates. This approach was inspired by

the previous uses of kicks. Kicking is a mathematical proce-

dure which modifies coordinates or B factors by a random

shift. Kicking is routinely used in model rebuilding and

refinement (displacing initial coordinates and B values) and in

map calculations (Turk, 2013). We have previously presented

the idea that the assessment of phase errors modelled by

kicking result in maps of improved quality, termed averaged

kick maps (Pražnikar et al., 2009). We now extend this concept

for use in calculation of the target function in refinement by

adding a procedure which calculates the model error estimates

from a randomly displaced model to the computer program

MAIN (Turk, 2013). Hence, the use of kicking in refinement is

now dual: firstly as part of coordinate and B-factor manip-

ulation to help the minimizer avoid local minima and secondly

in the calculation of model error estimates. The two kicking

procedures do not interfere with each other. The coordinate

manipulation happens before the model enters minimization,

whereas the second procedure uses the model in refinement

but does not alter it; it only affects the calculation of the

coefficients of the target function.

The problem in refinement that we address here is the

independence of calculated structure-factor magnitudes

(SFMs), often referred to as model ‘bias’. In ML refinement

supposedly independent SFMs are used to derive the ‘shape’

of an approximation for the likelihood function; unknown

parameters of the likelihood function (�A or �/�) are deter-

mined based on the set of experimental measurements. After

the likelihood function has been fully

determined in shape and parameters, it

can be applied to estimate coordinate or

phase errors or as a target in refinement.

If we run unrestrained refinement

against the work reflections only, then

the work SFMs are not independent and

produce poor estimates of the para-

meters of the likelihood function.

Nevertheless, the SFMs of the test

reflections are to some extent indepen-

dent and produce more realistic

estimates of the parameters. When

refinement is restrained by the stereo-

chemical relations, then the SFMs of the

test reflections become dependent too,

although to a lesser extent than the

work reflections. Kicks, however, break

the coordinate dependence and the

dependence on SFMs and allow the use

of all reflections to determine reliable

likelihood-function parameters. The

consequence of the kick is a model that

is a little worse but which is better

evaluated. At the same time the model

before the kick is better, but its

evaluation is less accurate. To overcome

the problem, we derive the � and �
parameters of the likelihood function

from the kicked model and apply them

to the model before the kick.

research papers
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Table 1
Number of test-set reflections.

The cases used are crambin (PDB entry 1ejg), class II fructose-1,6-
bisphosphate aldolase (1zen), cherry allergen (2ahn), stefin B tetramer
(2oct), cathepsin H (8pch), ammodytin L (3dih) and choline acetyltransferase
(2fy2). The test-set sizes are 1, 2, 5 and 10%. In the table they are denoted T1,
T2, T5 and T10, respectively. The bottom row shows the total number of
reflections used in refinement. The crambin data set encompasses the data
truncated to 2 Å resolution, whereas the others encompass the data at 3 Å
resolution.

1ejg 1zen 2ahn 2oct 8pch 3dih 2fy2

T10 232 1116 412 389 461 347 1419
T5 114 544 209 193 235 174 715
T2 42 209 83 77 93 69 290
T1 16 103 42 39 45 35 143
Total reflections 2397 11334 4158 3920 4603 3508 14205

Figure 1
Accuracy of refinement. Coordinate and phase errors of the crambin structure refined at truncated
resolution. ML CV, ML noCV and ML FK refinements at 2.0 Å resolution were performed using 1,
2, 5, 10, 15 and 20% test sets. (a) Root-mean-square distance (r.m.s.d.) of C� atoms of the partial
crambin structure against the deposited structure of crambin. (b) R.m.s.d. of C� atoms of the
polylalanine model against the deposited structure of crambin. (c) Phase error of partial crambin
structure against the deposited structure of crambin. (d) Phase error of the polyalanine model
against the deposited structure of crambin.



2. Methods

2.1. Free-kick refinement

Firstly, the coordinate error is esti-

mated by comparing the structure

factors calculated from the unperturbed

model against the working set of

observed structure factors. The model is

then freed by a kick of the size of the

coordinate error estimate, and structure

factors from this kicked model are

calculated. These free-kick structure

factors are then compared with the

observed structure factors of the

working set and used to calculate the �
and � coefficients for the ML function.

These coefficients are then applied to

the structure factors of the unperturbed

model to calculate the forces on atoms

during refinement. We call this proce-

dure ML free-kick refinement (ML FK),

as it combines the ML formalism with

an atomic kick, which frees the atoms

from their restraints imposed by the

energy function.

To validate the ML FK target, we

compared the phases, coordinates and

electron-density maps of refined struc-

tures with those from the true reference

models. The model was refined using

the standard cross-validated ML target

function (ML CV), ML whiteout cross-

validation (ML noCV) and ML FK,

which use the test portion of the data,

all data and the free-kick structure

factors of the work set to estimate the

phase errors, respectively. Three sets of

comparisons were performed. The first comparison addressed

the accuracy of a partial structure refined at a truncated

resolution, the second addressed the model bias of a partially

incorrectly refined model and the third comparison addressed

the robustness of the target based on an example of a group of

molecular-replacement solutions with either identical

sequences that partially differed structurally or that were

identical in fold but different in sequence from the crystal

structure.

2.2. Refinement protocol

A macromolecular refinement was obtained through the

maximum-likelihood formulation, in which the residual

represents the negative logarithm of the likelihood (Lunin et

al., 2002). The residual is represented as

QML ¼
P
s2S

�ðFcalc
s ; Fobs

s ; �s; �sÞ ! minimum; ð1Þ

with

� ¼ �a þ
�2

s ðF
calc
s Þ

2

"s�s

� ln Io

2�sF
calc
s Fobs

s

"s�s

� �� �

for acentric reflections and

� ¼ �c þ
�2

s ðF
calc
s Þ

2

2"s�s

� ln cosh
�sF

calc
s Fobs

s

"s�s

� �� �

for centric reflections.

Here, Fcalc and Fobs represent the calculated and measured

structure factors, respectively. The calculated structure factors

include bulk-solvent correction, whereas the Fobs are modified

by the overall anisotropic B correction. The notation Io

represents the modified Bessel functions and the parameters

� and � define the expected phase errors as described in the

literature (Lunin & Urzhumtsev, 1984; Read, 1986; Lunin &

Skovoroda, 1995; Pannu & Read, 1996). The MAIN algorithm

is an implementation of the formulation described by Lunin &

Skovoroda (1995).

Refinement calculations were performed with the crystallo-

graphic program MAIN (Turk, 2013) using the same ML
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Figure 2
Electron-density analysis of crambin refined at truncated resolution. The 2mFo � DFc electron
density at the 1.0� contour level of polyalanine models around residues Val15, Cys15, Arg17, Lys18
and Cys26 of the deposited structure of crambin. The map R factor along the crambin chain was
calculated residue-by-residue between the Fc map of the final deposited model and the 2mFo�DFc

map of the refined polyalanine model. The electron-density R factor ranges from 0.28 (blue) to 0.67
(red). (a) ML CV electron-density map using a 5% test set. (b) ML FK electron-density map using a
1% test set. (c) Residue-by-residue map R factor of ML using a 5% test set. (d) Residue-by-residue
map R factor of ML FK using a 1% test set.



target function with three different sets of parameters: the

standard ML approach with cross-validation (ML CV), the

ML approach by estimating model errors from the working set

(ML without cross-validation; ML noCV) and the ML FK

approach. To facilitate this calculation, the ML free-kick

(ML FK) target function was implemented using the already

existing ML target function (Lunin & Skovoroda, 1995). The

only change required was to use the coordinate error esti-

mates calculated from the nonperturbed model and to apply

this value as the maximum kick size in the additional calcu-

lation of the structure-factor set from the kicked coordinates.

This kicked structure-factor set was then used to calculate the

� and � coefficients for the ML target function used in deri-

vative map calculation.

The refinement protocol was the same in all cases: 12 cycles

(12 � 60 steps) of conjugate-gradient minimization of coor-

dinates were combined with eight cycles (8 � 30 steps) of

minimization of B factors. In each cycle of positional refine-

ment, the initial coordinate maximum kick size was set to

0.5 Å. The kick was lowered in each cycle until the smallest

kick of 0.01 Å was reached. B-factor refinement began with

uniform B factors of 25 Å2 followed by B-factor kicks. The

initial maximal B-factor kick was set to 15 Å2 and was

consecutively lowered until a final kick of 2 Å2 was reached.

In each cycle, the random seed was increased by one to assure

a different randomization of the coordinate and B-factor

changes in each refinement cycle. In the ML CV approach, the

test set of reflections was used for cross-validation, whereas

it was only used to monitor refinement in the other approa-

ches. Table 1 contains information on the total number of

reflections used in the calculations and

indicates the numbers of reflections

used in the various fractions of the test

sets.

2.3. Molecular-replacement test cases
and electron-density map calculation

To address the convergence and

robustness of refinement, we chose five

starting cases of molecular-replacement

solutions of the crystal structures of

cathepsin H (PDB entry 8pch; Gunčar

et al., 1998), ammodytin L (PDB entry

3dih; D. Turk, G. Gunčar & I. Krizaj,

unpublished work), the stefin B

tetramer (PDB entry 2oct; Jenko Kokalj

et al., 2007), cherry allergen (PDB entry

2ahn; Y. Dall’Antonia, T. Pavkov, H.

Fuchs, H. Breiteneder & W. Keller,

unpublished work) and the choline

acetyltransferase–choline complex

(PDB entry 2fy2; Kim et al., 2006). The

structures of actinidin (Baker, 1980),

Crotalus atrox phospholipase A2 (Keith

et al., 1981), stefin B (Stubbs et al., 1990),

thaumatin (Ko et al., 1994) and choline

acetyltransferase (Cai et al., 2004) were used as the search

models (Pražnikar et al., 2009). Refinement was performed

using four different sizes of the test set: 1, 2, 5 and 10%. For

each test-set size, 31 different test sets of reflections were

randomly selected. To produce a unique test set, each was

generated with a different random seed. Table 1 shows the

number of test reflections per shell for different sizes of the

test sets. Refinement was performed using five resolution

shells with data truncated to 3 Å resolution.

Electron-density maps were calculated in MAIN (Turk,

2013) using the ML CV and ML FK approaches to calculate

the phase-error estimates and the corresponding � and �
coefficients used in the �A-weighted map calculation (Read,

1986).

The real-space R factor along the chain was calculated in

MAIN according to the procedure described by Kleywegt &

Jones (1995).

3. Results

3.1. Assessment of the accuracy of refinement on truncating
the resolution of the data

To analyze the accuracy of refinement of the three target

functions, we compared the displacement of C� atoms of the

refined structures with those of the true structure. For this

example, we chose the crambin structure PDB entry 1ejg

(Jelsch et al., 2000) refined at a resolution of 0.54 Å, which

makes it the macromolecule with the highest resolution in the

entire PDB. The crambin amino-acid chain (Figs. 1a and 1c)

research papers
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Figure 3
Phase-error comparisons of the refined partially wrong model. The final phase errors for PDB entry
1zen with misplaced residues and the new correct model are shown. ML CV, ML noCV and ML FK
refinements were performed using 0.5, 1, 2, 5, 10, 15 and 20% test sets. The phase error in the higher
resolution shells was calculated in ten resolution shells between 3.0 and 2.5 Å. (a) Phase errors of
models refined at 3.0 Å resolution. (b) Phase errors of models refined at 2.5 Å resolution. (c–e)
Phase error of a 3.0 Å resolution refined structure in higher resolution shells (c) using a 1% test set,
(d) using a 5% test set and (e) using a 10% test set.



and its polyalanine (Figs. 1b and 1d) model were refined using

the ML CV, ML noCV and ML FK target functions against

data truncated to 2.0 Å resolution with different fractions of

test data. An overview of the coordinate (Figs. 1a and 1b) and

phase (Figs. 1c and 1d) errors demonstrates that the ML CV

target function strongly depends on the size of the test portion

of data and that the lowest deviations from the reference

structure are exhibited by the structures refined using the ML

FK target. Coordinate errors were calculated by the root-

mean-square distance (r.m.s.d.), whereas the phase errors

were calculated by comparing the structure factors from the

reference structure with the refined models. Among the

structures refined using the ML CV target the smallest coor-

dinate and phase errors were provided when the test portion

contained at least 15% of the data (Figs. 1a and 1c). In

contrast, the ML FK target does not exhibit such a strong test-

set size dependence. When the whole crambin model (Fig. 1a)

was tested, the ML FK refinement yielded an r.m.s.d. on C�

atoms of between 0.12 and 0.14 Å, whereas the deviations of

the ML CV target ranged from 0.15 to 0.42 Å. For the poly-

alanine model, all target functions behaved worse than for the

correct polypeptide sequence (Figs. 1b and 1d). The ML FK

refinements yielded an r.m.s.d. that ranged between 0.29 and

0.34 Å and phase errors that ranged from 47 to 48�. With the

ML CV target, the refined structures yielded r.m.s.d.s from

0.32 to 0.36 Å and the phase errors ranged from 46 to 58�.

Additionally, refinement of the polyalanine model shows the

highest deviations for the ML noCV target. Interestingly, in

this experiment the lowest coordinate error does not fully

coincide with the lowest phase error; nevertheless, we felt that

we should use the phase error in further analysis owing to its

widespread use. To make the numerical analysis under-

standable in terms of the three-dimensional structure, two �A-

weighted electron-density maps were calculated with the

polyalanine model around residues Val15, Cys15, Arg17,

Leu18 and Cys26 and were displayed on the background of

the deposited structure of crambin (Figs. 2a and 2b). The chain

trace of crambin is shown with the colour-coded real-space

R factor of the maps (Figs. 2c and 2d). Evidently, the maps

resulting from ML FK refinement and ML FK phase-error

estimates for the weights of the structure factors in the maps

are better connected, less noisy and have a lower real-space R

factor, as indicated by the blue shift of Fig. 2(d) in comparison

to Fig. 2(c).
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3128 Pražnikar & Turk � Free kick in maximum-likelihood refinement Acta Cryst. (2014). D70, 3124–3134

Figure 4
Distribution of phase errors and of Rwork. The graphs show the distribution of phase errors and of Rwork after refinement at 3.0 Å resolution for 31
different test sets. Red dashed lines show the starting phase error of the model. ML CV (a–e) and ML FK (f–j) refinement target functions were used.
The test-set sizes are 1, 2, 5 and 10%. On the graphs they are denoted T1, T2, T5 and T10, respectively. The cases used are cherry allergen (PDB entry
2ahn) (a, f ), stefin B tetramer (2oct) (b, g), cathepsin H (8pch) (c, h), ammodytin L (3dih) (d, i) and choline acetyltransferase (2fy2) (e, j).



3.2. Assessment of model bias from a partially incorrect
model

To address the sensitivity to model bias, we employed PDB

entry 1zen, which has previously been used for this purpose

(Terwilliger et al., 2008; Pražnikar et al., 2009). The 1zen

structure contains over 10% of residues misplaced from the

positions observed in the closely related PDB entry 1b57. To

create the reference, the 1zen model was manually rebuilt and

re-refined using the traditional approach of the ML CV target

function. The deposited model with solvent and heteroatoms

excluded was then subjected to refinement at resolutions of 2.5

and 3.0 Å using the three target functions and test portions

including 0.5, 1, 2, 5, 10, 15 and 20% of the measured data. In

this comparison, ML FK evidently yielded the lowest phase

errors and the lowest test-set dependence among the targets in

this comparison (Figs. 3a and 3b). Furthermore, model bias

was also analyzed in a region of data not used in the refine-

ment. To this end, we used the models refined at 3.0 Å reso-

lution. We calculated the structure factors to 2.5 Å resolution

and compared the phase errors in ten resolution shells in the

interval between 3.0 and 2.5 Å (Figs. 3c, 3d and 3e). Again, the

ML FK target performed best in all resolution shells, while

ML CV and also ML noCV showed a strong dependence on

the size of the test portion of data. Furthermore, ML FK

yielded the lowest phase errors among the compared targets in

an overall comparison.

3.3. Assessment of convergence and robustness from
molecular-replacement solutions

To analyze the robustness and convergence of the target

functions in refinement, we chose five cases starting with

molecular-replacement solutions. Analysis of the phase errors

of the refined molecular-replacement models show that the

phase errors and variability of structures refined with the ML

FK approach are lower in all cases (Fig. 4). Fig. 4 also reveals

the general trend of the ML FK function: the size of the work

set negatively correlates with the phase error. This relation-

ship is not evident for the ML CV approach, where a 10% size

of the test set resulted in the lowest phase error in one instance

(Fig. 4d). Concerning the distribution of the final phase errors,

the small size of the test set, on which the scaling of the ML

CV approach depends, evidently produces much variation.

Comparison of Fig. 4 with Table 1 indicates that the spread of

phase errors is larger with fewer data in the test set in the ML
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Figure 5
Distribution of Rfree and of the difference between Rfree and Rwork. The graphs show the distribution of Rfree and of the final difference between Rfree and
Rwork after refinement for 31 different test sets containing 1, 2, 5 and 10% of the data. ML CV (a–e) and ML FK (f–j) refinement target functions were
used at 3.0 Å resolution. On the graphs they are denoted T1, T2, T5 and T10, respectively. The cases used are cherry allergen (PDB entry 2ahn) (a, f ),
stefin B tetramer (2oct) (b, g), cathepsin H (8pch) (c, h), ammodytin L (3dih) (d, i) and choline acetyltransferase (2fy2) (e, j).



CV approach. This comparison also makes evident that the

spreads of the phase errors of the largest test sets (10% of the

data) of the ML CV cases are notably larger than for the ML

FK cases. The narrowest spread of phase errors for the 2fy2

case with the largest test-set sizes also reflects the fact that in

this case the starting molecular-replacement model was most

similar in structure and sequence to the final structure.

The Rfree value distribution (Fig. 5) appears to be related

to the size of the test-set portion, irrespective of the ML

approach used. The Rfree value distribution is tightest at 10%

of the data and widest at 1%. This analysis indicates that

the use of a larger test-set size to calculate Rfree stabilizes the

calculation and is less prone to accidental choice of the data

in the test set. However, the increase in the test-set size has

undesirable consequences: it decreases the work set, which

consequently lowers the number of reflections used in the

refinement procedure and thereby increases the phase error.

A similar relationship holds for the Rfree–Rwork difference

(Fig. 5). In contrast, the Rwork distributions (Fig. 4) evidently

show less variability for the ML FK approach than for the ML

CV approach. Clearly, the wider distribution of Rwork for the

ML CVapproach is a consequence of the small amount of data

used in the test set (small sample size) and is therefore more

sensitive to their accidental choice. The opposite is true for the

ML FK approach, where most of the data used to calculate the

� and � coefficients of the ML function are the same. This

analysis indicates that the data set included in the test set

is underrepresented to enable robust and convergent refine-

ment at all stages of structure determination. In particular, this

approach increases the spread of possible solutions at large

phase errors. This relationship is also reflected in the trends on

comparison of the phase errors (Fig. 4) and Rwork (Fig. 6): the

decrease in the Rwork values in the ML FK approach reflects

the decrease of the size of the work set, while this trend is not

pronounced in the Rwork plots for the ML CV approach. This

analysis indicates that Rwork can be lowered when a smaller

number of reflections are fitted, whereas the use of a smaller

number of reflections in refinement also results in models that

deviate more from their true target.

To provide a further insight into the robustness and

convergence of the ML CV and ML FK refinement approa-

ches, two-dimensional plots of the phase errors and R factors

of the refined models are displayed in Figs. 6 and 7.

Comparison between ML CV and ML FK reveals a tighter

clustering of phase errors and R values for the ML FK

approach. Combining this analysis with the lower phase-error
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3130 Pražnikar & Turk � Free kick in maximum-likelihood refinement Acta Cryst. (2014). D70, 3124–3134

Figure 6
R factors against phase errors for ML CV. The cases used in the columns from left to right are cherry allergen (PDB entry 2ahn), stefin B tetramer (2oct),
cathepsin H (8pch), ammodytin L (3dih) and choline acetyltransferase (2fy2). The test-set sizes are 1, 2, 5 and 10%, indicated by T1, T2, T5 and T10,
respectively. Red dashed lines show the starting phase error. Rwork, Rfree and Rfree–Rwork are plotted as dots for each of the 31 cases on the vertical axes in
blue, green and orange, respectively.



analysis shown above (Fig. 4) demonstrates that the ML FK

approach yields more robust and convergent refinement

results than the ML CVapproach currently in use. The ML FK

target exhibited better convergence and accuracy compared

with the currently used ML CV target in these tests.

Furthermore, the analysis shows that this difference is a

consequence of the phase-error estimate procedure, which

relies on the statistics of the work set instead of the test set. To

show that this is a direct consequence of the different esti-

mation of parameters by the two ML approaches in Fig. 8,

estimates of � and � for all of molecular-replacement solutions

prior to refinement are shown. The figure reveals that the

distribution of � and � estimates is notably wider for the ML

CV function in comparison with the estimates calculated using

ML FK and that the differences in spread are not confined to

cases with lower amounts of reflections in the test set.

4. Discussion

The presented analysis demonstrates that the use of the ML

FK target in refinement will deliver more accurate structures

that correspond to the experimental data better than the

currently most often used ML CV target function. The ML FK

target thus appears to depend less on model bias and is less

prone to outliers that result from the selected test-set reflec-

tions. This behaviour can be explained in two ways. The first is

the difference in the concept, as explained in x1. We recon-

sidered the assumption that the coordinate errors of the model

are random which underlies the ML approach and realised

that this assumption is not entirely considered in the ML CV

approach because the test-set SFMs are also biased by the

model. We compensated for this model bias with a simulation

in which the model atoms were randomly displaced by an

appropriate kick. The second explanation involves the

considerable differences in the sizes of the data sets used to

calculate the coordinate error estimates. ML FK uses the work

set (95% or more of the measured data), whereas the ML CV

function typically relies on the test set (5% of measured data),

which makes ML FK estimates more accurate and more

independent of random variation in the test set compared with

ML CV estimates.

The motivation for this work was that excluding data from

refinement introduces bias from their absence into the

structure, yet the introduction of all data should not be at

the expense of the accuracy of the structure. The elementary

criterion for assessment of the success of refinement is the

convergence of the atomic model towards the true structure.

The closer that refinement brings the model to the true
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Figure 7
R factors against phase errors for ML FK. The cases used in the columns from left to right are cherry allergen (PDB entry 2ahn), stefin B tetramer (2oct),
cathepsin H (8pch), ammodytin L (3dih) and choline acetyltransferase (2fy2. The description of the figure is the same as that for Fig. 6.



structure the more accurate it is. The ML CV approach proved

to be more convergent than the LSQ function (Pannu & Read,

1996). This work suggests that one can achieve even better

convergence towards the true structure by the use of the ML

FK approach with larger work sets. Hence, the overfitting of

models by the ML FK approach is smaller than that by the ML

CV approach.

The presented work also suggests that the uses of Rfree may

be reconsidered. The first use of partial data in refinement was

described by Silva & Rossmann (1985), where they reduced

the size of a data set of approximately 300 000 measured

reflections to overcome the computational limitations of an at

the time enormous data set from Southern bean mosaic virus

by exploiting the strict tenfold icosahedral noncrystallo-

graphic symmetry. They used a smaller part of the data (1/7)

for the work set and the larger part of the data (6/7) for the

test set and showed that the structure can be successfully

refined against a smaller part of the data in the case where

noncrystallographic symmetry allowed the reduction of the

reciprocal-space asymmetric unit. Later, in contrast to this use,

the measured data were split into a large part for the work set

and a small part for the test set for validation purposes. Two

main roles for the use of Rfree emerged: the detection of wrong

structures and the prevention of overfitting. To address the use

of Rfree as indicator of wrong structures, we repeated the

Kleywegt and Jones experiment (Kleywegt & Jones, 1995;

Kleywegt & Jones, 1997) and built the 2ahn structure in the

reverse direction and then refined it in the absence of solvent

using the ML CV and ML FK approaches. Fig. 9 shows that

Rfree stayed around 50% and Rfree–Rwork around 15% in the

case of the reverse structure regardless of the ML approach

and the fraction of data used in the test set. These values

indicate that there is a fundamental problem with the struc-

ture, which supports the further use of Rfree as an indicator.

However, using the ML FK approach the size of the test set

does not matter. It can be as small as 1% of the data or likely

even less and the message about a fundamental problem with

the structure solution will still be provided. Once it has been

established that the structure solution is correct, the test part

of the data can be merged with the work part to deliver a

structure of higher accuracy. We wish to add that an experi-

enced crystallographer would realise that the structure was

built in the wrong direction owing to numerous mismatches of

the model and the electron-density maps and inconsistency of

the three-dimensional fold with the sequence, and that other

validation warnings were also disregarded.

research papers
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Figure 8
Distribution of the parameters � and � for molecular-replacement solutions at 3.0 Å resolution for 124 different test sets (31 for each test-set size). The
cases used in the columns from left to right are cherry allergen (PDB entry 2ahn) (a, f ), stefin B tetramer (2oct) (b, g), cathepsin H (8pch) (c, h),
ammodytin L (3dih) (d, i) and choline acetyltransferase (2fy2) (e, j).



Regarding the use of Rfree to prevent overfitting, we looked

back in time to the circumstances in which Rfree was intro-

duced into refinement in 1992 (Brünger, 1992). In 1993,

Brünger wrote that ‘published crystal structures show a large

distribution of deviations from ideal geometry’ and that ‘the

Engh & Huber parameters allow one to fit the model with

surprisingly small deviations from ideal geometry’ (Brünger,

1993). The work of Engh & Huber (1991) introduced targets

for bond and angle parameters derived from the crystal

structures of small molecules in the Cambridge Structural

Database (Allen et al., 1987). Nowadays, statistically derived

parameters are routinely used in refinement. Moreover, noting

the problem of structural quality, numerous validation tools

have been developed and have became an unavoidable part of

structure determination and deposition. In refinement the

practice has been established that the deviations from ideal

geometry are defined as a target used to scale crystallographic

energy terms. Hence, the overfitting of models which leads to

severe deviations from ideal geometry is no longer really

possible. Hand in hand with the progress in tools delivering

better models, the amount of data used for the test set has also

gradually decreased from an initial 10% or more to 5% or less.

Its portion is now practically limited by the request for

statistical reliability of the ML CV parameters. To conclude,

our understanding is that in the early 1990s in the absence of

rigorous geometric restraints structure validation was first

introduced in reciprocal space with Rfree. Nowadays, however,

overfitting can be controlled in real space by the rigorous use

of geometric restraints and validation tools. For example,

refinement runs restraining the overall r.m.s.d. of bond lengths

to 0.01 and 0.005 Å in comparison with the default value of

0.02 Å lead to a decrease in the Rfree–Rwork differences with a

simultaneous increase in the phase error and Rwork (data not

shown). Since the ML FK approach allows the use of all data

in refinement with a gain in structure accuracy and thereby

delivers lower model bias, this work encourages the use of all

data in the refinement of macromolecular structures.

During the development of a procedure which has higher

accuracy than ML CV and uses all data in refinement, the ML

FK procedure was not the first concept to be tested. Therefore,

we anticipate further improvements and simplifications in the

future such as the generation of kick structure factors directly

from the unperturbed structure factors of the model. Once

sufficient experience has been gathered, tabulated values of

parameters of ML functions may enter into use. The ML FK

approach described here is however simple to implement once

the ML refinement code is in place and has a low computa-

tional cost, so we expect its broad use.
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