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Familial platelet disorder/acute myeloid leukemia (FPD/AML)
is an autosomal dominant inherited disorder characterized by
thrombocytopenia and high propensity to various hematological
malignancies. FPD/AML is caused by monoallelic mutations of
RUNX1, which are in many cases point mutations disrupting
DNA-binding or transactivating capacities of RUNX1, and these
mutations are considered to act in dominant-negative manner to
various degrees for residual wild-type allele.1,2 Interestingly, some
FPD/AML traits present monoallelic loss of RUNX1 gene by
microdeletion of chromosome 21.1 In such cases, no mutations
were found in the residual RUNX1 allele, thus suggesting that
haploinsufficiency of RUNX1 is sufficient to cause FPD/AML.
Genetic basis of leukemic transformation in FPD/AML patients

still remains elusive. We have recently reported recurrent mutation
of CDC25C in FPD/AML patients, and suggested that this mutation
is one of the early events, which defines pre-leukemic state.3

However, all pedigrees that we examined carried point mutations
of RUNX1, and no cases with monoallelic RUNX1 loss were present.
We suspected that the dosage of RUNX1 activity may affect the
transforming processes, and FPD/AML with haploinsufficient
RUNX1 allele might require unique genetic events for transforma-
tion that are distinct from cases with RUNX1 point mutation. In
order to identify collaborating mutations with haploinsufficient
RUNX1 allele, we performed genome-wide mutational analyses of
two transformed cases of FPD/AML with monoallelic RUNX1 loss.
This study was conducted with approval from the internal review
board of Keio University School of Medicine and conformed to the
principles outlined in the Declaration of Helsinki for the use of
human tissue or subjects. Samples from the patients were
collected with written informed consent.

PATIENT 1
The patient was referred to our hospital for persisting thrombo-
cytopenia from childhood. Bone marrow (BM) examination
at the age of 56 revealed normocellular marrow with micro-
megakaryocytes (Figure 1a), which led to a diagnosis of idiopathic
thrombocytopenic purpura. However, she started to develop
progressive pancytopenia at the age of 63, when the marrow
presented severe hypoplasia with moderate fibrosis and no blast
proliferation (Figure 1a). Of note, dysplasia was not evident and
the karyotype was normal.
Family history revealed high penetrance of hematological

malignancies such as AML and myelodysplastic syndrome, which
suggested an inherited mutation of RUNX1 (Figure 1b). However,
no mutations were discovered in the coding region of RUNX1,
which suggested the chromosomal microdeletion encompassing
RUNX1 locus, as was reported in some cases of FPD/AML.4 Indeed,
array-comparative genomic hybridization analysis of the patient’s
somatic DNA revealed ~ 285 kb heterozygous deletion including
the promoter and the 5ʹ-half of RUNX1 gene (Figure 1c). These

data clearly demonstrated that this pedigree was an FPD/AML
with haploinsufficient RUNX1 allele.
We tried to dissect the genetic basis underlying BM failure by

whole-exome sequencing of genomic DNA extracted from CD3+

T cells and CD3− non T cells of patient’s peripheral blood
(Figure 1d). This revealed mutations of TET2 and MLL2 genes in
peripheral T cells at low variant allele frequency (2.0–2.2%).
Interestingly, non T cells harbored mutation of RB1 gene in
addition to TET2 and MLL2 at variant allele frequency of ~ 10%.
These data suggest that RUNX1-haploinsufficient hematopoietic
stem cells acquired mutations in TET2 and MLL2 genes to
establish premalignant hematopoietic stem cells, which then
underwent malignant transformation by acquiring RB1 mutation
(Figure 1e).

PATIENT 2
The patient presented thrombocytopenia (46 × 109/l) and was
diagnosed with lower-risk myelodysplastic syndrome by BM
examination at the age of 29. Two years later, he presented
progressive leukocytopenia (2.0 × 109/l) with recurrent bacterial
infection. BM aspirates revealed 5.6% of blasts with abnormal
karyotype, including trisomy 21 (Figure 2a), which led to a
diagnosis of myelodysplastic syndrome: RAEB-1. BM blasts further
increased to 13.0% in the following 2 years, and stem cell
transplantation was subsequently performed using human
leukocyte antigen-matched cord blood as a donor.
Family history showed that his father developed AML and his

younger brother presented thrombocytopenia (Figure 2b). Inter-
estingly, two cousins of the proband presented mental retardation
and Down syndrome-like phenotype, respectively. High incidence
of hematological malignancies and metal retardation suggested a
rare type of FPD/AML caused by microdeletion of chromosome 21,
as reported previously.5 Indeed, array-comparative genomic
hybridization analysis using the patient’s somatic DNA confirmed
~ 2Mb heterozygous deletion in chromosome 21 encompassing
the entire RUNX1 gene and a large genomic region of 5ʹ-RUNX1
(Figure 2c), which indicates that this pedigree is an FPD/AML with
haploinsufficient RUNX1 allele.
We next investigated the genetic events critical for myeloid

transformation in this patient. As described above, trisomy 21
was noted in the BM cells, which was considered to have
contributed to leukemic transformation. Interestingly, fluores-
cent in situ hybridization analysis of the BM cells revealed
duplication of ‘abnormal’ chromosome 21 lacking hybridization
to the 5ʹ- probe for RUNX1 locus (Figures 2c and d). These data
strongly suggested that maintaining haploinsufficient RUNX1
allele with trisomy 21 was critical for transformation. Further-
more, mutations of ZRSR2 and BCOR genes were detected by
whole-exome sequence of genomic DNA from BM mononuclear
cells (Figure 2e). These data suggest that disruption of ZRSR2 and
BCOR genes combined with duplication of abnormal chromo-
some 21 with RUNX1 deletion is critical for myeloid transforma-
tion (Figure 2f).
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Figure 1. Clinical, pathological and molecular data of patient 1. (a) Photographs of BM smears and biopsies. BM smears were stained with May-
Grunwald Giemsa staining. BM biopsies were stained with Hematoxylin-Eosin (HE) or silver staining. Original magnification; 400 × or 1000 × .
(b) Family tree of the pedigree. Filled symbols; affected members, slashed symbols; deceased members, arrow; proband, square; male, circle;
female, diamond; sex not determined. AL; acute leukemia, ML; malignant lymphoma. (c) Schematic data of array-comparative genomic
hybridization (aCGH) on RUNX1 locus. aCGH was performed using custom-made oligonucleotide microarrays (Agilent Technologies, Santa
Clara, CA, USA) covering human chromosome 21, including RUNX1 locus with resolution of several hundred base pairs. A chromosomal region
of heterozygous microdeletion is indicated by red arrows. (d) Validated somatic mutations identified in T or non T cells of patient 1. Whole-
exome sequencing was performed as described previously.13 Whole-exome capture was accomplished with the cDNA library prepared by
SureSelect Human All Exon V5 (Agilent Technologies). Captured targets were subjected to massively parallel sequencing by Illumina HiSeq
2000 (San Diego, CA, USA). Candidate somatic nucleotide variants were validated by deep sequencing. (e) A proposed model of disease
progression and clonal architecture of patient 1. HSCs with haploinsufficient RUNX1 first acquire mutations of TET2 and MLL2, which
establishes pre-leukemic state. Premalignant HSCs then acquire RB1 mutation to progress into full-blown myelodysplastic syndrome with
myelofibrosis (MF).
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We have recently reported recurrent CDC25C mutation in ~ 50%
of FPD/AML patients. Hierarchical architecture analysis showed
that CDC25C mutation was an early event during transformation,
which defines a pre-leukemic clone.3 Mutant CDC25C was shown
to confer cells with a proliferative advantage by facilitating their
mitotic entry. In the present cases, however, CDC25Cmutation was
absent, and instead, TET2 mutation or trisomy 21 was identified in
each patient. Intriguingly, both of these genetic alterations confer
cells with clonal advantage similarly as CDC25C mutation. TET2
mutation has been shown to augment stem cell capacity of
hematopoietic stem cells, which then facilitate the expansion of
mutated clones.6–8 Trisomy 21 is a well-known chromosomal
abnormality associated with AML,9,10 and it was shown to confer
hematopoietic progenitors with enhanced self-renewal capacity
without inducing leukemia.4,11 Interestingly, trisomy 21 has been
reported in some transformed or non-transformed cases of FPD/

AML.4,12 In these cases including ours, duplication occurred
invariably with abnormal chromosome 21 carrying RUNX1
mutation, maintaining a single copy of wild-type RUNX1 gene
unaffected. This implies that amplification of dose sensitive genes
on chromosome 21 combined with RUNX1 haploinsufficiency is a
critical step for leukemic transformation in FPD/AML.
Taken together, our study suggests that RUNX1 haploinsuffi-

ciency collaborates with genetic alterations conferring clonal
advantage such as TET2 mutation or trisomy 21 to establish pre-
leukemic state, similarly as RUNX1 point mutation does with
CDC25C mutation. This study adds valuable molecular insight into
the transforming processes in FPD/AML patients.
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Figure 2. Clinical, cytogenetic and molecular data of patient 2. (a) Karyotype analysis of BM cells. Arrow indicates additional chromosome 21.
(b) Family tree of the pedigree. Filled symbols; affected members, gray symbols; members with thrombocytopenia, arrow; proband, square;
male, circle; female. DS; Down syndrome-like phenotype, MR; mental retardation. (c) Schematic data of aCGH on RUNX1 locus. aCGH was
performed as described in Figure 1. A chromosomal region of heterozygous microdeletion is indicated by red arrows. FISH probes for 5ʹ- or 3ʹ-
RUNX1 locus are indicated by green or red lines, respectively. (d) FISH analysis of BM cells for RUNX1 locus. 99.7% (997/1000) of evaluable cells
presented trisomy 21 with abnormal signals for RUNX1 locus. Arrows indicate abnormal chromosome 21 hybridized only with 3ʹ-probe (red
signals). Arrowhead indicates normal chromosome 21 hybridized to both 5ʹ- and 3ʹ-probes. (e) Validated somatic mutations identified in
BMMNCs of patient 2. Whole-exome and deep sequencing was performed as described in Figure 1. (f) A proposed model of disease
progression of patient 2. In transformed cells, abnormal chromosome 21 with haploinsufficient RUNX1 allele duplicated, which collaborated
with mutations of ZRSR2 and BCOR genes to initiate myelodysplastic syndrome.
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