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Abstract: The Covid-19 pandemic emerged and evolved so quickly that societies were not able to
respond quickly enough, mainly due to the nature of the Covid-19 virus’ rate of spread and also the
largely open societies that we live in. While we have been willingly moving towards open societies
and reducing movement barriers, there is a need to be prepared for minimizing the openness of
society on occasions such as large pandemics, which are low probability events with massive impacts.
Certainly, similar to many phenomena, the Covid-19 pandemic has shown us its own geography
presenting its emergence and evolving patterns as well as taking advantage of our geographical
settings for escalating its spread. Hence, this study aims at presenting a data-driven approach for
exploring the spatio-temporal patterns of the pandemic over a regional scale, i.e., Europe and a
country scale, i.e., Denmark, and also what geographical variables potentially contribute to expediting
its spread. We used official regional infection rates, points of interest, temperature and air pollution
data for monitoring the pandemic’s spread across Europe and also applied geospatial methods such
as spatial autocorrelation and space-time autocorrelation to extract relevant indicators that could
explain the dynamics of the pandemic. Furthermore, we applied statistical methods, e.g., ordinary
least squares, geographically weighted regression, as well as machine learning methods, e.g., random
forest for exploring the potential correlation between the chosen underlying factors and the pandemic
spread. Our findings indicate that population density, amenities such as cafes and bars, and pollution
levels are the most influential explanatory variables while pollution levels can be explicitly used to
monitor lockdown measures and infection rates at country level. The choice of data and methods
used in this study along with the achieved results and presented discussions can empower health
authorities and decision makers with an interactive decision support tool, which can be useful for
imposing geographically varying lockdowns and protectives measures using historical data.

Keywords: machine learning; public health; Covid-19 pandemic; spatio-temporal analysis; spatial au-
tocorrelation

1. Introduction

According to the World Health Organization (WHO), there have been more than
79.2 million confirmed cases of Covid-19 globally and 1.7 million people are reported
to have died hereof by the end of 2020 [1]. The Covid-19 pandemic has had and will
continue to have life-changing effects on our lives around the world. Therefore, there is
an urgent need for interdisciplinary studies to support health authorities and decisions
makers with data-driven approaches for more effective recommendations and regulations
for better management of such situations [2,3]. The Covid-19 outbreak has proven to
be largely associated with geography, geographical information, and the geographical
constellation of our cityscapes, land use information and transportation means, among
others [4,5]. While epidemiologists and virologists and medics are trying to develop the
right medicines, vaccines and medical solutions, an investigation of the geographical
patterns of the pandemic and their relationship with geographical space with respect to
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the outbreak’s characteristics such as outbreak hot spots and cold spots, proximity of
relevant urban elements, e.g., bars and restaurants, can help decision makers to impose
more effective protective measures. These analyses help them to understand the nature and
magnitude and severity of outbreak up to a certain timeframe and plan the future actions
according to the historical development of the outbreak. Once such knowledge is gained,
they can optimize daily societal activities more efficiently while lowering the infection
risk. Thus, the aim of this study is to propose a data-driven approach for harvesting open
geographic data (socio-economic data, biophysical data, mobility network, climatological
data) released by open data initiatives and earth observation missions in order to (a)
extract meaningful information about the geography of the pandemic such as hot- and
cold spots in a temporal manner, i.e., weekly basis, that allow us to identify regions
that have been constantly exposed to high infection rates or wise versa, (b) uncover the
relationship between the outbreak and its geographical dimension. To do so, an application
of statistical models and machine learning techniques will be tested allowing to explore
what geographical settings support the outbreak. Finally, we will present appropriate
open-source geospatial tools for achieving the aforementioned outputs.

The reminder of the paper is structured as follows: The introduction is followed by a
literature review in Section 1.1. The data and methods used in the study will be presented
in Section 2, while Section 3 presents our results. Section 4 presents discussions on our
results and leads to conclusive remarks.

1.1. Related Work

Since the Covid-19 virus spread throughout the world causing a global pandemic,
several studies have been conducted on the causes and factors that are essential to the
spread of the virus. In this section, we present the state of the art on the studies focusing
on geographic features and their correlation to the spread of virus together with machine
learning techniques used in prediction spread and infection rates. The early studies related
to the geography of Covid-19 focused on mapping the space and time of proven incidences
and also to correlate these to geographic factors such as climate indicators and measures
population density, population composition and human travel patterns. For instance, a
study by Kim, Sun, and Castro [6] found a strong spatial autocorrelation and with the use
of space-time scan identified clusters of Covid-19. Their findings proved that the disease
initially spread in the densely and heavy populated capital region and over time moved to
more distant regions of the country, furthermore single events of large spread and counter
measures of these showed a space-time ripple effect in decreasing infection rates, which is
also confirmed by the study of Giachino, et al. [7].

Investigating how climate indicators affect the spread, Briz-Redón and Serrano-
Aroca [8] found no significant correlation between spring temperatures of Spain and
Covid-19 cases, whereas Malki et al. [9] found Covid-19 was positively correlated to tem-
perature and humidity, but also that these factors alone are not sufficient alone to predict
infection rates. Briz-Redón and Serrano-Aroca [8] found that population density and
number of visitors to a city had high correlations (p > 0.85) to infection rates, and Sanni-
grahi et al. [10] also found that total population, population income and poverty rates are
strongly correlated to infection rates (p = 0.75, 0.68, 0.69 respectively). Mollalo, Behzad
and Rivera [11] investigated demographic data across the United States and found that
income inequality, household income, percentage of nurses and percentage of female black
population, to be the most relevant explanatory demographic variables of countrywide
infection numbers.

Studying the very first wave of Covid-19 in Wuhan China, Kraemer et al. [12] showed
that by using positioning data of citizens, future infection hotspots can be accurately
predicted. The study found an R2 = 0.89 between people travelling out of Wuhan and
towards nearby cities and hereby causing spread of virus. Likewise, Kapoor et al. [13]
was able to predict next-day cases within a single county in the United States with very
high accuracy (RMSLE = 0.0109); this was done by plotting mobility data of people’s
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movement between counties on a graph neural network. It has, however, proven difficult
for researchers to use geographic variables to predict the spread of virus through machine
learning techniques. Wang et al. [14] were able to predict and forecast infection rates during
the first wave of the pandemic in the spring of 2020 using a logistic growth model with
a s-shaped curve, but they also found that the nature of the pandemic in the long term
cannot be fitted to such a curve, and thus concluded that such a model can only poorly
account for the fluctuations of infection seen over time. Besides being capable of predicting
infection rates, studying them with machine learning techniques can provide knowledge
about the importance and relationship between the included variables. Using machine
learning, Gupta and Gharehgozli [15] showed that population density and pollution levels
are closely correlated to virus spread.

Pollution levels and air-quality have indeed been seen to also change rapidly over the
course of the pandemic, mainly due to the measures imposed on citizens’ ability to move
and travel, and restrictions imposed on how businesses to run. Bao and Zhang [16] studied
pollution levels across 44 Chinese cities, and found that across all pollution measures, the
general Air Quality Index increased by 7.76% while the pollution indicators of SO2, PM2.5,
PM10, NO2 and CO decreased by 6.76%, 5.93%, 13.66%, 24.67% and 4.58%, respectively.
Collivignarelli et al. [17] similarly found that the early lockdown measures imposed in
Milan (Italy) caused nitrogen dioxide and nitrogen oxide levels to fall by 61% and 74%,
respectively, during the time of the lockdown.

Since the beginning of the Covid-19 pandemic, studies has been made to find factors
that impact the spread of the virus, and we have presented some of the most relevant within
the field of geographical analysis. Based on these, we aimed to implement novel techniques
to map the spread of the virus within the European Union across space and time, examine
explanatory variables and use them to predict infection rates. By including variables used
in different studies presented, we can gain a deeper understanding of geographic driving
factors in the Covid-19 pandemic. Within the geographic medium, our study additionally
adds points of interest (POIs) data as a new set of variables that reflects the location of
social hubs within urban areas. With the findings of the significant changes in pollution
levels over the pandemic, these will also be included, allowing us to further investigate the
correlation and explanatory factors between a large set of indicators for climate, pollution,
population density, and POIs and the infection rate of Covid-19.

2. Data and Methods
2.1. Data

Covid-19 data was obtained from the European Centre for Disease Prevention and
Control (ECDC), an agency under the European Union. The ECDC tracks and publish
Covid-19 case numbers for the whole globe on a country level, within the European Union
Covid-19 infection rates are also published at subnational regional levels. The dataset used
is the “Data on the weekly subnational 14-day notification rate of new COVID-19 cases”, which
contains weekly infection rates since week 13 (effectively week 14, since the data is based
on bi-weekly reports) for each of the European subnational regions.

The subnational regions should be in accordance with the European Nomenclature of
territorial units for statistics (NUTS) Regions, but it varies from country to country as per
on what NUTS level the data is being recorded at. It has therefore been necessary to create
a shapefile that consists of both NUTS 2 and NUTS 3 regions, and manually validate that
each region matches the NUTS code provided by ECDC. This does, inevitably, results in
countries being divided in an uneven amount of regions, with countries towards east such
as Hungary, Estonia, Romania reporting cases at a municipal level, and the larger central
European countries such as Germany, France, Spain reporting at a larger regional level.
Cases reported in Wales UK, could not be identified at either NUTS 2 or 3 level, so the case
data for Wales has been averaged in to a single region. The Covid-19 infection rate for each
region are summed to a total infection rate covering the period of week 13 to week 45 (23
March 2020—8 November 2020), these can be seen in Figure 1.
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Figure 1. Cumulative Covid-19 infection rates per 100,000 inhabitant, from 23 March until 8 November 2020.

POI data was gathered from OpenStreetMap (OSM), where all amenities for each
country was collected through the overpass API and merged into a complete amenity point
dataset. The number of amenities within each region were counted per capita by the 10
most abundant amenity types, i.e., restaurants, bars, cafés, gas stations, etc.

The amenities contained in OSM are crowdsourced data, which naturally raises the
question of data quality. Since the amenity data is implemented as counts within the
individual European regions, only the quality of completeness of the amenities are of
concern. The quality of positional accuracy of points is not a cause for concern when
working on a European scale. Unfortunately, completeness of amenities in the European
countries was mostly studied a decade ago when the use and data contained in OSM
was rising [18,19], and since then, most studies on accuracies of OSM amenities has been
made with the focus of positional accuracy, and not completeness. A recent study on
completeness of road and OSM’s POIs data in Europe found general high levels of quality
in amenities and road data across major European cities [20]. The overall quality of
OSM data in developed countries around the world is generally at a very high level [21],
providing data in comparable quality to those of official data sources [22]. Places that has a
high degree of tourism, i.e., most major European cities, also has a high completeness of
the mapped amenities, whereas the data quality in rural areas remains to be tested [20].

Daily surface temperatures are available from Copernicus Climate Change Services
(C3S) who monitor temperatures from ground stations across Europe. The daily mean tem-
perature of 2019 was downloaded from the E-OBS database as a 0.1 degree regular gridded
raster, and averaged in to an annual mean temperature. The annual mean temperature for
each region is derived by using zonal statistics.

The Copernicus Atmosphere Monitoring Service (CAMS) monitors a set of variables
related to air-quality and pollution levels across Europe, and distributes these as 0.1 degree
rasters. Based on availability and documented cause for each pollutant, we chose “Non-
methane VOCs” (volatile organic compounds), “Particulate matter < 2.5 µm (PM2.5)”,
“Nitrogen dioxide” and “Particulate matter < 10 µm (PM10)” as indicators for air-quality
and pollution levels. The four indicator data sets were downloaded as daily levels in the
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period of February through October for both 2019 and 2020 and the average year over year
difference was calculated for each indicator and through zonal statistics transferred to the
study regions.

The results is a data set covering 401 European regions with total Covid-19 infections
a dependent variable (x0) and 17 independent geographic variables. All variables are listed
in Table 1.

Table 1. Regions, Covid Infection rates and related variables.

Variable Argument

Total infected [dependent variable] X0

Population Density X1

Restaurants per cap. X2

Cafes per cap. X3

Fast Food Places per cap. X4

Pubs per cap. X5

Bars per cap. X6

Gas Stations per cap. X7

Schools per cap. X8

Doctors’ Offices per cap. X9

Kinder gardens per cap. X10

Annual mean temperature X11

Nitrogen dioxide, year-over-year change X12

Particulate matter < 2.5 µm (PM2.5, year-over-year change X13

Non-methane VOCs (volatile organic compounds), year-over-year change X14

Particulate matter < 10 µm (PM10), year-over-year change X15

2.2. Methods
2.2.1. Exploratory Data Analysis

Initially, an exploratory data analysis is carried out using the global Moran’s I statistics
to determine spatial autocorrelation. The Moran’s statistic is a measure of how a variable
of a region is correlated variable values of its surrounding regions, under the assumption
that variable values are normally distributed across space. Moran’s I follows a normal
distribution curve and tests whether clustering is appearing by calculating a z-score and p-
values, which are measures for standard deviation values and level of significance. Moran’s
I is a product of these values ranging from −1 to 1, where −1 is clustering of dissimilar
values, 0 is perfect distribution of values and 1 is clustering of similar values and hereby
showing spatial autocorrelation [23]. A predefined measure of neighbors are set, and
each individual regions and its surrounding areas are tested for spatial autocorrelation
against the complete data set. We used the k nearest neighbors to define neighborhoods,
with differentiated k values for the two scales of the study. For the European spatial
autocorrelation analysis we set k = 6 and for the Danish one we set k = 4.

The result of the analysis is grouped into four categories: hotspot, coldspot, doughnuts
and diamonds. The hot- and coldspots are showing clusters of high infection rates and
clusters of low infection rates, and the doughnuts and diamonds are showing regions with
low infection rates surrounded by high infection rates and regions with high infection rates
surrounded by low infection rates.

The data for the analysis are the total infection rates for each region gathered by
accumulating the bi-weekly infection rates since week 14. The spatial autocorrelation is
therefore a measure of clusters over the pandemic as a whole.
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2.2.2. Space Time Patterns

As an addition to the exploratory data analysis, an emerging hotspot analyses was
made based on the results of spatial autocorrelation. The emerging hotspot analysis is a
method that utilize a three-dimensional data set to locate clusters through both time and
space. By doing a spatial autocorrelation analysis for each time slot of the available data
(34 weeks) and adding these as layers on top of each other, it is possible to analyze how
hot and coldspots change in space over time. The analysis was carried out as an extension
to the spatial autocorrelation analysis done with the Pysal library in Python where we
implemented space time patterns categorization inspired by the Esri tool for the same
purpose [24]. The analysis look for 13 different scenarios for each region, these are seen
in Table 2. The standard implementation of space time categories include an upper time
interval threshold (tmax) of 90% and a lower time interval threshold (tmin) at opposite l0%
in some of the categories. To better account for the changes in infection clustering in space
it was decided to do multiple analysis with tmax and tmin at 75%, 25% and 55%, 45% for
those categories.

Table 2. Regions, Covid Infection rates and related variables (modified from [24]).

Space Time Category Definition (tmax = 90%, tmin = 10%)

New Hotspot Region identified as hotspot in the last time step that has not
been a hotspot before

Sporadic Hotspot Region identified as a hot spot at least once but in less than 10%
of the time steps that also has not been a cold spot

Oscillating Hotspot
Region identified as hotspot in the last time step and been a
hotspot in less than 90% of the time steps that also been a
coldspot at least once

Historical Hotspot Region that is not identified as hot spot in the last time step but
has been a hot spot in more than 90% of the time steps

Intensifying Hotspot Region identified as a hotspot in the last time step that has also
been a hotspot in more than 90% of the time steps

Persistent Hotspot Region identified as a hotspot in at least 90% of the time steps

New Coldspot Region identified as a coldspot in the last time step that has not
been a coldspot before

Sporadic Coldspot Region identified as a coldspot at least once but in less than 10%
of the time steps that also has not been a hotspot

Oscillating Coldspot
Region identified as a cold spot in the last time step and been a
coldspot in less than 90% of the time steps that also been a
hotspot at least once

Historical Coldspot Region that is not identified as coldspot in the last time step but
has been a coldspot in more than 90% of the time steps

Intensifying Coldspot Region identified as a coldspot in the last time step that has also
been a coldspot in more than 90% of the time steps

Persistent Coldspot Region identified as a coldspot in at least 90% of the time steps

Not Significant None of the above

The classifications are based on assessments of the results of spatial autocorrelation
outputs stacked as layers through time, and these are then categorized by looking through
the layers vertically. This is considered a simplified emerging hot spot analysis, as the
analyses of the individual layers does include the layers above or below.
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2.2.3. Statistical Models: OLS & Geographically Weighted Regression
OLS

The ordinary least squares is a global regression model that seeks to investigate the
relationship between a dependent variables (indicators) and a number of independent
variables. The model is explained by the following equation [25]:

y = β0 + B1X1 + β2X2 + · · · βnXn + ε (1)

where y is the dependent variable, in our case Covid-19 infection rates, β is the ordinary
least squares estimated coefficients and ε is the residuals of the predicted values. The OLS is
a global model since the equation assume the relationship between the dependent variable
and the indicators to be constant for the whole data set. This is however a simplification of
the investigated relationship, as this will often vary from location to location.

GWR

The geographically weighted regression (GWR) model is a similar regression model
with the addition of adding geography to the equation by estimating local coefficients for
local areas. GWR is thereby a local OLS model that varies over space. GWR is described by
the OLS equation with the addition of coordinates for each location [25]:

y = β0(ui, vi) + B1(ui, vi)X1 + β2(ui, vi)X2 + · · · βn(ui, vi)Xn + ε (2)

The local regression area is defined by a spatial kernel function and a bandwidth
that can be defined as either distance (fixed bandwidth) or a neighborhood size (adaptive
bandwidth). Only areas that are within the kernel are included in the GWR model. We
used an adaptive bandwidth size defined by automatic model calibration and a Bi-square
kernel.

GWR is capable of mapping how variable relationships vary across space and hereby
to tell which variables best describes the variation seen in the dependent variable at
different regions. We included all the variables seen in Table 1 in the GWR analysis. The
model is evaluated by mapping local R2 values, variables coefficients and model residuals.

2.2.4. Machine Learning Prediction

The geographic variables collected are a mix of static elements and dynamic climatic
indicators. The population density, amenity counts and annual temperatures are elements
that both reflects the geography and cityscapes, while at the same time, also tells something
about the culture and local habits of the people living in a certain area. Meanwhile the
air quality and pollution indicators are variables that change on the short term as a direct
consequence of the level of activity and movement of people within a region. The year
over year change should be a good indicator of how far from normal the activity level in a
region has been, and thereby reflect the different lockdown policies implemented in the
different countries and regions, a measure that elsewise is difficult to quantify.

By incorporating all these values in a prediction model, we aim at reflecting different
aspects of geography, culture and level of activity in the regions across Europe. However,
with lockdown measures being one of the key components in preventing the spread of
virus, a pan European prediction model that does not directly include lockdown measures
is very unlikely to outperform a model that does include such measures.

We therefore aim at carrying out the prediction at different levels of scale, with the
broadest being all the 401 European regions where cases are reported. Narrowing down,
the prediction is performed on the identified hot- and cold spots identified in the spatial
autocorrelation analysis, reflecting the clusters of regions who did worst and best in terms
of total Covid-19 infections. Lastly, the prediction is carried at a municipal level for the
country Denmark, where the implemented policies have almost been uniform since the
beginning of the pandemic.
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We chose three different prediction models, all capable of predicting quantity values,
and set out to predict the infection rate based on the 16 independent variables. The
predictors of choice are random forest regressor [26], lasso regression [27] and support
vector regression (SVR) [28,29]. The models were each chosen because they are widely
used in similar prediction tasks.

3. Results

By November 2020, all European countries were affected by the Covid-19 pandemic,
but the infection rates varied greatly between the individual countries and regions. Belgium,
Spain and the Czech Republic are over the course of the whole period the countries with
the highest infection rates. The regions of Wallone and Brussels in Belgium are the two
worst hit, with total infection rates of 11,504 and 10,832 per 100,000 population. Iceland
and Finland are the two countries with least infected regions. Five out of six regions in
Iceland have less than 100 infected per capita and its capital region have had a total of 115
infected per 100,000 population. In Figure 2, bi-weekly infection rates for the included
regions are visualized at three different weeks of 2020.

Figure 2. Bi-weekly infection rates at week 14, week 26 and week 42.

Over the whole time period of March to November, peak infection rates has occurred
at different countries. In the spring of 2020 northern Italy and Spain were the worst affected,
whereas in the summer Sweden was the only country with overall high infections, in the
fall of 2020 the majority of countries were seeing surges in infections far higher than those
observed in the spring.

3.1. Spatial Autocorrelation, EU and DK

The spatial autocorrelation analysis was carried out at the levels of all European
Regions and for the municipalities in Denmark. The analysis covers a period of 32 weeks,
from the start of April until start of November 2020, for which the infection rates has been
accumulated.

The spatial autocorrelation analysis seen in Figure 3 successfully identified clusters of
hot- and coldspots together while also locating some doughnuts and diamonds. For Europe
as a whole it is clear that the identified hotspots over the whole pandemic is the majority of
Spain, France and Belgium and some parts of The Netherlands, the Czech Republic is also
identified as a hotspot resulting in the surrounding regions of south Germany and Poland
being doughnuts, i.e., low infection areas surrounded by high infected areas. Low infection
areas, coldspots, are seen to mostly in the Nordic regions of Norway, Finland, the Baltic
countries and Iceland, while Greece and Cyprus are the only southern regions reporting
low infection rates.

For the municipalities of Denmark, high-infection areas are centered around the capital
region of Copenhagen and its surrounding municipalities. High infection rates are also
seen in the second largest city of Denmark, Aarhus, as this is identified as a diamond,
i.e., having high infection rates while its surrounding municipalities have not seen similar
high rates. The coldspot are seen to be the less populated areas of southern Denmark and
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central-north Jutland. The third largest city of Denmark, Odense in central Fyn, are within
the large cold spot towards south and hereby not having significant higher infection rates
than its surrounding municipalities.

Figure 3. Hot and cold spots of total accumulated Covid-19 cases in the EU regions (left) and the municipalities of Denmark
(right).

As the spatial autocorrelation is based on accumulated infection rates, it does not show
how infection rates has fluctuated over time in the individual regions, for this purpose we
can assess the results of emerging hotspot analysis.

3.2. Space Time Patterns—Emerging Hotspot Analysis

The emerging hotspot analysis is a product of spatial autocorrelation over time, where
each classification bin is a measure of how many times a regions has been either a hot- or
coldspot or having no significance. As described in Section 2.2.2, two analyses are carried
out each with a different threshold for how many times a region must be of a category that
falls under one of the space time pattern categories.

3.2.1. Emerging Hotspots—Europe

In Figure 4, the results of the emerging hotspot analysis for the EU regions are seen.
Both at the 90% time interval setting and the 70% time interval setting, the majority of
regions are seen to fall under the ‘not significant’ class, meaning that they did fall under
any of the categories specified in Table 2. At the 90%-time interval map, new hotspots are
seen to appear in northern Italy, parts of Austria (including Vienna), Croatia and the capital
region of Poland. The sounding regions, that is mostly Austria and Croatia, are classified
as oscillating hotspots, which are new hotspots that has in fact been a coldspot at an earlier
time. Oscillating coldspots are centered on Ireland, Northern Ireland and some regions in
Scotland, while some regions in Finland are seen to be intensifying coldspots which are
regions that has generally have low infection rates and keep on doing so.

As seen in Figure 5, when lowering the time setting from 90% to 75%, more regions
are expectedly classified in to the hot and coldspot categories. Especially the sporadic hot
and coldspots are seen to be greater in number, with most of Romania, eastern France and
northern Italy covered, and also Luxembourg, Wales and parts of The Netherlands (including
its capital region) being sporadic hotspots. Sporadic coldspots are also seen to be greater in
number, covering northern Germany, southern Denmark, eastern Hungary and Poland, and
southern Italy. A larger part of Finland and all of Iceland is now classified as intensifying
hotspots, and the regions of and around Ireland not changing their classification.
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Figure 4. Emerging hotspot results for total cumulative infection rates from week 13 to week 45 in Europe at 90% (left) and
75% (right) time interval setting.

Figure 5. Emerging hotspot results for total cumulative infection rates from week 13 to week 45 at
55% time interval setting.
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3.2.2. Emerging Hotspots—Denmark

A similar emerging hotspot analysis was carried out for the municipalities of Denmark,
the results are seen in Figure 6. Interestingly, only the sporadic coldspots are seen to be
greater in number when the time interval threshold is lowered from 90% to 75%. At the
lower threshold, these sporadic coldspots covers large parts of mid- and western Jutland
together with the municipalities towards south for the islands Lolland and Falster. For both
the analysis, the outcome is otherwise roughly the same. In close proximity to Copenhagen,
we see four oscillating hotspots and going a bit further away from the capital we see the
sporadic hotspots. The oscillating coldspots are meanwhile seen to be at the opposite
end of the country, in the very north of Jutland, where the 4th largest city of Denmark,
Aalborg in also placed. Interestingly, neither the capital of the second and third largest
cities of Denmark are categorized as any kind of hotspot. In Figures 7 and 8, the emerging
hotspot analysis is implemented on a monthly basis, showing in which parts of the country
infection rates where increasing and decreasing at the given times.

Figure 6. Emerging hotspot results for total cumulative infection rates from week 13 to week 45 in Denmark at 90% (left)
and 75% (right) time interval setting.

Figure 7. Emerging hotspot results for total cumulative infection rates in Denmark for April 2020 (left) and September 2020
(right) at 75% time interval setting.
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Figure 8. Emerging hotspot results for total cumulative infection rates in Denmark for November 2020 at 75% time interval
setting.

3.3. Geographically Weighted Regression—EU

The GWR model was used to analyze how the 16 variables affected the total infection
rate over the 401 European regions, the results consist of both the global regression model
(OLS) and as local regression model. An automatic calibrated adaptive bi-square kernel [25]
was used, with a bandwidth size of 104. See the global result statistics in Table 3 and local
regression model results in Table 4.

Table 3. The global regression model (OLS) and the local regression model (GWR) results.

Model Res Sum
Squares AIC AICc R2 Adjusted R2

OLS 219.230 927.850 931.448 0.453 0.432
GWR 66.922 654.585 752.719 0.833 0.765
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Table 4. Variable statistics for OLS and GWR model. Est = Estimate, SE = Standard Error.

Variable
OLS p-Value GWR

Est SE STD Min Median Max

X0 0.000 0.038 1.000 0.380 −0.909 −0.010 0.805
X1 0.111 0.043 0.009 0.137 −0.110 0.113 0.676
X2 0.109 0.063 0.084 0.222 −0.246 0.167 1.122
X3 −0.264 0.056 0.000 0.412 −1.612 −0.184 0.279
X4 0.007 0.049 0.893 0.306 −0.784 0.119 0.683
X5 −0.071 0.045 0.116 0.197 −0.761 −0.113 0.487
X6 0.195 0.054 0.000 0.359 −0.598 0.112 1.312
X7 0.011 0.051 0.828 0.441 −0.629 −0.018 1.487
X8 0.048 0.046 0.297 0.208 −0.568 −0.028 0.355
X9 −0.102 0.044 0.021 0.306 −1.074 −0.200 1.349

X10 −0.087 0.045 0.056 0.225 −0.610 0.010 0.780
X11 −0.134 0.052 0.010 0.322 −1.135 −0.280 0.640
X12 −0.115 0.049 0.019 0.353 −1.257 −0.022 0.794
X13 0.144 0.057 0.011 0.298 −0.997 0.039 0.500
X14 0.506 0.050 0.000 0.279 −0.124 0.372 0.956
X15 −0.142 0.050 0.004 0.376 −0.697 −0.069 1.360

Comparing the global regression model (OLS) with the local regression model (GWR)
in Table 3, the residual sum of squares is seen to drop significantly from 219 to 66, and
the AIC dropped from 931 to 752. The adjusted R2 value almost got a twofold increase
from 0.432 to 0.765, indicating that the GWR model is able to account for 76.5% of the
variation in Covid-19 infections. These results confirm the superiority of GWR in a case
where we expect spatial variably in the relationship between the variables [30]. We can
further investigate the statistics results for each of the variables included in the model,
these are shown in Table 4.

Inspecting the p-values of the individual variables in Table 4, the five variables having
the greatest significance (p-value) on the dependent variable are X1 (Population Density),
X3 (Cafes), X6 (Bars), X14 (Non-methane VOC) and X15 (PM10). The mapped coefficients
for these five variables are shown in Figure 9. In the mapped coefficients, a similar pattern
is seen between café and PM10 levels that the variables are of most influence in central
Scandinavia, i.e., central Norway and Sweden, Denmark and Northern Germany. The other
three variables do to some degree also share the same pattern, with the greatest influence
on Covid-19 infection rates seen in eastern Europe, France, and to some degree Scandinavia
and Italy.

X14 (Non-methane VOC) and X15 (PM10) are both measures of air pollution, so these
could be expected to have similar estimate coefficients, whereas the coefficients calculated
in the OLS model in Table 4 show that X14 is positive and X15 is negative. The mapped
coefficients in Figure 9 shows that the variable coefficients geographically are very different
from each other, and similarly in Figure 10 where the two variables are seen to have
significance in areas directly opposite to each other. Even though X14 and X15 are measures
of air pollution, they each represent different emission sources and thus, do not follow the
same geographic pattern.



Int. J. Environ. Res. Public Health 2021, 18, 2803 14 of 19

Figure 9. The coefficients of the 5 most significant variables in explaining total Covid-19 infections.

Figure 10. The significance of the 5 most significant variables in explaining total Covid-19 infections.

The charts in Figure 10 are showing in which regions each variable is having a sig-
nificance towards the infection rate, this can both be a positive (high rates) and negative
(low rates) impact on the rate. In the regions coloured in grey the variable did show any
significance toward infection rates.

The population density is seen to have an overall positive effect on infection rates,
with the greatest effect seen in the central European regions, covering Germany, France,
Belgium, The Netherlands and England. Looking at cafes as bars, they seem to have effect
in roughly the same area of western Europe, but interestingly each of these variables are
affecting infection rates in opposite directions. Areas with a high number of bars per capita
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are having high infection rates, where the opposite is the case with cafes per capita in
roughly the same areas. Since the two pollution level indicators, Non-methane VOC and
PM10, are measured as year-over-year changes, higher values equal to a higher percentage
yearly change. While we see the pollution indicators having impact at different geographic
regions, the impact of them is highly positive. This indicates that regions that did not have
a decrease in their pollution levels also had high Covid-19 infection numbers.

Figure 11 shows the geographic distribution of the condition numbers, local R2 values,
and standardized residuals. The condition number checks for redundancy in the variables
used in the local regression task, and values above 30 are a cause for concern and results
within these regions are not to be trusted [31]. For the most part, the condition numbers do
not cause reasons for concern except at the very red regions of Romania and Greece. The
levels here are in fact so high that the model output is not of any use in these regions. The
R2 values are indicators of how well the model can fit the regression locally. The highest R2

values are in the regions around East Germany, Poland and Czech Republic, together with
some parts of Scandinavia and Spain. The lowest R2 values are seen in Italy, parts of France
and the North of Romania. Lastly the residuals are mapped to investigate if these appear
to be clustered, to have a properly fitted model the residual should be evenly distributed in
space. The residual map in Figure 11 does not indicate any spatial clustering of residuals.

Figure 11. Geographic distribution of Condition Number, Local R2 values and Standardized Residuals for the GWR model
of total Covid-19 infections.

3.4. Machine Learning Prediction

The machine learning prediction aimed at predicting the total infection rate for the
included regions based on the variables described in Section 2.1 and Table 1. We tested
three different models at four different scale levels, ranging from all of Europe, to selected
regions of Europe and down to the individual municipalities of Denmark. All data included
in the model are normalized and split into training and test data at a ratio of 70/30. The
models are evaluated using the accuracy and mean absolute error (MAE) metrics, the
accuracy should be as high as possible and MAE as low as possible. All models across
all regions are ran over 10 iterations each and the evaluation scores are the average of the
result of each iteration. The results of the models are seen in Table 5.

Across the included prediction models, the random forest is the best performing in
both accuracy and MAE. The random forest prediction of all European regions is seen
to have an accuracy of 52%, where, when only including the hot- and cold-spots, the
same predictor is achieving 76% accuracy. The latter is of course a selection of the regions
performing best and worst in terms of infection number, so a higher accuracy is expected
here. However, the lowest MAE of all predictions is seen to be the pan European random
forest prediction. The random forest prediction for the municipalities of Denmark showed
61% accuracy and a MAE of 0.095. This is finest level of scale for the predictions and
also within a single country, so the policies for infection counter-measures are much more
uniform across the regions.
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Table 5. Machine Learning Prediction Results, MAE = Mean Absolute Error.

Area Nr. of Regions Model Accuracy MAE

Europe
Random Forest 52% 0.079

401 Lasso 36% 0.153
Support Vector Regression 51% 0.151

Europe—Hot- &
Coldspots

Random Forest 76% 0.099
128 Lasso 74% 0.285

Support Vector Regression 73% 0.256

Europe—
Hotspots

Random Forest 19% 0.177
56 Lasso - % 0.217

Support Vector Regression - % 0.221

Denmark
Random Forest 61% 0.095

98 Lasso 35% 0.233
Support Vector Regression 41% 0.232

Numbers marked in bold are the best achieved accuracy measures for the given area.

The importance of the 10 most significant variables in the random forest pan Europe
prediction is shown in the plot in Figure 12. It is clear that the year over year change of
Non-methane VOCs are by far the most importance variable in this model, secondly comes
population density, a variable that is also expected to be of significance importance to the
spread of the virus. These variables are the only ones with a significance greater than 10%,
and following them comes gas stations and other measures for air quality and pollution
levels. This is according well to the results found in the geographic weighted regression
models, where both Non-methane VOC and Population density showed great significance
in explaining total infection rates.

Figure 12. Variable Importance for Random Forest Regression of all EU regions.

4. Discussion

Throughout the paper, we have presented and implemented a number of tools that
can be used to help understand how the spread of Covid-19 has evolved over time, where
it is currently most active and what are the factors that affect this spread. For the most part
of 2020 and continuing into 2021, Europe has been severely hit by the global pandemic
with the first wave seen in the spring of 2020 followed by a summer with generally low
infection rates and into the fall and winter of 2020 where the second, and in many cases,
even more severe wave of infection raging over Europe. By the end of 2020, no country in
Europe has remained safe and unaffected by the virus.

Our spatial autocorrelation analysis identified the central European regions as the
hotspot of the total pandemic, and the more isolated and less populated Nordic regions



Int. J. Environ. Res. Public Health 2021, 18, 2803 17 of 19

as cold spots. This finding confirms our general understanding of how viruses spread,
where densely populated and interconnected areas are at higher risk for a fast spread of
pandemic [32,33]. As this analysis does not reflect the spread of virus over time, we used
the finding of the spatial autocorrelation in an emerging hotspot analysis. This analysis is
a powerful tool in mapping the pandemic in its current status and still factoring in how
the individual regions have been affected in the past. The analysis can be implemented at
many different scales of time and can hereby be used to study the spread of virus over long
periods of time and down to monthly or even bi-weekly status of individual regions. The
emerging hotspot maps are great tools for authorities to help deciding on where measures
must be tightened or relieved while also serving as a great communication tool for the
citizens to understand the basis of such decisions.

Our further analysis revolves around investigating what geographic factors affects
the infection rate of Covid-19 in Europe, for this purpose we carried out a geographically
weighted regression analysis. We found that the number of bars and cafes are significantly
correlated to infection rates, confirming that places for social aggregation serve as infection
source. Further analysis could be done at finer scales, to provide more in-depth knowl-
edge of how the virus spread locally throughout cities and hereby help decision making
regarding if such places should have restrictions imposed. Furthermore, we found that
the air-quality and pollution indicators of Non-methane VOC and PM10 levels are also
correlated with infection rates. This proves as an indication towards the level of activity in
the society as lockdown measures expectedly have an effect on pollution levels [16], and
indeed regions that had lower reduction in pollution levels have higher infection rates.
Moreover, the GWR analysis showed a positive correlation between population density and
infection rates, a finding that confirms the hypothesis that population density is associated
with higher Covid-19 infection rates [15,34–37].

Finally, we implemented all the variables in a machine learning framework includ-
ing random forest, support vector regression and lasso with the goal of assessing the
predictability of infection rate solely based on the included variable features. Our pan
European model was able to predict the infection rate with 52% accuracy and the single
country model of Denmark resulted in 61% accuracy. A key component in predicting
infection rates is naturally to which degree a country has introduced lockdown measures,
a variable that is difficult to quantify and that was not introduced in the model. To achieve
better prediction results, such a variable is highly recommended to include in the future
works. The variable importance showed that pollution measures have a great importance
in the prediction and given the fact that pollution levels and lockdown measures are closely
correlated, we suggest that future research use pollution measures as one potential proxy of
countrywide lockdowns. Certainly, while moving towards electric vehicles and renewable
energies, such a proxy will not function. Actual levels of lockdown could also be quantified,
but that is a challenging task since policies and their implementation are subject to human
interpretation and behaviour. Due to the fact of dissimilar policies implemented, we found
that implementing a single model across multiple countries is challenging, this is further
concluded by result of the same model performing 10% better within a single country, i.e.,
Denmark, where policies are more uniform. This is largely due to a number of reasons such
as (a) dissimilar number of COVID tests per capita rooted in the cost of Covid-19 tests from
being free of charge (e.g., Denmark) or expensive (e.g., Greece, Romania), (b) not applying
a universal standard for reporting infection numbers, (c) diversity of geodemographic
distribution across each country, (d) dissimilar health services across Europe and, (e) wide
diversity of cultures, behavioural factors, dominant background health issues in Europe.

5. Conclusions

This study presented a series of useful geospatial methods for studying the geography
of Covid-19 and what factors facilitate the pandemic’s spread. We located European
hot- and cold spots of infection rates and used this to further investigate and visualize
how individual regions and municipalities have progressed over time. The emerging
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hot spot analysis is especially a powerful tool in understanding and visualizing where
case numbers are rising and falling and hereby contribute to decision-making and raise
understanding in the general public. We further examined the drivers of the pandemic
through a pan European statistical GWR model and in a machine learning environment.
The GWR model shows the most significant points of interest in explaining infection rates,
while also showing that population density and air pollution are also strong explanatory
factors. Our machine learning model, i.e., the random forest method, reached prediction
accuracies of 52% and 61% for Europe and Denmark and confirmed that pollution data can
be used as a relevant variable in predicting infections. In order to develop better prediction
models in the future, we suggest including further variables that reflects lockdown levels
of individual regions over time. Such a variable could be made from close examination of
adopted policies, but could as well be derived from pollution levels.
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