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A haplotype is defined as a combination of alleles at adjacent loci belonging to the
same chromosome that can be transmitted as a unit. In this study, we used both the
Illumina BovineHD chip (HD chip) and imputed whole-genome sequence (WGS) data to
explore haploblocks and assess haplotype effects, and the haploblocks were defined
based on the different LD thresholds. The accuracies of genomic prediction (GP) for
dressing percentage (DP), meat percentage (MP), and rib eye roll weight (RERW) based
on haplotype were investigated and compared for both data sets in Chinese Simmental
beef cattle. The accuracies of GP using the entire imputed WGS data were lower than
those using the HD chip data in all cases. For DP and MP, the accuracy of GP using
haploblock approaches outperformed the individual single nucleotide polymorphism
(SNP) approach (GBLUP_In_Block) at specific LD levels. Hotelling’s test confirmed that
GP using LD-based haplotypes from WGS data can significantly increase the accuracies
of GP for RERW, compared with the individual SNP approach (∼1.4 and 1.9% for
GHBLUP and GHBLUP+GBLUP, respectively). We found that the accuracies using
haploblock approach varied with different LD thresholds. The LD thresholds (r2

≥ 0.5)
were optimal for most scenarios. Our results suggested that LD-based haploblock
approach can improve accuracy of genomic prediction for carcass traits using both
HD chip and imputed WGS data under the optimal LD thresholds in Chinese Simmental
beef cattle.

Keywords: genomic prediction, prediction accuracy, LD, haplotype, Chinese Simmental beef cattle

INTRODUCTION

Genomic prediction (GP) has been widely used in the past decades (Meuwissen et al., 2001).
Many approaches, including GBLUP (VanRaden, 2008), Bayes alphabet (Habier et al., 2011;
Gianola, 2013), and machine learning (Li et al., 2018; Yin et al., 2020), have been proposed to
improve prediction accuracy. Most of these approaches were developed based on single nucleotide
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polymorphisms (SNPs). Genomic prediction using
haplotypes instead of SNPs can be more accurate
(Zondervan and Cardon, 2004). A haplotype is defined as a
combination of alleles at adjacent loci belonging to the same
chromosome that are transmitted as a unit (Vormfelde and
Brockmöller, 2007; Won et al., 2020) and a haplotype may
contain the combined effects of causal variants with high linkage
disequilibrium (LD) (Balding, 2006; Garnier et al., 2013), thus
this approach can effectively identify the loci with small effects,
which may not be captured by a single marker (Feitosa et al.,
2020).

Many previous studies have shown that genomic selection
using haplotypes is more reliable than that using individual
SNPs for both simulated and real data, even when the marker
density is low (Calus et al., 2008; De Roos et al., 2008). Cuyabano
et al. (2014) compared the genomic predictions between the
haplotype-based (constructed based on LD and using HD chip
data) and the SNP-based approach for milk production and
health traits in dairy cattle, suggesting the high prediction ability
using the haplotype-based approach. Moreover, Hess et al. (2017)
found that fitting covariates for haplotype alleles instead of SNPs
can increase the prediction accuracy up to 5.5% (Hess et al.,
2017). Recently, Xu et al. (2020) reported that the haplotype-
based model using HD chip data can improve the accuracy by
5.4–9.8%, compared with the SNP-based approach for carcass
and live weight traits.

Haploblocks can be constructed through multiple strategies
including the fixed block length based on centimorgans (cM)
(Boichard et al., 2012), base pairs (bp) (Sun, 2016), or a constant
number of SNPs per block (Hayes et al., 2007; Calus et al., 2009;
Villumsen et al., 2009) and not fixed length approach based
on the LD pattern (Cuyabano et al., 2015). Many improved
methods have been proposed to account for recombination
hotspots and coldspots across the genome (Calus et al., 2008;
Sandor et al., 2012; Weng et al., 2014; Cuyabano et al., 2015).
Haploblock construction based on the LD is expected to achieve
a high prediction accuracy by selecting the effective SNPs
and reducing the amount of predictor variables in the model
(Cuyabano et al., 2015).

The WGS data can provide more potential causative
polymorphisms, thus imputation from low density marker panels
to WGS for datasets with a large number of individuals may be an
effective approach to increase the accuracy of GP (Marchini et al.,
2007; Browning and Browning, 2009; Howie et al., 2009; Li et al.,
2010). A recent study suggested that genomic prediction within-
population using simulated WGS data can increase (∼31%)
the accuracy of prediction for traits with low and moderate
heritability (Iheshiulor et al., 2016). Similarly, Druet et al. (2014)
suggested that the prediction accuracy using simulated sequence
data can be improved (∼30%) when including causal mutations
with low minor allele frequencies. A previous study suggested
that the haploblock approach may play an important role in
the genomic prediction involving genome sequences (Cuyabano
et al., 2014). The haploblocks containing additional markers are
likely to be generated from WGS, which may reduce the number
of variables compared with SNP and keep all SNP information.
The haplotype approach based on WGS is likely to improve the

accuracy of GP. However, the evaluations of prediction accuracies
on the economically important traits using this strategy are still
yet to be explored in cattle.

The objectives of current study were to (1) evaluate the
predictive performance of carcass traits using HD chip and
WGS data in Chinese Simmental beef cattle; (2) compare
the differences of predictive accuracies between haplotype-
based prediction model (GHBLUP), SNP-based prediction model
(GBLUP), and the combination of haplotype and SNP prediction
model (GHBLUP+GBLUP); and (3) investigate the LD-based
haplotypes with different thresholds on the prediction accuracies.

MATERIALS AND METHODS

Ethics Statement
All animals used in the study were treated following the
guidelines established by the Council of China Animal Welfare.
The procedure for collecting cattle blood samples and phenotypes
was carried out in strict accordance with the protocol approved
by the Science Research Department of the Institute of Animal
Sciences, Chinese Academy of Agricultural Sciences (CAAS)
(Beijing, China).

Data
Data available comprised a total of 1,233 Simmental cattle
born between 2008 and 2015 from Ulgai, Xilingol League, and
Inner Mongolia, China. After weaning, cattle were moved to
Jinweifuren Co., Ltd. (Beijing, China) for fattening under the
same feeding and management conditions. A more detailed
description of the management processes was reported in
previous studies (Zhu et al., 2016, 2017). All individuals were
slaughtered at an average age of 20 ± 2.2 months. Carcass
and meat quality traits were measured in accordance with
the guidelines proposed by the Institute of Meat Purchase
Specifications established by the Agricultural Marketing Service
of the USDA. From these traits, dressing percentage (DP), meat
percentage (MP), and rib eye roll weight (RERW) were analyzed.

Genotyping and Imputation
The DNA samples from blood were genotyped with Illumina
BovineHD BeadChip. Before statistical analysis, the original
SNP dataset was filtered using PLINK (v1.07) (Purcell et al.,
2007; Chang et al., 2015). Individuals and autosomal SNPs
were filtered by the following criteria: SNP call rate (<0.90),
minor allele frequency (MAF < 0.01), Hardy–Weinberg
equilibrium (p < 10−6), and individual call rate (<0.90). Missing
genotypes were imputed using BEAGLE (v4.1) (Browning
and Browning, 2016). Consequently, 1,233 individuals and
671,164 SNPs remained.

Forty-four unrelated individuals (according to the pedigree
and PI-HAT value estimated using PLINK v1.07) were selected
as the reference population for imputation. The whole genome
sequencing of these individuals was performed using Illumina
Hiseq2500 instruments (Illumina Inc., San Diego, CA,
United States). All processes were performed according to
the standard manufacturer’s protocols.
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The SNPs from the HD chip were imputed to the sequencing
level using BEAGLE (v4.1) (Browning and Browning, 2016).
The imputed WGS was filtered by removing SNPs with a MAF
less than 0.05. After quality control, a total of 6,776,719 SNPs
remained. The imputation accuracy was assessed by the allelic
R-squared measure (AR2), which is an estimate of the squared
correlation between the most probable and the true reference
dose. The average imputation accuracy was 0.83 when the MAF
was larger than 0.05.

Heritability and Variance Component
Estimation
Phenotypes were adjusted for the fixed effects, including sex,
year, and the covariates of body weight upon entering the
fattening farm, and the number of fattening days. Subsequently,
the adjusted phenotypes were used for further analyses. Variance
components were estimated using the following univariate
animal model in ASREML (v4.1).

y = 1nµ+ Za+ e (1)

where y is the vector of the adjusted phenotypes, 1n is an n×
1 vector with entries equal to 1; µ is the overall mean; a ∼
N
(
0, σ2

aG
)

is a vector of random additive genetic effect, where G
is the additive genomic relationship matrix constructed using all
SNPs and σ2

e is the additive genetic variance, Z is incidence matrix
linking a to y; and e ∼ N

(
0, σ2

e I
)

is a vector of random residuals,
where I is the identity matrix and σ2

e is the residual variance. The
heritability estimates were calculated as h2

= σ2
a/(σ

2
a + σ2

e ).

Haplotype Construction
The LD-based haploblocks were generated separately for each
chromosome. A group of SNPs was defined as a haploblock
if the LD between every two SNPs in the group was greater
than or equal to the threshold value (r2). For two bi-allelic loci
(A1/A2 and B1/B2), r2 was calculated as,

r2
=

D2

(pA1pA2pB1pB2)
(2)

where D = pA1B1
pA2B2

− pA1B2
pA2 B1

.
Seven different LD levels (r2) (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and

0.8) were set as the thresholds in this study.
Haplotype effects were modeled using numerical dosage

coding strategies (Calus et al., 2008; Cuyabano et al., 2014,
2015; Meuwissen et al., 2014; Da, 2015). Numerical dosage
coding of a haploblock is formed by two consecutive SNPs
(Table 1). In the numerical dosage model, artificial SNPs were
created for each haploblock, and these “SNPs” were coded as the
number of copies.

Genomic Prediction Models
The genomic best linear unbiased prediction (GBLUP) model
including the haplotype/SNP effect was used for DP, MP, and
RERW as described in Eq. (1). Three approaches based on (a)
the SNPs, (b) the haploblock only, and (c) the haploblock and

TABLE 1 | Numerical dosage coding of a haploblock formed by two consecutive
single nucleotide polymorphisms (SNPs).

Haplotype
allele 1

Haplotype
allele 2

Numerical coding of haploblock

AB Ab aB ab

AB AB 2 0 0 0

AB Ab 1 1 0 0

AB aB 1 0 1 0

AB ab 1 0 0 1

Ab Ab 0 2 0 0

Ab aB 0 1 1 0

Ab ab 0 1 0 1

aB aB 0 0 2 0

aB ab 0 0 1 1

ab ab 0 0 0 2

AB, Ab, aB, and ab are four haplotype alleles of the same haploblock.

the non-blocked SNPs were considered for predictions. Seven
different r2 thresholds were used for haploblock construction.

We performed genomic prediction using GBLUP for all SNP
markers, and the genomic relationship matrix was calculated
as G = (M−P)(M-P)′

2
∑m

i = 1 pi(1−pi)
, where M denotes the (0, 1, 2)-encoded

genotype matrix, pi is the MAF of marker i, m is the number of
markers, and P is a matrix with columns equal to 2pi.

Genomic prediction using GBLUP for the SNP
markers inside of the block in HD chip and WGS
data were defined as GBLUP_770K_In_Block and
GBLUP_WGS_In_Block, respectively.

The haplotype-based genomic best linear unbiased prediction
(GHBLUP) was performed for all markers. The haplotype-based
genomic relationship matrix in GHBLUP was constructed as the
product of the haplotype allele matrix (MH) and expressed as
GH =

MHMH
′

QH
, where MH is the pseudo-markers matrix with

entries 0, 1, and 2 representing the number of copies of each
haplotype allele in a haploblock, and QH is the total number
of haplotype alleles of whole genome. In the GHBLUP+GBLUP
model:

y = 1nµ+ Za+ Zuau+e (3)

which included the haploblock effects and the SNP effects
estimated from outside the haploblocks (non-blocked SNPs).
a : N

(
0, σ2

aGH
)

is a vector of random additive genetic effect,
where GH is the additive genetic relationship matrix constructed
using haploblock and σ2

a is the additive genetic variance based
on the haploblock, Z is incidence matrix associating a; au :
N
(
0, σ2

auG
)

is a vector of random additive genetic effect, where
G is the additive genetic relationship matrix constructed using
non-blocked SNPs and σ2

au is the additive genetic variance based
on the haploblock, Zu is incidence matrix associating au; a is
composed of haploblock effects and au is composed of SNP effects
estimated from outside the haploblocks. Also, they are considered
as uncorrelated effects.
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Assessment of Prediction Accuracy
The accuracy of genomic prediction was assessed using fivefold
cross-validation (CV). The CV procedure was applied by
assigning animals randomly into five separate subsets. This
procedure was randomly repeated 10 times.

The regression coefficient of the adjusted phenotype on
GEBVs for individuals in the validation set was obtained to
measure the degree of inflation/deflation of prediction, which was
defined as follows:

b =
Cov(gebv, y

∗

)

var(gebv)
(4)

The average Pearson correlation coefficient between the
adjusted phenotypic values and genomic estimated breeding
values (GEBVs) in the validation set divided by square root of
heritability was used as a measurement of prediction accuracy.
The prediction accuracy was calculated as (Bolormaa et al., 2013):

Prediction accuracy =
cor(y∗, gebv)√

h2
(5)

where y
∗

is adjusted phenotypic values, gebv is the genomic
estimated breeding values (GEBVs), and h2 is the heritability.

To compare the differences of the accuracies of GP using
three approaches (GBLUP, GHBLUP, and GHBLUP+GBLUP)
and marker densities (HD chip and WGS), we used Hotelling’s
(1940) t statistic (Hotelling, 1940) to test the significance of
the differences.

The test statistic t is given by,

t =
(rjk − rjh)

√
(n− 3)(1+ rkh)
√

2 |R|
(6)

with df = n− 3, where,

|R| = 1+ 2rjkrjhrkh − r2
jk − r2

jh − r2
kh (7)

where r is the observed correlation and n is the number of
observations. For instance, while comparing the differences of
accuracy between the GBLUP and GHBLUP, the rjk is the
cor(y

∗

, gebvGBLUP), the rjh is the cor(y
∗

, gebvGHBLUP), and the
rkh is the cor(gebvGBLUP, gebvGHBLUP). If P(T ≥ t) ≤ α(α =
0.05), then the hypothesis (H0 : rjk = rjh) is rejected. Hence, we
can conclude whether correlations were significantly different.

RESULTS

Heritability Estimation and Haploblock
Construction
Based on the HD chip data, the estimated heritabilities of DP,
MP, and RERW using univariate animal model were 0.27, 0.17,
and 0.23, respectively, and the statistical description is shown
in Table 2. Notably, under threshold r2 > 0.2, we observed
68,775 (362,710 SNPs) and 634,662 (3,536,404 SNPs) blocks
from the HD chip and WGS data, while the number of SNPs

out of blocks were 298,454 and 3,240,315 and haplotype allele
counts were 840,676 and 3,370,157. Details about the total
number of haplotype alleles (variables), haploblocks, and non-
blocked SNPs with different r2 are presented in Table 3. The
number of haplotype alleles and haploblocks decreases with
increasing r2. The average number of SNPs per haploblock
ranged from 3.3 to 5.3 for the HD chip data and from 4.5
to 5.6 for the WGS data. According to our results, we found
that the method based on haploblock reduced the number of
variables (haplotype alleles) for the WGS data. However, as
for the HD chip data, the haploblock approach increased the
number of variables compared with the SNP approach. This
result mainly depends on the data type used for haploblock
construction (HD or WGS).

We also evaluated the LD decay between 0 and 100
kb for BTA1 in the HD chip and WGS data, respectively.
The average r2 was calculated for each 1-kb window size.
LD decay suggested that the HD chip data had a faster
LD decay than WGS data (Supplementary Figure 1), thus
prediction accuracies using the HD chip data among different
LD thresholds displayed obvious changes compared with the
WGS data. We observed r2 decreased from 0.8 to 0.2 as
the marker distances of the HD chip (from 0 to 35 kb)
and WGS data (from 0 to 25 kb) increased. However, no
obvious difference was found when r2 < 0.2. Therefore, we
chose the LD thresholds (r2

≥ 0.2 to r2
≥ 0.8) to construct the

haploblocks in our study.

Genomic Prediction Accuracy
Comparison of Accuracies of GP Based on Three
Different Approaches
Three different approaches, including (a) GBLUP, (b)
GHBLUP, and (c) GHBLUP+GBLUP, were considered for
the comparisons. As shown in Figure 1, GHBLUP+GBLUP
had better performance for DP and MP than GHBLUP. We
also found GHBLUP+GBLUP_770K yielded ∼1.8% higher
accuracy than GHBLUP_770K for DP on average. However, as
for the RERW, GHBLUP_770K had a slight higher accuracy than
GHBLUP+GBLUP_770K, and the GHBLUP+GBLUP_WGS had
better performance than GBLUP_WGS_In_Block.

To evaluate whether the observed differences were
statistically significant, we compared the correlation of the
prediction accuracies using Hotelling’s test. In the current
study, we found no significant differences between the
GHBLUP_770K and GBLUP_770K_In_Block for all scenarios
(Table 4). However, GHBLUP_WGS using the WGS data
had a significant improvement for RERW compared with
GBLUP_WGS_In_Block (Table 5).

Accordingly, the slopes of the regression of the adjusted
phenotype on GEBVs based on three approaches were presented
in Figure 2. Our result showed that the regression coefficients of
the HD chip were closer to 1 than those of the WGS data for most
scenarios. The GHBLUP was near 1 for RERW when r2

≥ 0.5.
However, regression coefficients based on WGS data were almost
stable for different LD levels.
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TABLE 2 | Statistical description and heritability estimation of three traits in Chinese Simmental beef cattle.

Trait1 Number of phenotypes Mean ± SD Maximum Minimum h2 ± SE

DP 1,221 0.535 ± 0.029 0.690 0.410 0.27 ± 0.07

MP 1,226 0.456 ± 0.031 0.616 0.325 0.17 ± 0.06

RERW 1,228 10.67 ± 2.20 18.32 5.03 0.23 ± 0.06

1Trait: DP, dressing percentage; MP, meat percentage; RERW, rib eye roll weight.

TABLE 3 | Total number of haplotype alleles, haploblocks, and the non_blocked SNPs from the 770K array and sequence data.

Data r21
Haplotype alleles Haploblocks (Blocked_SNPs) Number of SNPs per haploblock Non_blocked SNPs

770K 0.2 840,676 68,775 (362,710) 5.3 298,454

0.3 599,270 66,027 (309,126) 4.7 352,038

0.4 462,287 62,150 (268,055) 4.3 393,109

0.5 371,074 58,009 (234,305) 4.0 426,859

0.6 303,774 53,876 (204,725) 3.8 456,439

0.7 249,195 49,320 (176,622) 3.6 484,542

0.8 199,702 43,892 (147,008) 3.3 514,156

WGS 0.2 3,370,157 634,662 (3,536,404) 5.6 3,240,315

0.3 2,701,350 601,761 (3,142,601) 5.2 3,634,118

0.4 2,323,965 571,908 (2,877,612) 5.0 3,899,107

0.5 2,067,572 545,069 (2,676,430) 4.9 4,100,289

0.6 1,866,317 522,099 (2,502,764) 4.8 4,273,955

0.7 1,684,138 500,294 (2,329,147) 4.7 4,447,572

0.8 1,493,399 477,242 (2,123,952) 4.5 4,652,767

1Seven different LD thresholds set from r2
≥ 0.2 to r2

≥ 0.8.

Comparison of Accuracies of GP Based on Different
Marker Densities
We found that genomic predictions using the HD chip were
superior to the WGS data for all three traits (Figure 1);
the accuracy of GBLUP_770K was 0.011, 0.01, and 0.015
higher than that of GBLUP_WGS for DP, MP, and RERW,
respectively. However, no significant difference was found
between the accuracies based on the two different densities
according to Hotelling’s test (Table 6). Moreover, significant

differences between the two marker densities were observed
for RERW using both GBLUP and GHBLUP when SNPs
within the blocks (divided by different LD thresholds) were
selected. As for the GHBLUP+GBLUP, no significant differences
were found between HD chip and WGS. It should be noted
that the accuracies of the three traits decreased obviously
for GBLUP_770K_In_Block compared with the GBLUP_770K
(Figure 1). However, no obvious change was found between
GBLUP_WGS and GBLUP_WGS_In_Block.

FIGURE 1 | Prediction accuracies of different r2 thresholds for three traits based on the 770K data and WGS data.

Frontiers in Genetics | www.frontiersin.org 5 July 2021 | Volume 12 | Article 665382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665382 July 24, 2021 Time: 17:13 # 6

Li et al. Genomic Prediction Using LD-Based Haplotypes

TABLE 4 | P-values of Hotelling’s t-test comparing the prediction accuracy obtained with the individual SNP and haploblock approaches using 770K data.

r21
GHBLUP_770K GHBLUP+GBLUP_770K

DP MP RERW DP MP RERW

0.2 0.102 0.315 0.462 0.097 0.211 0.931

0.3 0.147 0.295 0.352 0.089 0.342 0.994

0.4 0.299 0.198 0.113 0.052 0.292 0.719

0.5 0.101 0.213 0.161 0.019 0.167 0.811

0.6 0.293 0.400 0.221 0.013 0.150 0.864

0.7 0.367 0.188 0.274 0.026 0.240 0.837

0.8 0.288 0.102 0.065 0.015 0.059 0.391

1Seven different LD thresholds set from r2
≥ 0.2 to r2

≥ 0.8.

TABLE 5 | P-values of Hotelling’s t-test comparing the prediction accuracy obtained with the individual SNP and haploblock approaches using WGS data.

r21
GHBLUP_WGS GHBLUP+GBLUP_WGS

DP MP RERW DP MP RERW

0.2 0.311 0.835 0.012 0.999 0.998 0.040

0.3 0.643 0.938 0.218 0.717 0.837 0.047

0.4 0.852 0.769 0.142 0.829 0.946 0.588

0.5 0.908 0.670 0.047 0.939 0.357 0.161

0.6 0.869 0.796 0.111 0.902 0.875 0.095

0.7 0.956 0.997 0.088 0.997 0.833 0.074

0.8 0.833 0.992 0.036 0.936 0.628 0.025

1Seven different LD thresholds set from r2
≥ 0.2 to r2

≥ 0.8.

Comparison of Accuracies of GP Among Different LD
Levels
To investigate the influence of LD levels (r2) on the prediction
accuracy, we constructed haploblocks (from r2

≥ 0.2 to
r2
≥ 0.8) using seven different levels. In our study, we

found that the haploblock approach (including GHBLUP
and GHBLUP+GBLUP) was better than the individual SNP
approach (GBLUP_In_Block) at specific LD thresholds (r2)
(Figure 1). The accuracy of GHBLUP_770K showed the highest

accuracy for RERW when r2
≥ 0.5, and the GHBLUP_WGS

outperformed GBLUP_WGS_In_Block. Under the strict LD
threshold (r2), the GHBLUP+GBLUP_770K showed significant
improvement compared with GBLUP_770K_In_Block for
DP (Table 4).

Computation Time
In our study, the average computation time of GBLUP, GHBLUP,
and GHBLUP+GBLUP were 4.42, 5.41, and 41.5 min using

FIGURE 2 | Regression coefficients of pre-adjusted phenotypes on GEBVs for three traits in Chinese Simmental beef cattle.
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TABLE 6 | P-values of Hotelling’s t-test comparing the prediction accuracy obtained with the 770K data and the WGS data.

r21
GBLUP GHBLUP GHBLUP+GBLUP

DP MP RERW DP MP RERW DP MP RERW

– 0.881 0.915 0.852 – – – – – –

0.2 0.359 0.189 0.002 0.405 0.992 0.079 0.244 0.515 0.797

0.3 0.287 0.199 0.007 0.575 0.850 0.034 0.163 0.668 0.729

0.4 0.193 0.171 0.022 0.929 0.600 0.007 0.129 0.689 0.687

0.5 0.053 0.104 0.012 0.726 0.772 0.002 0.116 0.359 0.298

0.6 0.036 0.116 0.048 0.423 0.679 0.016 0.085 0.577 0.815

0.7 0.049 0.135 0.065 0.429 0.990 0.034 0.139 0.798 0.839

0.8 0.017 0.031 0.196 0.309 0.587 0.035 0.109 0.325 0.892

1Seven different LD thresholds set from r2
≥ 0.2 to r2

≥ 0.8.

fivefold cross-validation respectively (repeated 10 times). The
time for constructing haplotype-based genomic relationship
matrix (GH) were 8.22 and 203.97 h on average for the HD chip
and WGS data, and 0.898 and 9.12 h for the SNP-based genomic
relationship matrix (G).

DISCUSSION

Predictive Performance of Different
Marker Density
In this study, we compared the accuracies of genomic prediction
using both the HD chip and WGS data. A previous study
suggested that prediction of breeding value was expected to
be more accurate using the WGS data compared with the
high-density chip because the causal mutations are assumed to
be included in the WGS data (Druet et al., 2014). Genomic
predictions based on sequence data can increase accuracy
compared with predictions based on ∼30K SNP chips in
simulation data (Meuwissen and Goddard, 2010; Clark et al.,
2011; Druet et al., 2014; MacLeod et al., 2014). In contrast, for
real data, a recent study found that no increases for prediction
accuracy was observed using the imputed sequence data in
Holstein Friesian cattle (Van Binsbergen et al., 2015). Our
results presented the HD chip data had better performance than
the WGS data using GBLUP approach. These findings can be
explained by several factors including imputation accuracy, LD,
MAF, genotyping errors, and population size (Iwata and Jannink,
2010; Zhang and Druet, 2010; Hayes et al., 2012; Ali et al.,
2020). For instance, small reference population size and high
imputation error rate from low-frequency SNPs may cause the
decrease of accuracy for GP in WGS data (Heidaritabar et al.,
2016). In addition, the strong LD between multiple true causal
SNPs and potential QTLs segregating in long haplotypes in WGS
data may make it difficult to pinpoint the truly causal SNP
(Van Binsbergen et al., 2015).

Comparison of Methods of Genomic
Prediction Based on SNP Chip
For the HD chip data, our results showed that GHBLUP+GBLUP
had the highest accuracy and GHBLUP was better than GBLUP

at different LD levels for DP and MP (Figure 1). In contrast,
GHBLUP showed the highest accuracy for RERW, which can be
explained by the different genetic architectures of three traits.
Moreover, DP and MP can be regarded as the compound traits,
compared with RERW, which were determined by many genes
with small effects. GHBLUP+GBLUP for these two traits can
include the non-blocked SNPs in the model, which should be
more effective to increase the prediction accuracy. However,
GHBLUP+GBLUP approach may produce large prediction error
variance and decrease the accuracy of GP for RERW due to the
overestimation of the effects.

In addition, the GHBLUP+GBLUP approach may reflect the
real genetic architectures of these traits. For instance, a gene
region contains many consecutive loci, which can be effectively
modeled by the GHBLUP approach. As for the gene regulatory
region, the promoters or enhancers may be influenced by a
single mutation, and this feature can be effectively integrated by
the GBLUP approach.

Our findings were consistent with previous reports (Cuyabano
et al., 2014; Teissier et al., 2020; Xu et al., 2020); they found that
haplotype approach based on average LD threshold (r2

≥ 0.45)
can increase the prediction accuracies for milk production traits
(up to 3.1%) compared with the individual SNP approach.
Also, the accuracies of GHBLUP+GBLUP and GHBLUP can
be influenced by the genetic architectures of different traits
(Cuyabano et al., 2014).

The advantage of haplotype approach can be explained by the
fact that SNPs are commonly bi-allelic, and SNP mutations in
different loci tended to cause major changes in the haplotype
frequencies (Curtis et al., 2001). Moreover, a QTL may be
in complete LD with a multi-marker haplotype even if it is
not in complete LD with any individual bi-allelic SNP marker
(Cuyabano et al., 2014).

In our study, we found that the GHBLUP+GBLUP_770K
showed the highest accuracy for DP and MP. The LD level
was set to r2

≥ 0.2 in the haplotype prediction and several
SNPs showing weak LD (r2 from 0 to 0.2) with potential QTLs
were not included in the model; therefore, adding the non-
blocked SNPs may increase the prediction accuracy without loss
of information. Also, we found that the regression coefficients
using haplotype approach including GHBLUP+GBLUP and
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GHBLUP is close to 1 for all three traits, compared with SNP
approach (Figure 2), which were consistent with the prediction
accuracy using the average Pearson correlation coefficient
between the adjusted phenotypic values and genomic estimated
breeding values.

Comparison of Methods of Genomic
Prediction Based on WGS
As for the WGS data, our results suggested the haploblock
approach based on LD can increase the accuracies of GP while
reducing the number of variables. For RERW, GHBLUP_WGS
and GHBLUP+GBLUP_WGS showed better performance than
GBLUP_WGS_In_Block; however, no significant difference
was found for DP and MP. The WGS data incorporating
genotypes at causal variants into haplotypes allow effective
estimation of haplotype effects. For DP and MP, we did not
observe significant difference using both GHBLUP_WGS and
GHBLUP+GBLUP_WGS. This result may be explained by the
fact that the WGS data with high SNP density can produce
the identified haplotype alleles (including some rare haplotype
alleles); however, due to a large number of rare haplotype alleles
with small effects or no effect were included in sequencing data
(Gianola, 2013), the haplotype approach with them may not
effectively improve prediction accuracy for DP and MP.

Predictive Performance of Different LD
Levels
In this study, we found that the prediction accuracies using
haplotype approach varied among different LD thresholds
for three traits, especially for the HD chip data. One possible
reason is that the size of haploblocks varies among different LD
thresholds and the QTL effects can be accurately estimated
at specific LD levels because the effective haploblocks
were included. The HD chip data may cause the loss of
effective haploblock effects for genomic prediction compared
with WGS data. However, no obvious difference among
different LD thresholds using GHBLUP+GBLUP for three
traits was observed. This result can be explained by the
fact that GHBLUP+GBLUP approach contains both the
haploblock effects and SNP effects which were estimated from
outside haploblocks.

Similar as previous studies (Cuyabano et al., 2014, 2015;
Feitosa et al., 2020), our study also revealed that the optimum
LD threshold should be considered in the haplotype approach.
For DP, the optimum LD threshold was r2

≥ 0.2 (Figure 1).
For MP and RERW, the optimum LD threshold appeared
at r2

≥ 0.5. Cuyabano et al., reported that haploblocks built
based on D′ ≥ 0.45 can produce an optimal set of variables for
milk protein, fertility, and mastitis traits. Our results indicated
that the optimal thresholds of different traits are different.
Therefore, it is hard to determine the optimal haploblock
length for all scenarios. For instance, Villumsen et al. (2009)
evaluated the optimal haploblock length for the simulated
traits with heritabilities ranging from 0.02 to 0.30, they found
that haploblocks of 1 cM (0.8 Mb) can produce the highest
accuracies across all traits in New Zealand dairy cattle. Previous

studies found that the optimal haploblock length ranged from
0.4 to 0.8 Mb per haploblock (Villumsen and Janss, 2009;
Villumsen et al., 2009). Hess et al. (2017) found the highest
prediction accuracy using short haploblock (250 kb) in the
admixed dairy cattle population. Our study suggested the
setting of optimal LD threshold depends on the LD between
SNPs and QTLs and the population structure. Thus, the
optimal LD threshold was required to be evaluated for each
dataset independently.

It should be noted that haplotype approach based on LD
had less improvement on the prediction accuracies compared
with the fixed block length approach, which was in agreement
with a previous study (Cuyabano et al., 2014). Xu et al. (2020)
constructed the haploblock using the constant number of SNPs,
and their findings suggested that the extension from the SNP-
based model to haplotype-based model can improve the accuracy
by 5.4–9.8%. Moreover, Hess et al. (2017) reported that fitting
covariates for fixed-length haplotype alleles can increase the
accuracy of GP up to 5.5% compared with SNPs.

In our study, we found that LD-based haplotype approach
cannot increase the accuracy to 5%, which was consistent with a
previous report (Cuyabano et al., 2014). They performed genomic
prediction for three important traits (milk protein, fertility, and
mastitis) using LD-based haplotypes in the Nordic Holstein
population, and their finding suggested Bayesian model can
produce the highest accuracy for the milk protein trait. This
difference can be explained by the fact that all SNP information
was included in the fixed block length approach, while only
a small set of SNPs was included in the LD-based haplotype
approach. In our study, we found that computation times were
much longer for GHBLUP+GBLUP than GBLUP and GHBLUP,
while no obvious difference was found between the GBLUP
and GHBLUP approach. Two genomic relationship matrixes
(GHand G) were estimated in the GHBLUP+GBLUP model,
thus the long time was required for this approach. In addition,
our results suggested that the haplotype approach for WGS
data requires more time to construct the genomic relationship
matrixes than the SNP-based approach. It should be noted
that the haplotype-based genomic relationship matrix need to
be recoded using numerical dosage coding strategies for each
haploblock (Calus et al., 2008).

CONCLUSION

Our study suggested that haploblock approach using both
HD chip and WGS data can improve the prediction accuracy
compared with the individual SNP approach. The prediction
accuracies of haploblock approach varied in different LD
thresholds. Therefore, it is important to determine the optimal r2

threshold when constructing haploblocks for genomic prediction.
The advent of whole-genome sequencing has made it possible to
contemplate linking the diverse phenotypes to genetic variations
at the genome level. Furthermore, haplotype strategy integrating
biological information could be used to identify sequence variants
which are likely to harbor mutations affecting complex traits.
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