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Monocytes affect bone mineral 
density in pre- and postmenopausal 
women through ribonucleoprotein 
complex biogenesis by integrative 
bioinformatics analysis
Kang-Wen Xiao1, Jia-Li Li2, Zi-Hang Zeng2, Zhi-Bo Liu1, Zhi-Qiang Hou1, Xin Yan1 & Lin Cai1*

Osteoporosis is one of the most common metabolic bone disease among pre- and postmenopausal 
women. As the precursors of osteoclast cells, circulating monocytes play important role in bone 
destruction and remodeling. The aim of study is to identify potential key genes and pathways correlated 
with the pathogenesis of osteoporosis. Then we construct novel estimation model closely linked 
to the bone mineral density (BMD) with key genes. Weighted gene co-expression network analysis 
(WGCNA) were conducted by collecting gene data set with 80 samples from gene expression omnibus 
(GEO) database. Besides, hub genes were identified by series of bioinformatics and machine learning 
algorithms containing protein-protein interaction (PPI) network, receiver operating characteristic curve 
and Pearson correlation. The direction of correlation coefficient were performed to screen for gene 
signatures with high BMD and low BMD. A novel BMD score system was put forward based on gene set 
variation analysis and logistic regression, which was validated by independent data sets. We identified 
six modules correlated with BMD. Finally 100 genes were identified as the high bone mineral density 
signatures while 130 genes were identified as low BMD signatures. Besides, we identified the significant 
pathway in monocytes: ribonucleoprotein complex biogenesis. What's more, our score validated it 
successfully.

Osteoporosis is one of the most common metabolic disease affecting thousands of pre- and postmenopausal 
women1. Patients diagnosed with osteoporosis have manifestations such as spine, hip and wrist fracture2. Even 
worse, some patients have enhanced mortality due to bone fracture3. Although researchers analyzed the key 
aspects of osteoporosis, the results were still not comprehensive and thorough4. Therefore, finding novel method 
to deal with osteoporosis is of great significance. There are multiple factors participating in the occurrence and 
development of osteoporosis by affecting the osteoclast cells, osteoblast cells and regulation of the hormone from 
endocrine system5.

Circulating monocytes, also called peripheral blood monocytes, are bone marrow-derived leukocytes consist-
ing of 3~8% human blood leukocyte6, which can further differentiate into many kinds of cells like macrophages, 
dendritic cells and osteoclast cells7. As the precursor cells of osteoclast cells, classic circulating mono-
cytes (CD14++ CD16−) is important for osteogenesis and bone remodeling by producing cytokines (e.g IL-1, 
IL-6) for osteoclast differentiation, activation and apoptosis8. Hence, circulating monocytes are closely related to 
pathogenesis of osteoporosis, which have been studied for pathophysiology of bone research in the past several 
years. For instance, Zhang’s study showed that monocytes were related to the postmenopausal osteoporosis in 
Caucasian female9. Monocytes were regarded as an appropriate model to study the pathology of bone in Zhou’s 
review10.

Natural menopause mostly occurs in women between the ages of 40 to 5811. Many metabolic and cardiovas-
cular disease are closely related to this stage12. Because of the decreased ovarian function, natural menopause 
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is characterized by low estrogen secretion13. In recent years, many studies have illustrated the relationship 
between monocytes and menopause. Phiel’s study demonstrated that differential estrogen receptor expression 
was detected in monocytes in pre and postmenopausal women14. What’s more, estrogen has been found to inhibit 
RANKL-stimulated osteoclastic differentiation of monocytes in Perrien’s study15.

Thousands of genes were involved in the molecular mechanism of interaction between osteoporosis and 
monocytes16, increasing the difficulty of research. Genetic feature screening, enrichment of feature signals, and 
other bioinformatics methods were used in this study. Weighted gene co-expression network analysis (WGCNA), 
a comprehensive and novel collection of R package, has been widely used in genomic and bioinformatics study 
to obtain correlation patterns among genes and detect biomarker or pathway. Unlike the former algorithm dif-
ferential gene expression analysis, which analyzed difference between samples, WGCNA focuses on relationship 
between genes and divide them into different modules. Pearson correlation analysis is a method for screening 
genes that are highly correlated with clinical phenotype. Receiver operating characteristic (ROC) is a method 
to comprehensively evaluate diagnostic accuracy or discriminate results by combining sensitivity and specific-
ity. After constructing co-expression network, genes with similar expression pattern can be clustered in same 
module. Then principal component analysis (PCA) were performed on each module to calculate the module 
eigenvalues. Moreover, the BMD related module were identified by Pearson correlation analysis between module 
eigenvalues and clinical phenotype. Gene set variation analysis (GSVA), a non parametric, unsupervised method 
calculating single sample gene set enrichment scores, helping to predict different BMD activation.

In this study, co-expression modules were identified by using 80 monocytes samples from GEO database. 
Then hub genes highly correlated with BMD were screened by differential gene expression analysis, WGCNA, 
protein-protein interaction (PPI), Pearson correlation analysis and ROC analysis. Moreover, a novel score sys-
tem to distinguish the different BMD was constructed, which was validated by independent data sets and k-fold 
cross-validation. Finally, we identified the ribonucleoprotein complex biogenesis pathway which was significant 
for pathogenesis of osteoporosis and further provided novel insight for osteoporosis.

Material and Methods
Sample collection and data preprocessing.  Microarray data sets GSE56815 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE56815), GSE220817, GSE1385018 and GSE20941 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE20941) were downloaded from GEO database19 at https://www.ncbi.nlm.nih.gov/
geo/. The GSE56815 data set was independent training data set while the GSE2208, GSE13850 and GSE20941 
were independent test data sets. Then GSE56815, GSE2208, GSE13850 and GSE20941 data sets were further used 
for analysis and validation. Besides, standardization of raw data by RMA20 and z-score methods were performed 
in the background. The formula of z-score was as follow:

µ σ= −z x( )/

Z was the standard fraction, x was a specific fraction, μ was the average and σ was the standard deviation.
Moreover each probe was annotated to the genes. Maximum expression value of probe was calculated when 

genes matched more than one probes.
The GSE56815 data set consisted of 80 pre- and postmenopausal caucasian women, 40 with high BMD and 

40 with low BMD. The GSE2208 data set included 19 women, 10 with high BMD and 9 with low BMD. The 
GSE13850 data set consisted of 40 postmenopausal women, 20 with high BMD and 20 with low BMD. The 
GSE20941 data set consisted of 12 crohn’s disease samples, 6 with osteoporosis and 6 without osteoporosis. 
Detailed information was shown in Table 1 and Table S14. The flow chart was shown in Fig. 1A.

Differential gene expression analysis.  The training data set (GSE56815) was used for differential gene 
expression analysis. Differential gene expression were analyzed based on limma packages21 in the R language. 
Differential gene expression analysis was used to find gene signatures of BMD and distinguish the direction of the 
gene. Gene expression profile data with high dimensional and small sample size features required multiple test 
controls. The multiple hypothesis test control in this study used the false positive rate control method proposed by 
Li22. Differential gene expression screening criteria: adjust p < 0. 05, fold change (log2(FC) ≥ 0.1).

Elastic net regression model.  The GSE56815 data set was used for elastic net regression analysis. Elastic 
net analysis was performed by using glmnet package23 in the R language. For a linear regression model with a 
sample size of N and a feature dimension of ρ
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Table 1.  The basic information of patients with osteoporosis.
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Where ε~N (0, σ2) is the error term and βj is the regression coefficient of the model, i = 1, 2, …, N, j = 1, 2, …, p.
The least square method with penalty term of elastic network was used to estimate the model parameters, i.e. 

the regression coefficients beta J and beta o, minimizing the loss function:
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Figure 1.  (A) Flowchart of this study; (B) Differential gene expression analysis for identifying BMD related 
gene signatures in training data set.
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The penalty items of the elastic network regression method consisted of lasso penalty items ( β|| || 1) and ridge 
regression penalty items ( β||1

2 2). The regularization parameter λ in Eq. (2) can adjust the sparsity of the model. 
The larger the value of λ, the larger the sparsity of the model. The regularization parameter α in Eq. (3) adjusted 
the ratio between ridge regression penalty items and lasso penalty items in the range of λ > 0, α ∈ [0, 1], respec-
tively. The Elastic net regression model was shown in Fig. S1.

Construction of gene co–expression modules network.  WGCNA was used for module identification, 
discovery of phenotype- correlated module, and identification of hub gene. The GSE56815 data set was used for 
the construction of gene co-expression module network. In this study 13285 genes in 80 samples was used to 
construct the co-expression network with the R package of “WGCNA”24. The Pearson correlation coefficient of 
two genes was defined as unsigned co-expression similarity. The adjacency matrix was calculated by correlation 
in power function between two genes and the formula was shown as:

cor(x , x )ij i jα = | |β

The power β was selected according to standard of approximate scale -free topology and mean connectivity 
(degree of gene interconnection).

Considering the relationship of genes in the analysis, the adjacency matrix was transformed into the topolog-
ical matrix. A hierarchical clustering tree25 was constructed based on the dissimilarity coefficient between genes. 
Different branches of the cluster number represented different gene modules and the minimum size of module 
was 30. Building a clustering tree has two algorithms: static cut tree and dynamic cut tree. Gene modules were 
correlated to phenotype by calculating the correlation coefficients of the module eigenvectors and the phenotype. 
Besides, different modules were integrated into one module when the eigenvalue correlation coefficients of differ-
ent modules were greater than 0.25.

Identification of clinically significant modules and construction of protein-protein interaction 
(PPI) network.  Module eigengene was identified as first principal component of PCA26.

Correlation between modules and phenotype were estimated by using module-trait relationship analysis of 
WGCNA. We also performed scatter plot of gene significance (GS, the correlation between gene expression and 
phenotype), the correlation between genes and phenotype and module membership (MM, correlation between 
gene expression and eigengene of module). Moreover, six modules that were highly correlated with BMD were 
selected. PPI network was constructed through STRING version.10 and the following protein linkages are pre-
sented in a network relationship: interactions from curated databases, experimentally determined interactions, 
gene neighborhood interactions, gene fusions interactions, gene co-occurrence interactions, textmining inter-
actions, co-expression interactions and protein homology interactions (Interactions between proteins from the 
same origin)27,28. The PPI network was further visualized with cytoscape software29. The confidence level for this 
network was larger than 0.4.

Analysis of receiver operating characteristic(ROC).  ROC analysis was used for two purposes in the 
article. First, the ROC analysis was performed to screen genes in WGCNA with AUC greater than 0.7 by using 
training data set (GSE56815). Besides, ROC analysis was also used for evaluation of predictive value in logistic 
regression by using both test data sets (GSE2208, GSE13850, GSE20941) and training data set (GSE56815). The 
horizontal axis was 1- specificity while the vertical axis was sensitivity. The ROC curve was based on a series of 
different two-category methods (demarcation value or decision threshold). Each point on the curve corresponded 
to a different threshold. the abscissa represented the continuous gene expression value while the ordinate repre-
sented the 0 and 1 (0 represented negative data sets while 1 represented positive data sets). The positive data sets 
represented high bone mineral density while the negative data sets represented low bone mineral density. Then we 
calculated the area under curve (AUC) and screened for genes with an AUC greater than 0.7. The ROC analysis 
was performed by the pROC package30 in R language.

Gene set variation analysis.  The GSVA package31 was installed to perform gene set variation analysis. We 
used the expression data of selected genes from modules. Then a sequenced gene list was formed according to 
the differential gene expression analysis of the high BMD and low BMD. The identified high BMD and low BMD 
gene signatures were divided into two novel gene lists. The single sample ES of two novel lists were calculated by 
GSVA. The formula was as follows:

= −+ −ES ESES jk
diff

jk jk

The j represented sample while k represented gene set. The ESjk+ represented the largest positive random walk 
deviations, conversely the ESjk− represented the largest negative result. Finally a novel BMD model was put for-
ward by integrating these two ES values based on logistic regression.

Gene set enrichment analysis.  Gene ontology (GO)32 and kyoto encyclopedia of genes and genomes 
(KEGG)33 enrichment analysis was performed by using for visualization and annotation (www.webgestalt.org)34. 
Gene set enrichment analysis (GSEA)35 was further performed by calculating the enrichment score (ES) and 
estimating the significance of ES. Finally a multiple hypothesis test was performed to calculate the false positive 
discovery rate (FDR). The overall analysis was performed under the situation of  p < 0.05 and FDR < 0.05.
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K-fold cross-validation.  K-fold cross-validation is a widely used method for predictive error estimation 
under limited samples36. Specifically, training data set GSE56815 is divided into k disjoint subsets (blocks) with 
approximately the same capacity (in this article k = 3). The capacity = n/k. Training data set GSE56815 was ran-
domly divided into 3 parts. Any two parts of the GSE56815 were used as training sets while the rest was used as 
test data set. Therefore three training data sets and three corresponding test data sets were prepared for further 
analysis.

Results
Raw data collection and hierarchical clustering analysis.  Raw gene expression data of monocytes 
in osteoporosis were downloaded from the GEO database (http://www.ncbi.nlm.gov/geo) with the accession of 
GSE56815 and GSE2208, containing 80 and 19 samples, respectively. The microarray platform of these two data 
sets and GSE13850 was GPL96. Besides, the microarray platform of GSE20941 was GPL 4133. Finally we col-
lected 13285 genes and performed the hierarchical clustering analysis.

Differential gene expression analysis.  The training data set (GSE56815) was used for differential gene 
expression analysis. Differential gene expression analysis was used to identify BMD related gene signatures based 
on different BMD. The results of differential gene expression analysis were shown in the Fig. 1B. Gene ZEB2 
(log2(FC) = 0.33, adjust p = 0.00073), Y16709 (log2(FC) = −0.43, adjust p = 0.0032), HIRA (log2(FC) = −0.37, 
adjust p = 0.0045), LOC100506248 (log2(FC) = 0.33, adjust p = 0.00073) and DPP8 (log2(FC) = 0.32, adjust 
p = 0.0026) were top significant differential expression genes.

Construction of gene co–expression module.  The co-expression modules were constructed with 
expression data of genes from GSE56815 data set. Then we selected the appropriate power value as 10 due to 
the signed R^2 of scale free topology model was 0.9 and the mean connectivity was relatively lower (Fig. S2). 
As shown in Fig. 2A, 16 modules were identified with dynamic tree cut based on 1- topological overlap matrix 
(TOM). Here are the number of genes in each module: 4560 (module turquoise), 3704 (module grey), 1772 
(module blue), 1389 (module brown), 593 (module yellow), 302 (module green), 210 (module red), 158 (module 
black), 145 (module pink),105 (module magenta), 88 (module purple), 69 (module green yellow), 67 (module 
tan), 60 (module salmon), 32 (module cyan),31 (module midnight blue). The average gene number of each mod-
ule is 830.

Analysis of model-trait relationship and identification of significant modules.  The first principal 
component was defined as module eigenvalue. The heat map of the correlation between the module eigenvalue 
and the BMD phenotype was shown in Fig. 2B. Six modules highly correlated with BMD phenotype were selected: 
module black (cor = −0.33, p = 0.003), module green yellow (cor = −0.61, p = 3e-09), module midnight blue 
(cor = 0.29, p = 0.01), module salmon (cor = 0.23, p = 0.04), module brown (cor = 0.23, p = 0.04), module grey 
(cor = −0.33, p = 0.003). Then hierarchical clustering analysis was performed on module eigenvalue and then 16 
modules were separated into two clusters, consisting of 5 modules and 11 modules, respectively. Besides, mod-
ule black and module green yellow had higher interaction connectivity with each other. Clustering heat map of 
module eigenvalue was shown in Fig. 2C.Then we performed scatter plot of GS and MM for six modules (Fig. S3). 
Module midnight blue and module salmon showed high correlation with BMD phenotype (module midnight 
blue cor = 0.14 and p = 0.45, module salmon cor = 0.37 and p = 0.0036, module black cor = 0.11, p = 0.17, mod-
ule green yellow cor = 0.69, p = 5.5e-11, module brown cor = 0.13, p = 1.2e-06, module grey cor = 0.16, p = 1.2e-
22). Analysis of GS across modules were further performed (Fig. 2D). Module green yellow and module midnight 
blue showed higher GS while module blue showed the lowest significance. Finally six modules (black, green 
yellow, midnight blue, salmon, brown and gray) were selected for further analysis.

Construction of protein-protein interaction (PPI) network.  We constructed PPI network for five 
modules separately except module gray due to its low connectivity. The sub network of five modules were dis-
played in Fig. 3 while the main network of five modules were shown in Fig. S4–S8. Several sub network were 
identified from module brown, salmon and midnight blue by molecular complex detection tool. The function 
analysis of proteins from these modules and the results were shown in the Table S1–13. The protein from module 
black showed high ES with GO:1900371 regulation of purine nucleotide biosynthetic process ( p = 2.09E-06, 
FDR = 0.010) while the protein from module green yellow showed GO:0071383: cellular response to steroid hor-
mone stimulus ( p = 7.36E-05, FDR = 0.039), GO: 0002283 neutrophil activation involved in immune response 
( p = 8.29E-08, FDR = 1.95E-04). Besides, GO:0032870: cellular response to hormone stimulus (p = 6.60E-06, 
FDR = 5.22E-04) and GO: 1901700 response to oxygen containing compound (p = 3.95E-12, FDR = 1.80E-08) 
were identified in module midnight blue. The sub network of midnight blue exhibited GO:0009719 response to 
endogenous stimulus (p = 6.74E-12, FDR = 5.23E-08) and GO: 0009725 response to hormone (p = 9.57E-11, 
FDR = 2.18E-07). Moreover, GO:0002446: neutrophil mediated immunity (p = 0, FDR = 0) and GO: 0006955 
immune response (p = 0, FDR = 0) were presented in module salmon and its sub network, respectively. Besides, 
GO:0046883: regulation of hormone secretion (p = 7.57E-05, FDR = 0.0051), GO: 1990869 cellular response to 
chemokine (p = 5.06E-06,FDR = 0.0014), GO:0019932 second-messenger-mediated signaling (p = 5.36E-10, 
FDR = 9.74E-07), GO: 0034762 regulation of transmembrane transport (p = 9.90E-08, FDR = 3.00E-05), GO: 
0001775 cell activation (p = 7.54E-05, FDR = 0.023), GO: 0071363 cellular response to growth factor stimulus 
(p = 4.89E-06, FDR = 6.99E-04) and GO: intracellular transport (p = 1.08E-08, FDR = 9.16E-05) were displayed 
in module brown and its six sub network, respectively. In these biological processes, GO: 0009725 response 
to hormone were closely related to effect of estrogen, which was main treatment for pre- and postmenopausal 
women. What’s more, GO:1900371 regulation of purine nucleotide biosynthetic process was found in module 
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black. The analysis of hub gene (degree > 2) because of the strategy of class I error reduction in network of each 
module were further performed.

Receiver operating characteristic analysis.  ROC analysis was performed for all genes from six modules 
(midnight blue, green yellow, salmon, brown, grey, black), respectively. The ROC curves of genes with top 10 
AUC (SFSWAP, LOC100506248, FOXO3, NCOA1, VPS35, TRIM44, POGLUT1, METTL4, SKAP2 and DPP8) 
were further displayed in the Fig. 4. The ROC curve of SFSWAP showed the highest AUC value = 0.831. Besides, 
gene LOC1005062 exhibited AUC value = 0.831. Gene FOXO3 was found with AUC value = 0.826. NCOA1 
was displayed with AUC value = 0.821. Moreover, gene VPS35 showed AUC value = 0.821. What’s more, AUC 
value = 0.819 were exhibited in gene TRIM44. Gene POGLUT1 manifested AUC value = 0.816. Gene METTL4, 

Figure 2.  Process of WGCNA. (A) dynamic tree cut based on 1- TOM; (B) heat map of the correlation between 
the module eigenvalue and the BMD phenotype and menopausal phenotype; (C) clustering heat map of module 
eigenvalue; (D) Analysis of GS across modules.
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a significant factor for DNA methylation, displayed AUC = 0.815 while gene SKAP2 showed AUC value = 0.812. 
Finally DPP8 was found with AUC value = 0.811. 236 genes were identified for subsequent analysis based on the 
AUC value > 0.7.

Construction of novel BMD model and validation.  230 genes were further identified from modules 
based on the area under curve (AUC) value > 0.7, hub gene selection through PPI network and Pearson cor-
relation between BMD and genes. Compared with the osteoporosis-related database37, 33 genes belonged to 
the osteoporosis-related gene family and 11 genes had been reported as osteoporosis-related genes (ADAM17, 

Figure 3.  PPI network of modules. (A) sub network of midnight blue; (B) sub network of salmon; (C–E): sub 
network of brown.
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ALOX12B, CAMKK2, ELN, HAMP, MITF, PTPN1, SOCS3, TNFSF11, VHL, VPS35). Nearly 20% of genes were 
associated with osteoporosis. Moreover, due to differential gene expression in high and low BMD, these genes 
were divided into two groups: high BMD group (100 genes) and low BMD group (130 genes). What’s more, we 
constructed novel high BMD score and low BMD score based on these two groups. The novel high BMD score 
was positively related to BMD with cor = 0.674, p = 7.336E-12 while low BMD score was negatively related to 
BMD with cor = −0.670, p = 1.098E-11. To further integrate the above two scores, logistic regression was used to 
create a unified score system. The formula was as follows:

= . ∗ + . ∗Novel BMD score low BMD score high BMD score106 929 102 993

Figure 4.  ROC analysis of genes and novel BMD score.
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In order to test the robustness of results of our novel BMD model, k-fold cross-validation was performed. The 
ROC analysis and Pearson correlation analysis were performed to evaluate the predictive value of the model. The 
results were shown in the Fig. S11–16 below. In training data set 1, the AUC = 0.82 with cor = 0.53 while in test 
data set 1 the AUC = 0.93 with the cor = 0.70. In training data set 2 the AUC = 0.54 with cor = 0.55 while in test 
data set 2 the AUC = 0.91 with cor = 0.69. In training data set 3 the AUC = 0.92 with the cor = 0.69 while in test 
data set 3 the AUC = 0.76 with the cor = 0.44. Besides, independent test data sets GSE13850 and GSE20941 were 
used to validate our novel BMD score. The results were shown in the Fig. S17 –18. In test data set GSE13850 the 
AUC = 0.61 while in test data set GSE20941 the AUC = 0.94 with cor = 0.71. Afterward, we verified it from test 
data set with the accession of GSE2208 with 19 samples in the GEO database. Besides, ROC analysis was per-
formed in training data set GSE56815 as well as test data set GSE2208 and the results were shown in the Fig. 4. The 
training data (GSE56815) showed AUC = 0.890 while in the test data (GSE2208) the AUC = 0.7778. Moreover, 
box plot for these two data sets were presented in the Fig. 5A,B. The results showed both the training data set 
(GSE56815) and test data set (GSE2208) distinguished well between high and low BMD groups. The correlation 
of training data set (GSE56815) and test data set (GSE2208) were calculated by Pearson correlation, respectively. 
The results showed cor = 0.724, p = 3.057E-14 in training data set (GSE56815) while cor = 0.428, p = 0.068 in test 
data set (GSE2208). The p was also calculated by students' t-test with the results of p = 1.009E-12 in training data 
set (GSE56815) and p = 0.072 in test data set (GSE2208). We also collected smoking-related osteoporosis samples 
from GSE13850. Our novel BMD score dropped significantly in smoking patients with osteoporosis compared 
with non-smoking patients with osteoporosis (p < 0.05). The above results proved this novel BMD score could 
predict BMD effectively.

Ribonucleoprotein complex biogenesis: a significant pathway to BMD.  These 230 genes were used 
to perform gene set enrichment analysis and the results showed that genes were only significantly enriched in GO: 
0022613 ribonucleoprotein complex biogenesis with the ES = −0.520 (p = 0.0035, FDR = 0.040, Fig. 5C). GSVA 
analysis was further performed among 11 genes (SFSWAP, NVL, RPL3, UTP6, PTEN, DIS3, EIF2D, GTF3A, 
NOP16, RPLP0, EIF3F) belonging to ribonucleoprotein complex biogenesis. High ribonucleoprotein complex 
biogenesis activity was correlated with low BMD (cor = −0.634, p = 2.271e-10, Fig. 5D). Independent test data set 
GSE2208 was used for validation. Since there were only 5 of the 11 ribonucleoprotein complex biogenesis genes 
matched the probe platform, all genes belonging to ribonucleoprotein complex biogenesis were included form 
GEO database and intersected with gene expression to obtain 254 genes. The same activity of ribonucleoprotein 
complex biogenesis was obtained by the same GSVA analysis as the training method (cor = −0.55, p = 0.014, 
Fig. 5E). Finally gene hierarchical clustering heat map were shown in Fig. 6A.

Elastic net regression model.  In order to compare with our novel model, the elastic net regression model 
were performed on training data set and test data set, respectively. The training data set (GSE56815) exhibited 
excellent results (AUC = 1.00, cor with BMD = 0.87, p < 2.2e-16) while the test data set (GSE2208) showed 
unsatisfied results(AUC = 0.63 with cor = 0.25, p = 0.2866). The ROC curve and box plot for training data set 
(GSE56815) and test data set (GSE2208) were displayed in Fig. 6B–E.

Discussion
The novel model and work flow were put forward by integrating WGCNA and GSVA to identify the relationship 
between circulating monocytes and BMD.

Osteoporosis is one of the most common metabolic disease in the world. Circulating monocytes are precursor 
cells of osteoclasts, which are essential to the bone destruction and remodeling. Previous study concentrated 
on proteomics of osteoporosis in postmenopausal women and revealed the potential individual key genes and 
pathway to the osteoporosis. The pathway showed BMD was associated with arrhythomogenic right ventricu-
lar cardiomyopathy, translocation of GLUT4 to the plasma membrane, tight junction, cell-cell communication 
and platelet degranulation38. However, the validation of key genes by independent samples were not used and 
the research methods were not comprehensive enough. Therefore, in this research differential gene expression 
analysis was performed. The GSEA results for differential gene expression analysis were shown in Fig. S9. The 
results turned out that HALLMARK_ESTROGEN_RESPONSE_EARLY: early estrogen response was the signif-
icant pathway. Estrogen replacement therapy was proved to greatly improve bone mineral density and prevent 
bone fracture39. Co-expression modules were constructed by WGCNA. Then six modules were further identified 
and PPI net work was constructed to identify hub genes. Besides, gene set enrichment analysis and gene set var-
iation analysis were performed. Based on the GSEA results for each module, GO:1900371: regulation of purine 
nucleotide biosynthetic process was the significant pathway in module black. Previous study showed that extra-
cellular nucleotides played a important role in osteoblast function by signaling through P2 receptors40. Genes 
in module green yellow were enriched in GO:0071383: cellular response to steroid hormone stimulus. Previous 
study showed that estrogen, a steroid hormone could regulate bone mineral density41. In module midnight blue, 
GO:0032870: cellular response to hormone stimulus was the significant pathway. Recent study showed that estro-
gen loss could cause osteoporosis42. In module salmon, GO:0002446: neutrophil mediated immunity was the sig-
nificant pathway. Recent study showed that neutrophils could upregulate the expression of RANKL, which could 
induce the osteoclastogenesis and regulate the bone mineral density43. Genes in module brown were enriched 
in GO:0046883: regulation of hormone secretion. Recent study showed that osteoblast development would be 
increased by interleukin-6 after estrogen loss44. Moreover a novel BMD score system was constructed, which 
showed a significant predictive effect on BMD. According to the results of WGCNA, six modules (module black, 
module green yellow, module midnight blue, module salmon, module brown, module grey) were significantly 
associated with BMD. Besides, PPI network were constructed to further identify hub genes. ROC curve of genes 
with top 10 AUC were displayed. Gene FOXO3 was closely related to the oocyte maturation and ovulation from 
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ovarian follicle, which could be a potential factor affecting menstruation and estrogen45. Moreover NCOA1 was 
shown to be a key factor for the signaling pathway of estrogen46. Finally 230 genes highly correlated with BMD 
were identified based on ROC, PPI network and Pearson correlation analysis. 100 genes were associated with 
high BMD and 130 genes were associated with low BMD. The GO and KEGG enrichment analysis showed that 
the term GO:0032870 (cellular response to hormone stimulus) was important for the treatment of pre and post-
menopausal women since many kinds of drugs like estrogen and hormone replacement drugs had been already 
approved for marketing47, playing an important role in the regulation of menstrual cycle and the development 
of puberty and secondary female sex characteristics48. The result of GSEA showed that genes were only enriched 
in GO: 0022613 ribonucleoprotein complex biogenesis. Gene PTEN and gene RPL3 were identified as the sig-
nificant genes in ribonucleoprotein complex biogenesis pathway from our study. Previous study proved that the 

Figure 5.  GSEA analysis and box plot. (A) box plot of training data; (B) box plot of validation data; (C) GSEA 
analysis of 230 BMD related genes; (D) box plot of ribonucleoprotein complex biogenesis activity and BMD in 
training data; (E) box plot of ribonucleoprotein complex biogenesis activity and BMD in validation data.
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PTEN tumor suppressor inhibits telomerase activity by decreasing hTERT mRNA levels49. Besides, gene RPL3 
could regulate the telomerase activity50. Telomerase activity is closely related to bone mineral density and oste-
oporosis. Former study showed that mutational inactivation of the gene WRN and gene TERC (encoding the 
telomerase RNA component) would lead to telomere dysfunction and cause osteoporosis with low cortical bone 
mineral density51. Moreover, the expression of telomerase would increase the bone formation in vivo52. What’s 
more, telomerase would accelerate the osteogenic differentiation of mesenchymal stem cells53. The schematic was 
shown in Fig. S10. In recent study heterogeneous nuclear ribonucleoprotein L was found to restrained osteogenic 
differentiation of periodontal ligament stem cells54. What’s more, small nuclear ribonucleoprotein polypeptide N 
was discovered to promote osteogenic differentiation of bone marrow mesenchymal stem cells55. The high activity 

Figure 6.  Gene clustering heat map analysis, ROC analysis of genes and elastic net regression network and box 
plot. (A) Gene clustering heat map analysis; (B,C) ROC curve of training data set (GSE56815) and validation 
data set (GSE2208) with elastic net regression model; (D,E) Box plot for training data set (GSE56815) and 
validation data set (GSE2208).
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of ribonucleoprotein complex biogenesis was highly correlated with low BMD, which was further validated by 
independent data set. These findings may provide some new insights on the study of monocytes and bone mineral 
density. The elastic net regression model was also performed to predict the BMD, However, due to the overfitting 
in training data set, this method was not suitable in this study. Our approach was not based on regression coeffi-
cients, but on the expression of specific genetic features, which could reduce overfitting. Moreover, we are looking 
forward to more research to prove our findings because of the limitation of the sample size.

Conclusion
In general, a novel score system which was able to predict the BMD was constructed. Moreover, the ribonucleo-
protein complex biogenesis pathway were identified as key part of occurrence and development of osteoporosis.

Data availability
The datasets analysed during the current study are available in the GEO datasets (https://www.ncbi.nlm.nih.gov/).
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