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SUMMARY

Chronic kidney disease (CKD) is a common disease that seriously endangers hu-
man health. However, the potential relationship between xanthine oxidoreduc-
tase (XOR) activity and CKD remains unclear. In this study, we used clinical
data, CKD datasets from the Gene Expression Omnibus database, and untar-
geted metabolomics to explain the relationship between XOR activity and
CKD. First, XOR activity showed high correlation with the biomarkers of CKD,
such as serum creatinine, blood urea nitrogen, uric acid, and estimated glomer-
ular filtration rate. Then, we used least absolute shrinkage and selection operator
logical regression algorithm and random forest algorithm to screen CKD molecu-
lar markers from differentially expressed genes, and the results of qRT-PCR of
XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics
analyses. In addition, untargeted metabolomics analysis revealed that the purine
metabolism pathway was significantly enriched in CKD patients in the simulated
models of kidney fibrosis.

INTRODUCTION

Xanthine oxidoreductase (XOR) is a complex molybdenum protein polymer that has been known for more

than 100 years.1 In mammals, XORmainly catalyzes the last two steps of purinemetabolism, including catal-

ysis of hypoxanthine to xanthine and conversion of xanthine to uric acid. The enzyme has two interconvert-

ible forms, including one with dehydrogenase activity (XDH) and another one with oxidase activity (XO).2 In

normal physiological conditions, XOR is predominantly present in the dehydrogenase form and uses

NAD+ as its preferred electron acceptor to yield NADH and produce uric acid (UA) simultaneously. The

XO form simultaneously produces UA and reactive oxygen species (ROS) by using oxygen.3 Therefore,

the activity of XOR is the sum of the two existing forms. Hypoxia, inflammation, and ischemia-reperfusion

injury increase XOR activity, which can increase the production of ROS. The ROS produced by XOR during

the reaction process can damage the function of endothelial cells and activate inflammasomes.4,5

Considering the increasing prevalence, poor outcome, and economic burden, chronic kidney disease

(CKD), which affects approximately 13.4% of general population, has been reported to be a significant pub-

lic health issue with an annual growth rate of 8%.6,7 The pathogenesis of CKD is associated with age and

sex,8 diabetes and obesity,9,10 poorly controlled arterial hypertension,11 monogenic kidney disease,12

congenital abnormalities,13 climate,14 infections and chronic inflammation,15 malignancy,16 episodes of

acute kidney injury,17,18 and low nephron endowment at birth.19 Assessment of kidney damage (protein-

uria) and estimation of renal function (estimated glomerular filtration rate, eGFR) are two routine clinical

biomarker assessments for CKD.20 In addition, blood urea nitrogen (BUN) level is considered an estimate

of renal function in patients with renal disorders.21–23 Previous studies have pointed out that the kidney as

an organ with high metabolic activity is extremely susceptible to damage by ROS.24,25 In pathological con-

ditions, the balance between oxidants and antioxidants is disrupted, and the antioxidant systems can be

overwhelmed. ROS may contribute to many pathological conditions and diseases.26–28 ROS can also pro-

mote the progression of CKD and even contribute to cardiovascular disease (CVD).27 UA, the end product

of XOR, has been reported to be a potential contributory risk factor in the development and progression of

CKD. XOR is one of the main sources of ROS.29 Accruing evidence suggests that XOR inhibitors may pro-

vide direct renal benefits owing to their hypouricemic effect, inhibition of the inflammatory response, and
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inhibition of oxidative stress. However, it should be noted that the relationship between XOR activity and

CKD remains unclear.

Therefore, the aim of this study was to evaluate this relationship by using clinical data, CKD datasets from

the GEO database, and untargetedmetabolomics. At clinical data level, XOR activity highly correlated with

two clinical biomarkers of CKD, such as eGFR and BUN. At transcriptomic level, XDH was identified by

screening molecular markers by performing LASSO logistic regression algorithm and random forest based

on public GEO datasets. Untargeted metabolomics analysis revealed that the purine metabolism pathway

including the metabolite xanthine was significantly enriched in CKD patients in the simulated models of

kidney fibrosis. Although additional experiments in human renal biopsy are needed to verify this finding,

a new insight into the relationship between XOR activity and CKD was provided in this study.

RESULTS

Profile of clinical data, GEO, and untargeted metabolomics

To investigate the relationship between XOR activity and CKD, we performed integrative analysis to gain

insights at multiple levels, including clinical data, CKD datasets from GEO, and untargeted metabolomics

(Figure 1). CKD patients were surveyed and filtered for systematic analysis of the relationship between XOR

activity and other physiological characteristics such as gender, age, and fasting blood glucose (FBG) (Fig-

ure 1A). Public GEO datasets for CKD were collected to screen the hub molecular markers for CKD based

on multiple machine learning techniques (Figure 1B). Untargeted metabolomics was performed to obtain

the key metabolic pathways in the simulated models of kidney fibrosis (Figure 1C).

Systematic analysis of clinical data of CKD patients

Out of 172 participants, clinical data were obtained for 90 patients and 31 control participants after filtering

out individuals with incomplete clinical information. All participants’ clinic profiles are shown in Table 1,

illustrating that there were significant differences in age, systolic blood pressure, serum creatinine (Scr),

FBG, total protein, albumin, red blood cell, white blood cell, hemoglobin, NOD-like receptor thermal pro-

tein domain-associated protein 3 (NLRP3), and XOR between the control participants and CKD patients. All

CKD patients’ underlying kidney disease is shown in Table 2. As shown in Figure 2 and Table S1, we per-

formed Pearson correlation analysis to evaluate the relationship between XOR and other clinical symp-

toms. In CKD patients, XOR activity showed high positive correlations with FBG, Scr, BUN, UA, and

NLRP3, and a negative correlation with eGFR (Figures 2C–2F, Table S1A). XO activity showed high positive

correlations with age, FBG, Scr, BUN, and UA, and negative correlation with eGFR (Table S1A). XO/XOR

ratio correlated positively with eGFR and negatively with Scr and UA (Table S1A). The relationship between

XOR activity and eGFR suggested that XOR activity might be a potential diagnostic marker or a key path-

ogenicity factor for CKD. Interestingly, in the control participants, XOR activity and XO activity showed

negative correlations with UA and NLRP3 (Figures 2A and 2B, Table S1B).

For further study, the CKD patients were divided into two groups according to the eGFR level. For the

eGFR<60 mL/(min$1.73 m2) group, the XOR activity and FBG were more significantly increased, while

the XO level was not significantly altered. The NLRP3 level increased significantly in all CKD patients. Given

the importance of glycemic control in CKD patients with regard to decreased XOR leading to a decrease in

CVD events,30 the participants were divided into the diabetes and the non-diabetes groups and the results

demonstrated that the diabetes group was characterized by increased levels of XOR (Figures 2G–2I). Addi-

tionally, for the non-diabetes group, XOR activity showed high negative correlations with eGFR and pos-

itive correlations with Scr, BUN, and UA (Table S1). These results indicated that though the XOR activity

of CKD patients was affected by diabetes, the XOR activity was related to eGFR, BUN, Scr, and UA, and

the trends were consistent, regardless of diabetes status.

Data preprocessing and DEGs screening in CKD

To further investigate whether XOR plays potentially important roles in CKD by distinct modes of action at

the molecular level, we first searched and downloaded the gene expression matrix of CKD from the GEO

database. In total, 135 samples including 119 CKD patients and 16 healthy subjects were available from five

datasets, including GSE15072, GSE45980, GSE66494, GSE69438, and GSE70528 (Figure 3A). Then, inter-

batch differences were removed in the merged dataset, and principal component analysis (PCA) was

generated for the standardized dataset. As shown in Figure 3B and Table S2, compared with the result

ll
OPEN ACCESS

2 iScience 26, 107332, November 17, 2023

iScience
Article



of PCA based on the raw data, the CKD and normal control samples clustered separately after correction,

indicating that the corrected dataset was reliable. Based on the corrected gene expressionmatrix, a total of

6048 differentially expressed genes, including 3049 upregulated and 2999 downregulated genes, were

identified for subsequent analysis (Figure 3C). Kyoto Encyclopedia of Genes and Genomes (KEGG) en-

richment analysis revealed that aldosterone-regulated sodium reabsorption, carbohydrate digestion

and absorption, fructose and mannose metabolism, gastric acid secretion, arrhythmogenic right ventricu-

lar cardiomyopathy, hypertrophic cardiomyopathy, dilated cardiomyopathy, platelet activation, oxytocin

signaling pathway, and ABC transporters were enriched in differentially expressed genes (DEGs) (Figure 3D

and Table S2).

A B C

Figure 1. Summary of datasets in this study

(A–C) Schematic diagram for clinical data (A), GEO datasets (B), and untargeted metabolomics (C). Clinical data were

obtained from healthy subjects (31) and CKD patients (141). A total of 135 samples including 119 CKD patients and 16

healthy subjects were downloaded for screening differentially expressed genes and molecular markers between the

healthy subjects and CKD patients. Untargeted metabolomics analysis was performed for further validation in the

simulated models of kidney fibrosis by TGF-b.
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Screening for the key marker of CKD

We performed LASSO logistic regression algorithm and random forest algorithm to screen for molecular

markers of CKD fromdifferentially expressed genes. The best lambda was selected after cross-validation to

build the final LASSOmodel (Figures 4A and 4B), and then, 29 genes were identified from DEGs as the mo-

lecular markers (Figure 4E). In addition, we used random forest algorithm to detect 21 genes based on

10-fold cross-validation (Figures 4C and 4D). Finally, XDH, kidney oxidase-1 (KOX-1), cytochrome c oxidase

subunit 2 (COX-2), reactive oxygen species modulator 1 (ROMO1), nitric oxide-associated protein 1

(NOA1), and nuclear factor NF-kB (NF-kB) were obtained by overlapping these two algorithms (Figure 4E,

left). Except COX-2, the expression levels of other five genes, namely, XDH, KOX-1, ROMO1, NOA1, and

NF-kB, increased in the CKD group (Figure 4E, right). These genes included five upregulated genes and

one downregulated gene (Figure 4E, right). Surprisingly, XDH, COX-2, NF-kB, and KOX-1 have been re-

ported to affect the levels of UA.31–34 Taken together, these data suggest that these six marker genesmight

be used to develop a prediction tool to classify the CKD and normal control samples.

Validation of six marker genes in the simulated models of kidney fibrosis

To further validate the expression of the six marker genes, the proximal tubular epithelial cells were treated

with TGF-b to simulate models of kidney fibrosis. Compared with control groups, XDH, KOX-1, and

Table 1. Baseline characteristics of all participants

Control participants(n = 31) CKD patients(n = 90) p

Male/female 17/14 45/45 –

Age (years) 44.90 (20–76) 67 (21–90) <0.0001

SBP (mmHg) 129.1 G 19.03 148.4 G 22.41 <0.0001

DBP (mmHg) 79.03 G 11.19 81.14 G 11.95 –

eGFR mL/(min$1.73m2) – 78.35 G 21.86 –

Scr (mmol/L/L) 51.23 G 10.78 87.02 G 32.73 <0.0001

BUN (mmol/L) 5.26 G 0.99 6.01 G 2.38 –

UA (mmol/L/L) 300.7 G 56.69 295.8 G 66.08 –

FBG (mmol/L) 4.95 G 0.32 5.80 G 1.41 0.0006

TP (g/L) 74.54 G 3.74 66.7 G 8.52 <0.0001

Alb (g/L) 47.17 G 2.38 39.07 G 5.17 <0.0001

ALT (IU/L) 19.60 G 8.31 19.58 G 9.30 –

AST (IU/L) 18.33 G 4.27 20.33 G 6.11 –

TC (mmol/L) 4.37 G 0.80 4.38 G 1.42 –

TG (mmol/L) 1.13 G 0.47 1.52 G 1.52 –

Male/female 17/14 45/45 –

RBC (31012/L) 4.72 G 0.30 4.45 G 0.62 0.0079

WBC (3109/L) 5.921 G 1.065 6.864 G 1.961 0.0104

PLT (3109/L) 229.6 G 50.75 205.6 G 66.33 –

Hb (g/L) 143.4 G 10.54 134.2 G 18.38 0.0033

NLRP3 (ng/mL) 0.92 G 0.13 2.95 G 1.27 <0.0001

XOR (U/L) 19.21 G 4.89 24.69 G 10.68 0.0088

XO (U/L) 14.96 G 4.00 16.33 G 5.22 –

XO/XOR ratio 0.79 G 0.15 0.77 G 0.36 –

Hypertension 35.48% 0.8889 –

Diabetes 0% 0.2889 –

Systolic blood pressure (SBP), Diastolic blood pressure (DBP), estimated glomerular filtration rate (eGFR), Serum creatinine

(Scr), Blood urea nitrogen (BUN), Uric acid (UA), Fasting blood glucose (FBG), Total protein (TP), Albumin (Alb), Alanine trans-

aminase (ALT), Aspartate transaminase (AST), Total cholesterol (TC), Triglyceride (TG), Red blood cell (RBC), White blood cell

(WBC), Platelet (PLT), Hemoglobin (Hb), NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), Xanthine

oxidoreductase (XOR), Xanthine oxidase (XO). Values indicated the mean G SD, Nonparametric test was used for compar-

isons of all variables.
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ROMO1 were significantly upregulated by TGF-b treatment (Figure 5); however, the expression levels of

NOA1, NF-kB, and COX-2 did not significantly change after the treatment with TGF-b. Collectively, the re-

sults of qRT-PCR of XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics ana-

lyses, indicating that these three genes might be candidate markers.

Profile of metabolomics in the models of kidney fibrosis induced by TGF-b

In the simulated models of kidney fibrosis, we performedmetabolomics analysis to investigate whether the

end product of XOR activity was involved in CKD (Figure 1C). Of 1542 metabolites, 471 metabolites were

annotated by three standard databases, including BMDB (56), ChemSpider (350), and mzCloud (66) (Fig-

ure 6A and Table S3), and then the annotated metabolites were divided into four decreasing credibility

levels, including level1, level2, level3, and level4 according to precursor ion, MS2 fragment spectra, and

column retention time. As shown in Figure 6B, the credibility of the metabolites marked by level1 was

higher than that of the metabolites marked by other three levels, while the number of the metabolites

marked by level1 (32) was lower than that of the metabolites marked by other levels including level2

(52), level3 (38), and level4 (350) (Figure 6B). All annotated metabolites were also classified into four sub-

classes, including phytochemical compounds, lipids, compounds with biological roles, and others with

identification information. The number of the metabolites classified as lipids (64), compounds with biolog-

ical roles (18), and others (50) was significantly lower than that of the metabolites classified as phytochem-

ical compounds (340), and phytochemical compounds were composed of six major categories (accounting

about 41%), including amino acids, peptides, and analogs (39), benzene and derivatives (21), organic acids

(17), carbohydrates (16), amines and derivatives (16), and purines and derivatives (14) (Figure 6C). KEGG

pathway analysis indicated that the annotated metabolites were involved in the top 10 KEGG pathways,

including amino acid metabolism (25), nucleotide metabolism (19), metabolism of cofactors and vitamins

(16), lipid metabolism (15), xenobiotics biodegradation and metabolism (13), carbohydrate metabolism

(13), energy metabolism (7), biosynthesis of other secondary metabolites (5), metabolism of other amino

acids (2), and metabolism of terpenoids and polyketides (1) (Figure 6D).

Differentially expressed metabolites in the simulated models of kidney fibrosis in vitro

PCA of themetabolites indicated that five biological replicates of control and simulatedmodels induced by

TGF-b were highly correlated and clustered (Figure 7A). Based on the abundance of the annotated metab-

olites, 152 upregulated and 158 downregulated metabolites were identified (Figure 7B) with fold change

>1.5 and p value <0.05. Consistent with previous findings that UA is commonly elevated in patients with

CKD, our KEGG pathway enrichment analysis revealed that purine metabolism was also enriched in differ-

entially expressed metabolites (Figure 7C). A striking example was xanthine, generated by XDH, which

increased in TGF-b sample. The pathway network indicated that Î2�d�3�ribofuranosyluric acid (Figure 7D)

was also related to purine metabolism. In summary, the profile of differentially expressed metabolites sug-

gests that the products of metabolism related to XOR activity might influence CKD.

DISCUSSION

Although UA, the end product of XOR activity, is commonly elevated in subjects with CKD, the underlying

relationship between XOR activity and CKD is still unclear. We analyzed clinical data, CKD datasets from

the GEO database, and untargeted metabolomics to investigate the relationship between XOR activity

and CKD (Figure 1).

Table 2. Causes of CKD patients

Cause of CKD Percentage

Chronic glomerulonephritis 65.56%

Renal vascular disease 14.44%

Diabetic nephropathy 8.88%

Polycystic kidney 6.67%

Unilateral renal atrophy 3.33%

Solitary kidney 1.11%

The percentage of CKD patients with different etiology (n = 90).
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CKD is a progressive disease and its routine clinical assessment is based on measuring markers of

kidney damage and estimating renal function. The kidney damage was evaluated by proteinuria, abnormal-

ities of urine sediment, abnormalities of electrolytes induced by abnormalities of kidney tubules, and

A

C

E

G H I

B

D

F

Figure 2. Systematic analysis of clinical data in this study

(A and B) Point plot showing that XOR was negatively correlated with UA(A) and NLRP3 (B) in the control group.

(C–F) Point plot showing the correlation between XOR and eGFR (C), FBG (D), NLRP3 (E), and UA (F).

(G and H) Bar plots showing the abundance of XOR, XO, XO/XOR ratio, NLRP3, and FBG into the control groups and

two CKD groups according to the eGFR level, for the group with eGFR<60 mL/(min$1.73 m2). *p < 0.05, **p < 0.01,

***p < 0.001, and ****p < 0.0001.

(I) Bar plot showing the abundance of XOR and XDH in control groups and the CKD patient groups, including DM and

non-DM groups.
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abnormalities of histology, while eGFR using the Scr20 and BUN21–23 was considered an estimate of renal

function. At the clinical level, we found that XOR activity correlated with previously reported physiological

characteristics related to CKD, such as Scr, BUN, and eGFR (Figure 2 and Table S1); however, it is

A

B

C
D

Figure 3. Screening the differentially expressed genes for CKD

(A) The detailed information of the five datasets including 119 CKD patients and 16 healthy subjects.

(B) Plot of principal component analysis (PCA) before and after sample correction. The red and blue colored blocks

represent the groups of CKD and healthy subjects.

(C) Volcano plots of differentially expressed genes involved in CKD. Red and green points indicate up- and

downregulation of genes, respectively, between CKD and healthy subjects.

(D) KEGG pathway enrichment analysis of differentially expressed genes. The top 10 KEGG categories are displayed.
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A

C

E

B

D

Figure 4. Hub genes selected by LASSO regression analysis and random forest in GEO datasets of CKD

(A) LASSO coefficient profiles of the hub CKD genes.

(B) Plot of mean squared error by lambda value.

(C) Plot of cross-validation error of random forest. The arrow indicates the number of important variables.

(D) Twenty-one important variables were ranked by IncNodePurity.

(E) Venn plot and heatmap plot showing the number (left) of overlapped genes between LASSO and random forest

algorithms, and the abundance changes (right) of the overlapped genes (including XDH, KOX-1, COX-2, ROMO1, NOA1,

and NF-kB).
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interesting that the association of XOR with UA and NLRP3 in the physiological situation was opposite to

that in CKD patients, which may be related to the oxidation and antioxidant effects of UA, which has a dy-

namic transformation process with XOR.35 Further research on CKD patients grouped according to eGFR

and whether or not they had diagnosis showed that the XOR level was affected by both FBG and eGFR. It

has been demonstrated that the XO/XOR ratio reflects the conversion rate of XDH to XO.36 The generation

rate of ROS by XO in the human body is significantly higher than that by XDH. Hence, an increase in the XO/

XOR ratio accelerates the generation of ROS.37 This suggests that ROS production may be promoted by

promoting the conversion of XDH to XO in the early stage of CKD to further damage the kidney. In sum-

mary, inhibition of XOR activity may delay the progression of CKD by suppressing NLRP3 and reducing

FBG level. Specifically, inhibition of XOR activity had a more significant effect disease degree if

eGFR<60 mL/(min$1.73 m2). This conclusion indicates that similar to BUN and eGFR, XOR activity might

also be a potential diagnostic maker in clinical context. Further investigation of how XOR activity regulates

these processes will provide insight into the process of CKD.

Transcriptome analysis technologies are important systems-biology methods for comprehensive under-

standing of how genes are expressed and interconnected.38,39 The machine learning approach has been

reported as a complementary method to identify the critical genes for the disease andmalignancy in a tran-

scriptome dataset.40 At the transcriptomic level, emerging studies have revealed that several known genes

such as PKD1, COL4A5, PKD2, COL4A4, COL4A3, and TTR exhibit strong associations with CKD.41 In this

study, we performed LASSO logistic regression algorithm and random forest algorithm to screen for the

molecular markers such as XDH, KOX-1, COX, ROMO1, NOA1, and NF-kB for classifying the CKD and

normal control samples (Figure 3 and Table S2). In agreement with the results of bioinformatics analyses,

XDH, KOX-1, and ROMO1 were also expressed in the models of CKD (Figure 5). Surprisingly, XDH, the

Figure 5. Comparison of geneexpression levels of sixmarker genesbetween controls and TGF-b samples via qRT-PCR

The mRNA levels of XDH, KOX-1, ROMO1, NOA1, COX-2, and NF-kB were analyzed by qRT-PCR in TGF-b-treated HK2

cells and control cells. Differences were calculated using the 2�DDCt method by comparing gene expression levels to

those in HK2 cells. All data were analyzed using the Student’s t test. Asterisks and ns indicate significant and

nonsignificant differences between the groups, respectively. n = 6, **p < 0.01, ****p < 0.0001.
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superoxide-producing form of XOR, is a critical enzyme in purine metabolism, which catalyzes oxidation of

hypoxanthine to xanthine and oxidation of xanthine to UA.31 Furthermore, KOX-1, which is generated su-

peroxide by constituting NADPH oxidase, has been shown to play a crucial role in UA-induced oxidative

stress and apoptosis in renal tubular cells.34 ROMO1, a nuclear-encoded mitochondrial inner membrane

protein that regulates mitochondrial ROS production,42 is produced by XOR during the reaction process.4,5

These results suggest that UA or ROS production generated by XOR activity involved in CKD processes

might play an important role in the underlying molecular mechanism.

A

C D

B

Figure 6. Summary of untargeted metabolomics datasets in this study

(A) Number of all identified metabolites (1542) and annotated metabolites (471).

(B) Molecular weight and retention time of annotated metabolites with four different credibility levels. Red, yellow, green,

and purple indicate levels 1 to 4.

(C) Number of four subclasses including phytochemical compounds (340), lipids (64), compounds with biological roles

(18), and others (50).

(D) The top 10 KEGG pathways of the annotated metabolites.
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Metabolomics directly reflects the outcome of complex networks of biochemical reactions and provides

insights into multiple aspects of cellular physiology by generating and integrating the profile of small

metabolites, which originate from cellular metabolism.43 Metabolomics has also been instrumental for

the identification of new biomarkers of CKD.44 An obvious example is 5-methoxytryptophan, whose

levels strongly correlate with clinical markers of kidney disease by using untargeted metabolomics.45

In our study, we identified 1543 metabolites by using untargeted metabolomics, and 472 metabolites

were annotated by three standard databases (Figure 6A and Table S3). Of 152 upregulated and 158

downregulated metabolites, xanthine generated by XDH was upregulated by TGF-b, and purine meta-

bolism was also enriched in the differentially expressed metabolites as shown in KEGG pathway enrich-

ment analysis (Figure 7C, Table S3), which is consistent with the previous finding that UA is commonly

elevated in CKD patients.46

A

C D

B

Figure 7. Differential metabolites induced by TGF-b

(A) Principal component analysis (PCA) of the metabolites of five biological replicates of control and TGF-b. Red and

green points indicate the group of control group and TGF-b groups, respectively.

(B) The scatterplot shows the differential levels of metabolites in response to TGF-b. Red and green points indicate up-

and downregulated metabolites, respectively, between the control and TGF-b groups.

(C) The point plot shows the KEGG pathways enriched for TGF-b-induced metabolites.

(D) Correlation network diagram of differential metabolites and KEGG pathways. The circle, triangle and square indicate

the pathway, enzyme, and metabolites, respectively.
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To further investigate the detailed correlation between XOR activity and CKD, we have summarized the multi-

omics dataset based on the previous finding in a schematic for CKD andXOR in Figure 8. Nephron loss, inflam-

mation, myofibroblasts activation, and extracellular matrix (ECM) deposition are the main processes of the

initiation and progression of CKD.47–49 It has been shown that the loss of tubules, glomeruli, and endothelium

is promoted by lipotoxicity and oxidative stress,50 which is modulated by the signaling of NLRP3 inflamma-

some,51 , PI3K/Akt,52 RAAS53 or TGF-b,54–56 NF-kB,57–59MAPK,60 andAng II.61,62 Themajor signaling pathways

thatmediate inflammation have been found to be associatedwith these signaling ofNF-kB,63–65NLRP3 inflam-

masome,66,67 JAK-STAT,68–71 Toll-like receptor,72–74 and cGAS-STING75–77 signaling. TGF-b signaling,78,79

Wnt signaling,80–85 RAAS signaling,86,87 and Notch signaling88–90 have been linked to the activation of myofi-

broblasts and the generation of ECM. This viewwas also supported by twomajor lines of evidence in our study.

One is that several genes from these signaling pathways showed different expression between CKD patients

and healthy subjects (Figure 8 and Table S4). For instance, of 12 identified genes in NF-kB signaling, 8 and 4

genes showed significantly increasing or decreasing level in CKD groups, respectively (Table S4). Other evi-

dence is that five molecular markers such as KOX-1, ROMO1, COX-2, NOA1, and NF-kB except for XDH,

generated from machine learning for classifying the CKD and normal control samples, were also reported

to be associated with UA-oxidative stress.34,64,91,92 Interestingly, UA, produced from xanthine and catalyzed

by XDH,31 has been proven to induce inflammation, oxidative stress, and activation of myofibroblasts.93

Furthermore, XOR activity is an oxidative stress indicator for the need for renal replacement therapy and is

Figure 8. Summary relationship between XOR activity and CKD

Several key signaling pathways, such as NLRP3 inflammasome signaling, TGF-b signaling, and RAAS signaling, have been

reported to affect the core characteristics of CKD, including nephron loss, inflammation, myofibroblasts activation, and

extracellular matrix (ECM) deposition and are all modulated by the UA.
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associated with the severity of CKD in a general Japanese population.94,95 These results indicated that XOR

activity might contribute to predict CKD.

Limitations of the study

The main limitations to our study are as follows: 1) there were a small number of clinical participants; 2) the

analysis of the metabolomics level from the CKD group remained unknown and the underlying molecular

mechanism by which XOR activity affects the process of CKD remained unclear. Thus, further investigation

is needed to confirm our findings by obtaining metabolomics from CKD group and more clinical data.

In summary, these results suggest that the activity of XOR, the critical enzyme in purine metabolism, might

be involved in the process of CKD by generating xanthine. Our results highlight the potential interplay be-

tween XOR activity and CKD in three aspects, including clinical, transcriptomic, and metabolomics levels.
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Dołęgowska, B. (2022). Xanthine
oxidoreductase activity in platelet-poor and
rich plasma as a oxidative stress indicator in
patients required renal replacement
therapy. BMC Nephrol. 23, 35. https://doi.
org/10.1186/s12882-021-02649-8.

95. Taguchi, S., Nasu, T., Satoh, M., Kotozaki, Y.,
Tanno, K., Tanaka, F., Asahi, K., Ohmomo,
H., Kikuchi, H., Kobayashi, T., et al. (2022).
Association between Plasma Xanthine
Oxidoreductase Activity and the Renal
Function in a General Japanese Population:
The Tohoku Medical Megabank
Community-Based Cohort Study. Kidney
Blood Press. Res. 47, 722–728. https://doi.
org/10.1159/000527654.

96. Davis, S., and Meltzer, P.S. (2007).
GEOquery: a bridge between the Gene
Expression Omnibus (GEO) and
BioConductor. Bioinformatics 23, 1846–
1847. https://doi.org/10.1093/
bioinformatics/btm254.

97. Barrett, T., Wilhite, S.E., Ledoux, P.,
Evangelista, C., Kim, I.F., Tomashevsky, M.,
Marshall, K.A., Phillippy, K.H., Sherman,
P.M., Holko, M., et al. (2013). NCBI GEO:
archive for functional genomics data sets–
update. Nucleic Acids Res. 41, D991–D995.
https://doi.org/10.1093/nar/gks1193.

98. Parker, H.S., Leek, J.T., Favorov, A.V.,
Considine, M., Xia, X., Chavan, S., Chung,
C.H., and Fertig, E.J. (2014). Preserving
biological heterogeneity with a permuted
surrogate variable analysis for genomics
batch correction. Bioinformatics 30, 2757–
2763. https://doi.org/10.1093/
bioinformatics/btu375.

99. Wang, L., Feng, Z., Wang, X., Wang, X., and
Zhang, X. (2010). DEGseq: an R package for
identifying differentially expressed genes
from RNA-seq data. Bioinformatics 26,
136–138. https://doi.org/10.1093/
bioinformatics/btp612.

100. Yu, G., Wang, L.G., Han, Y., and He, Q.Y.
(2012). clusterProfiler: an R package for
comparing biological themes among gene

clusters. OMICS 16, 284–287. https://doi.
org/10.1089/omi.2011.0118.

101. Wen, B., Mei, Z., Zeng, C., and Liu, S. (2017).
metaX: a flexible and comprehensive
software for processing metabolomics data.
BMC Bioinf. 18, 183. https://doi.org/10.
1186/s12859-017-1579-y.

102. Tian, Y., Chen, L., and Jiang, Y. (2022).
LASSO-based screening for potential
prognostic biomarkers associated with
glioblastoma. Front. Oncol. 12, 1057383.
https://doi.org/10.3389/fonc.2022.1057383.

103. Guo, L., Wang, Z., Du, Y., Mao, J., Zhang, J.,
Yu, Z., Guo, J., Zhao, J., Zhou, H., Wang, H.,
et al. (2020). Random-forest algorithmbased
biomarkers in predicting prognosis in the
patients with hepatocellular carcinoma.
Cancer Cell Int. 20, 251. https://doi.org/10.
1186/s12935-020-01274-z.

104. Di Guida, R., Engel, J., Allwood, J.W.,
Weber, R.J.M., Jones, M.R., Sommer, U.,
Viant, M.R., and Dunn, W.B. (2016). Non-
targeted UHPLC-MS metabolomic data
processing methods: a comparative
investigation of normalisation, missing value
imputation, transformation and scaling.
Metabolomics 12, 93. https://doi.org/10.
1007/s11306-016-1030-9.

105. Dunn, W.B., Broadhurst, D., Begley, P.,
Zelena, E., Francis-McIntyre, S., Anderson,
N., Brown, M., Knowles, J.D., Halsall, A.,
Haselden, J.N., et al. (2011). Procedures for
large-scale metabolic profiling of serum
and plasma using gas chromatography
and liquid chromatography coupled to
mass spectrometry. Nat. Protoc. 6, 1060–
1083. https://doi.org/10.1038/nprot.
2011.335.

106. Wishart, D.S., Guo, A., Oler, E., Wang, F.,
Anjum, A., Peters, H., Dizon, R., Sayeeda, Z.,
Tian, S., Lee, B.L., et al. (2022). HMDB 5.0:
the Human Metabolome Database for 2022.
Nucleic Acids Res. 50, D622–D631. https://
doi.org/10.1093/nar/gkab1062.

107. Kanehisa, M., Furumichi, M., Sato, Y.,
Ishiguro-Watanabe, M., and Tanabe, M.
(2021). KEGG: integrating viruses and
cellular organisms. Nucleic Acids Res. 49,
D545–D551. https://doi.org/10.1093/nar/
gkaa970.

ll
OPEN ACCESS

iScience 26, 107332, November 17, 2023 17

iScience
Article

https://doi.org/10.1152/physrev.00038.2017
https://doi.org/10.1152/physrev.00038.2017
https://doi.org/10.1007/s11906-018-0864-0
https://doi.org/10.1007/s11906-018-0864-0
https://doi.org/10.1172/JCI43025
https://doi.org/10.1172/JCI43025
https://doi.org/10.1038/ki.2010.172
https://doi.org/10.1038/ki.2010.172
https://doi.org/10.1002/path.4076
https://doi.org/10.1002/path.4076
https://doi.org/10.1172/JCI41563
https://doi.org/10.1172/JCI41563
https://doi.org/10.1002/jcp.27797
https://doi.org/10.1002/jcp.27797
https://doi.org/10.1155/2014/638732
https://doi.org/10.1186/s12882-021-02649-8
https://doi.org/10.1186/s12882-021-02649-8
https://doi.org/10.1159/000527654
https://doi.org/10.1159/000527654
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/bioinformatics/btu375
https://doi.org/10.1093/bioinformatics/btu375
https://doi.org/10.1093/bioinformatics/btp612
https://doi.org/10.1093/bioinformatics/btp612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/s12859-017-1579-y
https://doi.org/10.1186/s12859-017-1579-y
https://doi.org/10.3389/fonc.2022.1057383
https://doi.org/10.1186/s12935-020-01274-z
https://doi.org/10.1186/s12935-020-01274-z
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.1093/nar/gkab1062
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1093/nar/gkaa970


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Fetal bovine serum Gibco Thermo Fisher Scientific 10099141C

DMEM/F12 Gibco Thermo Fisher Scientific Cat# C11330500BT

Trypsin Gibco Thermo Fisher Scientific Cat# 25200056

rhTGF-b1 (10 mg) R&D Systems Cat# 240-B-010

Critical commercial assays

TRIzol TAKARA 108-95-2

HiScript II Q RT SuperMix Vazyme R222-01

SYBR Green PCR mix Vazyme Q131-02

Human XOR Assay Kit (Colorimetric method) XLPCC XL-SH210

Human XO Assay Kit XLPCC XL-SH212

Human NLRP3 ELISA Kit XLPCC XL-EH1894

Deposited data

Metabolomics data https://www.ebi.ac.uk/metabolights/ MTBLS142

Experimental models: Cell lines

Human renal tubular cell line HK2 ATCC CRL-2190

Oligonucleotides

Human XOR detection primers

Forward Primer 50-GGACAGTTGTGGCTCTTGAGGT-30

Reverse Primer 50-GGAAGGTTGGTTTTGCACAGCC-30

PrimerBank Figure 5

Human XDH detection primers

Forward Primer 50-ACCCCGTGTTCATGGCCAGTG-30

Reverse Primer 50-TCCGGGAGGCCTGCTTGAATG-30

PrimerBank Figure 5

Human ROMO1 detection primers

Forward Primer 50-AAGCTGCTTCGACCGTGTC-30

Reverse Primer 50-CCCGCATTCCGATCCTGAG-30

PrimerBank Figure 5

Human NOA1 detection primers

Forward Primer 50-CCTTCCAGCACTCATCGAGTC-30

Reverse Primer 50-TCCAGGATGTACTCCGGGAAC-30

PrimerBank Figure 5

Human COX-2 detection primers

Forward Primer 50-TAAGTGCGATTGTACCCGGAC-30

Reverse Primer 50-TTTGTAGCCATAGTCAGCATTGT-30

PrimerBank Figure 5

Human NF-kB detection primers

Forward Primer 50-AACAGAGAGGATTTCGTTTCCG-30

Reverse Primer 50-TTTGACCTGAGGGTAAGACTTCT-30

PrimerBank Figure 5

Human GAPDH detection primers

Forward Primer 50-GGAGCGAGATCCCTCCAAAAT-30

Reverse Primer 50-GGCTGTTGTCATACTTCTCATGG-30

PrimerBank Figure 5

Software and algorithms

GraphPad Prism 9 software GraphPad software https://www.graphpad.com

GEOquery Davis et al.96 and Barrett et al.97 bioconductor.org/packages/release/

bioc/html/GEOquery.html

combat Parker et al.98 ComBat function - RDocumentation

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information, requests, and inquiries should be directed to and will be fulfilled by the Lead Contact,

Donghui Zheng (zddwjj@126.com).

Material availability

The study did not generate new unique reagents.

Data and code availability

Metabolomics data have been deposited at MetaboLights (https://www.ebi.ac.uk/metabolights/) and are

publicly available as of the date of publication. Accession numbers are listed in the key resources table. This

paper does not report original code.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants

A total of 121 Han Chinese participants in the affiliated Huai’an Hospital of Xuzhou Medical University were

enrolled in this study, and the patient profiles are shown in Table 1 and Figure 1A. The causes of all CKD

patients enrolled were analyzed in Table 2, and the urinary examination was performed in all participants.

Firstly, midstream urine of all patients seeking treatment in the nephrology department were collected and

examined by the dry chemical strip method (Sysmex UC-3500), the patients with urinary occult blood or uri-

nary protein being 1+ or above were identified and their eGFR were calculated. Next, other CKD patients

with renal damage or decreased renal function for no less than three months (2012 The lancet) were iden-

tified based on the results of hematology and imaging examination. All CKD patients were diagnosed with

CKD according to the 2017 Guidelines for Screening, Diagnosis, and Prevention of Chronic Kidney Disease.

The exclusion criteria were incomplete clinical information, those who used XOR inhibitor, corticosteroid

and hyperuricemia patients, those who had severe malnutrition, and those with eGFR <30 mL/(min$1.73

m2). eGFR is used universally as a screening tool to determine the stage of CKD.49

Ethical approval

The study was conducted in accordance with the guidelines of the Declaration of Helsinki (1991), and

approved by the Ethics Committee of the Affiliated Huai’an Hospital of Xuzhou Medical University

(HEYLL201883).

Consent for publication

This research has consent to study and publish. In addition, the consents are kept in The Affiliated Huai’an

Hospital of Xuzhou Medical University’s archives.

Cell

The human renal tubular cell line HK2, which has been authenticated, was purchased from American Type

Culture Collection (ATCC, Manassas, VA, RRID: CVCL_0302), and screened regularly for mycoplasma

contamination. HK2 cells were cultured in DMEM/F12 supplemented with 10% fetal bovine serum

(GIBCO, 10099141C, Australia), and were incubated in a humidified incubator of 5% CO2 at 37
�C.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DEGseq Wang et al.99 bioconductor.org/packages/

release/bioc/html/DEGseq.html

clusterProfiler Yu et al.100 bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

Q exactive HF Bo Wen et al.101 Q Exactive HF Hybrid Quadrupole

Orbitrap Mass Spectrometer Support

| Thermo Fisher Scientific - CN
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METHOD DETAILS

Plasma XOR activity

Plasma XOR activity was measured by UA production from XOR. A serum separator tube was used to store

the patients’ blood at 4�C overnight before centrifugation for 20 minutes at 10003g. Then, the serum was

maintain at �80�C until measuring using an assay kit (Colorimetric Method) from XLPCC, China.

Sample selection, data acquisition, and processing

The expression profile datasets GSE15072, GSE45980, GSE66494, GSE69438, and GSE70528 were down-

loaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) database using the GEOquery package.96,97

GSE15072 and GSE70528 were collected from peripheral blood. GSE45980, GSE69438 and GSE70528

were collected from renal biopsy. The detailed information of these microarray datasets is listed in Fig-

ure 3A. Raw data of the merged datasets were removed the inter-batch difference using the combat pack-

age.98 Differentially expressed genes were identified using DEGseq99 with the p-value <0.05 and |log2FC|

>1.5. KEGG pathway enrichment analyses of DEGs were preformed using clusterProfiler package.100

Identification of hub CKD genes

Differentially expressed matrices of GEO datasets were used to identify the hub CKD genes by merging

machine learning including LASSO logistic regression102 and random-forest algorithm.103 The LASSO al-

gorithm was applied with running 10-fold cross-validation for 1,000 cycles on minimum criteria and 1-s.e.

criteria. The important variables were selected by random-forest algorithm with minimum error regression

trees and ranked using IncNodePurity by using random-forest package. Ultimately, we combined the

genes from both LASSO and RF algorithms for further analysis.

Constructing samples induced by TGFb

HK2 cells were cultured in DMEM/F12 supplemented with 10% fetal bovine serum, and then stimulated

with 10 ng/mL TGF-b1 (R&D Systems, Minneapolis, MN) for 24 hours. The obtained samples were prepared

for extracting RNA for quantitative real-time PCR and metabolite extraction.

Quantitative real-time PCR (qRT-PCR)

TRIzol (TAKARA, SD412) was used to obtain whole RNA from HK2 cells. Then, the first-strand cDNAs were

synthesized from 1 mg of total RNA in a 20 mL reaction with HiScript II Q RT SuperMix for qPCR (Vazyme,

R222-01) following the manufacturer’s instructions. Quantitative real-time PCR used SYBR Green PCR

mix (Vazyme, Q131-02). Primers were synthesized by Tsingke Biotechnology Co (China, Beijing), and the

sequences are listed in key resources table. The PCR cycling condition was 50�C for 15 minutes and

60�C for 15 seconds. Gapdh was selected as an internal control. Based on threshold cycle values (DCt),

mRNA expression was analyzed, then converted to fold changes using 2�DDCt method.

Metabolite extraction, UPLC-MS analysis, and metabolite identification

A total of 25 mg samples of control and TGFb were added into 2-mL thickened centrifuge tubes with add-

ing magnetic beads and 10 mL prepared internal standard. Then, the samples were ground for 5 minutes

with 50 Hz after adding 800 mL precooled extraction reagent including 300 mL methanol, 300 mL acetonitrile,

and 200 mL water, and stored at�20�C for 2 hours. Next, 600 mL of the samples was collected and preserved

by freezing and then drying after centrifuging at 25,000 3 g for 15 minutes at 4�C. The dried samples were

completely dissolved with 120 mL of 50%methanol and centrifuged at 25,0003 g for 15 minutes at 4�C. The
supernatant with mixing QC samples was prepared for LC-MS/MS.

In this study, Q exactive HF (Thermo Fisher Scientific, USA) was used for mass spectrometry data acquisition

with primary and secondary levels. The full scan range was set at 70–1050 m/z, and the top three precursors

were selected for subsequent MS/MS. The resolution, automatic gain control (AGC), and maximum ion

injection time were set at 120,000, 3e6, and 100 ms, respectively (primary level), and 30,000, 1e5, and

50 ms, respectively (secondary level).

Raw data collected by LC-MS/MS were inserted to compound discoverer 3.3 (Thermo Fisher

Scientific, USA) software and annotated by BGI metabolome (https://www.bgi.com/global/service/

targeted-metabolomics), mzcloud (https://www.mzcloud.org/), and chemspider database (https://www.

chemspider.com). The data matrix containing metabolite peak area and identification results was obtained
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with the following parameters: parent ion mass deviation <5 ppm, mass deviation of fragment ions

<10 ppm, and retention time deviation <0.2 min.

Data preprocessing, quality control, and screening for the differential metabolites

By applying MetaX,101 the data matrix was prepared for data preprocessing including normalizing data by

probabilistic quotient normalization (PQN),104 correcting batch effect by quality control-based robust

LOESS signal correction (QC-RLSC),105 and removing metabolites with a coefficient of variation larger

than 30% on their relative peak area in QC samples. Principal component analysis (PCA) was used to

determine whether QC samples and experiment samples were aggregated. The Human Metabolome

Database106 and Kyoto Encyclopedia of Genes and Genomes (KEGG)107 were used to search metabolic

pathways. Differential metabolites were screened with the following criteria: fold change R1.5 or %0.66

and p-value <0.05.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

All clinical data statistical tests were conducted in Prism 9 software. Quantitative normally distributed data

were expressed as the means G standard deviations (SDs). A nonparametric test was used to explore the

effect of XOR on kidney function. A p-value <0.05 was considered statistically significant. The gene expres-

sionmeasured by RNA-seq was analyzed using the Student’s t test. Asterisks and ns indicate significant and

nonsignificant differences between the groups, respectively. A p-value <0.05 was considered statistically

significant.
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