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A B S T R A C T   

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 
2,000,000 deaths worldwide. Currently, vaccine development and drug repurposing have been the main stra-
tegies to find a COVID-19 treatment. However, the development of new drugs could be the solution if the main 
strategies fail. Here, a virtual screening of pentapeptides was applied in order to identify peptides with high 
affinity to SARS-CoV-2 main protease (Mpro). Over 70,000 peptides were screened employing a genetic algorithm 
that uses a docking score as the fitness function. The algorithm was coupled with a RESTful API to persist data 
and avoid redundancy. The docking exhaustiveness was adapted to the number of peptides in each virtual 
screening step, where the higher the number of peptides, the lower the docking exhaustiveness. Two potential 
peptides were selected (HHYWH and HYWWT), which have higher affinity to Mpro than to human proteases. 
Albeit preliminary, the data presented here provide some basis for the rational design of peptide-based drugs to 
treat COVID-19.   

1. Introduction 

Since December 2019, the worldwide massive health crisis provoked 
by the newly identified severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) has caused over 2,000,000 deaths worldwide, according 
to World Health Organization.2 As a global imperative, vaccine devel-
opment has been accelerated, with more than 100 vaccine candidates 
[1]. Although there are three FDA-approved vaccines,3 from Moderna, 
Pfizer-BioNTech and Janssen, SARS-CoV-2 is still a serious issue to 
combat and investigate at the molecular level [4]. Some aspects of 
coronavirus disease 2019 (COVID-19) remain unknown, mainly due to 
the emergence of novel strains [5]. 

The SARS-CoV-2 RNA genome consists of about 30,000 bp. The 
largest open read frame, ORF1a/b, encodes polyproteins 1a and 1 ab 
(pp1a and pp1ab) [6–9]. These proteins are further processed by the 
main protease (Mpro) and a papain-like protease to produce different 
functional proteins [6,10]. This cleavage releases important viral en-
zymes, including RNA-dependent RNA polymerase, helicase and meth-
yltransferase [6]. Therefore, Mpro is key to the viral cycle and, for this 
reason, this enzyme has been proposed as a therapeutic target for 

anti-coronavirus drug development [11,12,36,37]. 
Drug repurposing has been extensively explored as an attempt to 

identify possible Mpro inhibitors, where docking experiments play a 
critical role in virtual screening projects [13–15]. Drug repurposing is an 
elegant approach, because these drugs are already approved for human 
use [16]. However, the only officially approved drug for COVID-19 
treatment is remdesivir for very specific cases [17]. Therefore, consid-
ering a pessimistic scenario, anti-SARS-CoV-2 drugs need to be devel-
oped from scratch. 

Peptide therapeutics have gained attention in the last decade 
[18–20], with some recent possible applications for COVID-19 [21,22]. 
These peptides offer a wide combinatorial space to explore (i.e. for a 
decapeptide there are 2010 possible combinations, taking into account 
only the 20 proteinogenic amino acid residues), and this enormous 
combinatorial space allows the development of inhibitors for different 
enzymes [20,23–25]. Besides, there is no convergence between different 
techniques for yielding such peptides, allowing different solutions for 
the same problem [20]. The main in vitro technique has been the high 
throughput screening of chemical, genetic and/or recombinant libraries, 
which could explore about 108-1013 different peptides [19]. For the in 
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silico counterpart, virtual screening is the alternative mean to identify 
possible peptide therapeutics, using docking as the main engine 
[26–28]. Therefore, Mpro inhibitors based on peptides could be an 
alternative for COVID-19 treatment. 

In fact, computer science and technology information applications 
have contributed in different ways to dealing with the pandemic [29]. 
Drug repurposing has been the main application of virtual screening; 
however, this technology could also be applied for exploring the 
combinatorial peptide space. Therefore, here, a virtual screening 

strategy using docking and genetic algorithms, speeded up by informa-
tion technology applications, was developed to identify peptides with 
high affinity to Mpro. Two peptides with high affinity to Mpro were 
identified, and their possible applications to develop new drugs to treat 
COVID-19 are discussed. 

Fig. 1. Virtual screening system architecture scheme. (A) Client-server architecture. On the client side, the application was composed of a genetic algorithm, in PERL, 
a cache file, a 3D modelling script in python, using PyMOL interface and AutoDock Tools and AutoDock Vina, both simplified as AutoDock. Eight Intel i7 cores plus 
three raspberry pi 3 cores were used as independent clients; other client instances were used occasionally. On the server side, a raspberry pi 3 was used, running the 
LAMP stack due to its lower computing power compared to Intel i7 processor. A RESTful API was developed to persist the peptide data, reducing the time of 
processing docking experiments. (B) Genetic algorithm flowchart. The 19 pentapentides were used as the initial population; in the first iteration a totally random 
sequence pairing system for crossing over was applied, in order to improve the diversity of sequences and in the subsequent iterations a roulette wheel pairing model 
was applied for selection of sequences for crossing over. (C) Fitness function sequence diagram. This function was developed to reduce the need for docking pro-
cessing. Firstly, the algorithm tries to get the information in cache file; if the data exists, it is returned to the genetic algorithm; otherwise, the RESTful API is 
triggered; if the data exists, it is returned to fitness function, saved in cache, and returned to the genetic algorithm; otherwise, docking process is required to create 
the data, which is returned to the fitness function, saved in RESTful API and in cache and finally returned to the genetic algorithm. 
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2. Results 

2.1. Minimum exhaustiveness dockings for a huge number of peptides 

The virtual screening system was constructed using a client-server 
architecture, which allowed the task distribution in different com-
puters and/or different cores of multicore processors and, due to the 
persistence layer on server side, more than 70,000 peptide sequences 
were explored (Fig. 1). The structure of SARS-CoV-2 Mpro was used as 
the target for developing peptides with high affinity by means of the 
genetic algorithm. The genetic algorithm simulates the evolution of a set 
of sequences, the population, by a number of generations. Thus, the 
population of peptide sequences was evolved using the docking scores 
against the Mpro active site, increasing the score and, therefore, 
increasing the affinity of these peptides to the enzyme. 

Fig. 2 shows the overall assessment of our virtual screening system. 
Due to the prevalence of aromatic residues, the same simulation 
excluding those residues was performed; however, none of them reached 
the affinity of the complete set (Fig. 2A). In fact, the rarefaction curves 
(Fig. 2B) indicated that there are more sequences to be discovered as 
more independent simulations are performed for both amino acid sets; 
however, the aliphatic-only set is more diverse than the full set. This 
effect should occur due to the preference for aromatic amino acids 
(including histidine), as demonstrated by Fig. 2A. Therefore, there was a 
small overlap between the sets, indicating that the aromatic amino acids 
rapidly populate the full set simulations (Fig. 2C). 

Although the algorithm generated evolved populations, final se-
quences from each population were not selected, instead, the database 
was used to select those sequences with high affinity to Mpro. Sequences 
with scores higher than 8955 (− 9.1 kcal mol− 1) were subjected to 
cluster analysis, in order to select the best sequence from each cluster for 
further analysis. Three clusters were selected (Fig. 3). Overall, sequences 
presented at least one Trp and one His residue. In addition, the best 
sequence from the simulation without aromatic side chains was also 
selected. Thus, the number of compounds was reduced from more than 
seventy thousand to only four peptides. 

2.2. Medium exhaustiveness dockings for a reduced number of peptides 

With fewer compounds to analyze, more exhaustiveness docking 
could be applied. Due to the fact that the initial dockings were per-
formed with minimum exhaustiveness, the results were coarse and then 

they were refined. Besides, some residue combinations might not be 
tested by the genetic algorithm (in particular, proline residues were not 
included). Thus, amino acid scanning was performed. The scanning 
indicated that some point modifications improved the docking score 
(Fig. 4). 

Although point modifications in different positions increased the 
docking score, combining two or more of them resulted in reduced 
scores. Both combination models, simply-the-best and Joker, did not 
achieve better scores than the original sequences (data not shown). 
Therefore, from amino acid scanning, the sequence with the highest 
affinity or a value close to it (polar amino acids were preferred due to 
water solubility) was selected for further analysis, resulting in the se-
quences WWHWR, HHYWH, HYWWT and ARAHR. 

Fig. 2. Genetic Algorithm outcome. (A) Fitness evolution along the algorithm iterations. The best sequence and population averages for both sets are displayed. The 
full set, with aromatic amino acid residues, reached higher fitness values than the aliphatic-only set. While the fitness function in full set increased both in population 
and best sequence, in the aliphatic-only, there is only a smooth increase, which could be related to the fact that Mpro is chymotrypsin-like and the aromatic residues 
are needed to increase the peptide-enzyme affinity. (B) Peptide rarefaction curves. Sequences were retrieved from iterations 25–50 in all 100 independent simu-
lations. In both cases, the curve indicates more peptides could be found if more simulations were performed. However, the aliphatic-only set is more diverse than the 
full set. (C) Venn diagram of generated sequences. The full and aliphatic-only sets represent 100 complete independent simulations, while MySQL indicates the 
sequences that persisted in the database. The aliphatic-only set has almost twice as many sequences as the full set, and the remaining sequences present only in 
MySQL are results of incomplete simulations or prototype experiments. 

Fig. 3. Principal component analysis and cluster diagram from sequences 
generated by genetic algorithm. Only the sequences with high fitness values 
were selected. Three physicochemical properties (hydrophobicity, flexibility 
and instability) were used to define the three peptide clusters, where the 
sequence with highest fitness value was selected as the prototype for 
next analysis. 
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2.3. High exhaustiveness dockings for a limited number of peptides 

Given that the designed molecules are peptides and the target is a 
protease, we need to verify whether the peptides could bind to human 
proteases with more affinity than the virus protease. Thus, designed 
peptides were subjected to maximum exhaustiveness dockings with 100- 
fold repetitions. The peptide WWHWR showed no statistical differences 
in its scores against Mpro and human chymotrypsin, and thus this peptide 
would not be suitable for drug development. The remaining peptides 
showed higher affinity to the viral protease than to human proteases 
(Fig. 5). 

Binding poses from dockings on Mpro indicated that the peptides 
assume a similar conformation to the 11a inhibitor. The indole ring from 
the 11a inhibitor is overlapped by Trp4 on HHYWH and HYWWT 

(Fig. 6A), indicating that both sequences present the “HYW” motif; 
however, the 4th residue is key to the correct positioning in Mpro active 
site. The Mpro residues Thr25, Thr26, His41, Cys44, Glu166, Pro168 and 
Arg188 showed interactions with both peptides (Fig. 6B and C). The 11a 
inhibitor is smaller than the pentapeptides, where there is no overlap 
between the first two residues and the 11a inhibitor (Fig. 6A). 

3. Discussion 

The COVID-19 pandemic has provided the opportunity to apply the 
basic science developed in the last few decades and also to develop some 
frugal innovations [30]. Numerous efforts to reposition drugs against 
SARS-CoV-2 have been made. Indeed, virtual screening has been the 
leading strategy for selecting drug candidates for repurposing against 

Fig. 4. Amino acid scanning of prototype peptides. Each position was replaced by one of twenty proteinogenic amino acids, generating a variant, which was 
subjected to high exhaustiveness dockings in triplicate, and the results are shown in average values. (A) The aliphatic-only sequence; (B, C and D) the prototypes of 
instability, flexibility and hydrophobicity clusters, respectively. Overall, the inclusion of aromatic residues tends to improve the docking scores, while the modifi-
cations in the three-central residues are less tolerated. 

Fig. 5. Energy from maximum exhaustiveness docking with 100-fold repetitions. The four peptides were docked against (A) SARS-CoV-2 Mpro, (B) human 
chymotrypsin and (C) human trypsin. Each docking was repeated 100 times using different seeds. For Mpro, an additional docking experiment was performed with the 
inhibitor 11a, from the original structure. Overall, the peptides demonstrated lower affinity to human trypsin than human or viral chymotrypsin. The peptide 
WWHWR showed higher affinity to human chymotrypsin than Mpro (p-value = 0.00047), while the peptides HHYWH and HYWWT showed higher affinity to Mpro 

than human chymotrypsin (p-values<2.2e-16 for both). The ARAHR peptide showed less affinity to Mpro than 11a inhibitor (p-value = 3.317e-05). 
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COVID-19 [13,14]. 
Drug repurposing is a fast and elegant approach, because the drug is 

already approved for human use. However, the current scenario in-
dicates that this could be a dead-end and new drugs should be devel-
oped. Indeed, a vaccine may be the ultimate resource to prevent SARS- 
CoV-2 infection, but the COVID-19 mechanisms are not well enough 
understood [31,32]. The emergence of other SARS-CoV-2 strains [5] 
makes it necessary to carry out continuous screening to find new 
possible solutions. Besides, protective immunity may only last for short 
time periods [33]. 

In the viral cycle, viral proteases play a critical role in processing the 
viral polyprotein, and they were therefore used as targets for antiviral 
therapy, with a classical example of HIV treatment based on protease 
inhibitors [34]. 

The development of peptide inhibitors targeting key enzymes in a 
pathogen’s metabolism has gained attention during the last decade. This 
situation is clearly depicted when it comes to β-lactamase enzymes, 
which confers resistance to bacteria, with several peptide inhibitors 
being developed by using different strategies [20]. 

Despite the enormous combinatorial space of pentapeptides (195, 
excluding proline residues), the strategy here applied (Fig. 1) was able to 
explore the combinatorial space with an optimal performance (Fig. 2). 
Although combinatorial space for pentapeptides was 195 combinations, 
a target number was not defined in the algorithm; instead, this number 
was used as an open goal, and when this goal was reached, the goal 
could be doubled. Indeed, Fig. 2B indicated that more simulations are 
needed to reach a plateau in the discovery of pentapeptides. 

In the first virtual screening step, more than 70,000 pentapeptide 
sequences were screened (Fig. 2C), which would require high compu-
tational power. In this context, the minimum exhaustiveness dockings 
and the information technology application speeded up the virtual 
screening process. In fact, information technology played a crucial role 
in this work, because the system architecture using a server application 
allowed fast screening using the genetic algorithm, given that an HTTP 
request is faster than a docking experiment. Also, despite Moore’s law 
reaching its limit [35], the client-server architecture of the whole 
application allowed the raspberry pi to simulate about 10% of all genetic 
algorithm simulations, even with less processing power. Nevertheless, 
the minimum exhaustiveness dockings had a cost: the noise in data could 
result in a non-optimal choice of molecules. To overcome this bias, the 
next steps were designed to exclude the noise, using the cluster analysis 
(Fig. 3), amino acid scanning with maximum exhaustiveness (Fig. 4) and 
several replicates. At this point, the use of docking replicates is impor-
tant because peptides are flexible ligands, and docking simulations could 

therefore explore this property. The resulting peptides showed affinities 
in the range between − 10 and − 9 kcal mol− 1 (Fig. 5), which is in a 
similar range as that of lichen metabolites [36]; and a series of com-
pounds from ChEMBL [37] against Mpro. Although some compounds 
from other works presented affinities below − 10 kcal mol− 1 [36,37], a 
direct comparison should be made with care, due to the differences in 
the number of docking replicates. Nevertheless, in comparison with the 
11a inhibitor, under the same conditions, this approach resulted in 
peptides with higher affinities to Mpro (Fig. 5). Furthermore, the pep-
tides should have some degree of selectivity towards Mpro, with less 
probability of binding to human proteases (Fig. 5). Therefore, the pro-
totype of hydrophobicity cluster was discarded, due to its predicted af-
finity to human chymotrypsin. 

However, upon binding, these peptides could inhibit the enzyme or 
they could be cleaved by the enzyme. In fact, in both situations, they can 
be useful. In the case of inhibition, the peptide could be linked to a cell- 
penetrating peptide (CPP) [22] and inhibit the virus’s replication; 
otherwise, a toxin could be designed to kill the infected cells, by a 
combination of a four-domain peptide, including a toxin, the peptide, a 
toxin inactivating sequence and a CPP. Once cleaved on the pentapep-
tide, the toxin would be released and the cell would die. Due to the 
selectivity towards viral protease, only the infected cells would be 
affected. Another possibility is the use of these peptides as scaffolds for 
peptidomimetic [38] or nucleopeptide [39] development, which would 
take advantage of their high affinities to Mpro and inhibit viral 
replication. 

4. Conclusions 

Peptides have been considered “the drugs of the future” and, 
although they are preliminary, the data presented here provide some 
basis for the rational design of peptide-based drugs to treat COVID-19. 
The actual activity of such peptides remains unknown. However, inde-
pendently of whether they act by inhibition or just by binding with high 
affinity to SARS-CoV-2 Mpro, these peptides may represent only part of 
the puzzle solution. As discussed, they could be used for engineering 
multi-domain peptides with different mechanisms depending on the 
core activity (inhibition or just binding) or even for application as part of 
a drug cocktail, similar to HIV treatment. Despite the development of 
vaccines against COVID-19 [40], these peptides could be useful as a 
treatment for those who are hospitalized with severe COVID-19 
infection. 

Fig. 6. Docking poses from HHYWH and HYWWT peptides. (A) The overlap of both peptides with 11a inhibitor. (B and C) Electrostatic interactions between peptides 
(B) HHYWH and (C) HYWWT and Mpro. The interactions are indicated by yellow dotted lines. Residues from Mpro are labeled with three-letter code; residues from 
pentapeptide are labeled with single-letter code. The majority of interactions involve the main Mpro main chain, instead of side chains, except for Thr25, Tyr54 and 
Glu166 and HHYWH; and Thr25 and HYWWT. The list of all interactions is available in Supplementary Table 1. 
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5. Material and methods 

5.1. Virtual screening system architecture 

A raspberry pi 3 running the LAMP stack (Linux, Apache, MySQL and 
PHP) was used as the server layer. This was used for persisting data 
about peptides generated by genetic algorithm. A RESTful API was 
developed, allowing the communication between the server and the 
clients, where the execution of the genetic algorithm was performed. 
The GET and POST HTTP protocols were used to retrieve or post the 
data, respectively. This layer allowed maximum parallelization and data 
integration between different computers acting as clients. 

On the client layer, the local cache file is the primary resource of 
fitness data; when the value was not found in cache, the RESTful API was 
triggered, where for determining the fitness function, the algorithm sent 
a GET request to verify the existence of this registry; if the registry 
existed, the JSON was processed to get the fitness value; otherwise, the 
fitness had been calculated by the client and then sent using POST 
request for data persistence. After retrieving the data either by docking 
or RESTful API, the value was added to the local cache file. Eight Intel i7 
cores plus three raspberry pi 3 cores were used as clients, running in-
dependent simulations. 

5.2. Genetic algorithm 

The genetic algorithm simulates the evolution of a population of 
sequences during a number of iterations, where given iteration In gen-
erates the population Pn from the population Pn− 1, evaluating the se-
quences according to the value of a fitness function, also known as 
chance of survivor and mating (Fig. 1B). Here the algorithm was 
implemented in PERL programming language, according to Porto et al. 
[50]. In the first iteration (I1) of the implementation of our custom ge-
netic algorithm, P0 was composed by 19 pentapeptides, each one for a 
respective amino acid residue (e.g. AAAAA, RRRRR or WWWWW); 
proline residues were not included due to a bug in automatic structure 
generation. All sequences from P0 had the same fitness value, thus 
providing a random pairing for crossing over (Fig. 1). From iteration I2 
to In, the sequence pairing for mating was performed according to the 
corresponding fitness values by means of a roulette wheel pairing model. 
For each iteration, 50 sequence pairs were selected from population Pn 
and each pair was submitted to a crossing over process, generating a 
couple of children for population Pn+1. No mutation was applied. Next, 
sequences from Pn+1 were evaluated by fitness function. The 10 worst 
sequences were removed from the population Pn+1 and then another 
iteration step was initiated (Fig. 1B). The cycle was repeated until the 
number of iterations was exhausted. One hundred independent simu-
lations were performed, each one with 50 iterations using the same 
conditions. A second set of simulations was performed under the same 
conditions, excluding His, Phe, Tyr and Trp residues, because these 
residues seem to increase the affinities between peptide and enzyme. 

5.3. Fitness function 

The fitness value was obtained either from the persisted data (cache 
or RESTful API) or by calculating the fitness value as a function of a 
docking score, by means of Eq. (1): 

fitness= e|DS| (1)  

where the DS states the docking score, which was given by AutoDock 
Vina (see below). The modulus of docking score was used in order to 
increase the fitness value, while the exponential function was applied 
because the docking score has only one decimal place, which could not 
be reflected in great fitness differences in the roulette wheel selection 
from the genetic algorithm. For the automatic docking subroutine, an 
extended peptide structure had been generated by a PyMOL script, 

before performing the minimum exhaustiveness docking using Auto-
Dock Tools [41] and AutoDock Vina [42]. 

5.4. Docking 

AutoDock Vina [41] and AutoDock Tools [42] were used to perform 
molecular docking, which was used to verify the affinities between the 
generated peptides and SARS-CoV-2 Mpro (PDB ID: 6LZE) [43] or human 
proteases (PDB IDs: 4H4F and 1TRN) [44,45]. The PDB structures were 
converted to PDBQT files using AutoDock Tools. Dockings were per-
formed using AutoDock Vina. For all structures, the box size was set as 
90 Å3; then the grid box was positioned in X, Y, Z coordinates according 
to the respective enzyme: 24.33, 22.34 and − 4.27 for 1TRN; 28.86, 
44.46 and 16.10 for 4H4F and − 10.94, 12.69 and 68.91 for 6LZE. 
Depending on the virtual screening step, minimum or maximum 
exhaustiveness were used. 

5.4.1. Minimum exhaustiveness dockings 
Minimum exhaustiveness dockings were performed by setting the 

AutoDock Vina exhaustiveness and the number of CPUs to use options as 
one. This allowed maximum parallelization of independent docking 
experiments. No replicas were performed for these dockings. 

5.4.2. Maximum exhaustiveness dockings 
Maximum exhaustiveness dockings were performed using the 

AutoDock Vina default options. Dockings were performed with three or 
one hundred independent runs with different seeds, according to the 
virtual screening step. 

5.5. Clustering 

The sequences with fitness values higher than 8955 (corresponding 
to docking scores below − 9.1), were selected for cluster analysis ac-
cording to physicochemical properties. Three physicochemical proper-
ties were calculated: average hydrophobicity using the Wimley & White 
scale [46]; average flexibility using the Bhaskaran-Ponnuswamy scale 
[47]; and peptide instability using the Guruprasad scale based on 
dipeptide compositions [48]. Three clusters were defined by PAMK al-
gorithm, using the R package for statistical computing. The best 
sequence from each cluster was selected for the next steps. The best 
sequence from the simulations without the aromatic ring containing 
residues was also selected for the next steps. 

5.6. Amino acid scanning 

The four sequences selected from virtual screening were subjected to 
amino acid scanning, where each position was replaced by each pro-
teinogenic amino acid residue, generating a variant with a single amino 
acid alteration. MODELLER 9.23 [51] was used to build a model from 
each primary sequence, by means of environ and model classes. These 
variants were subjected to maximum exhaustiveness dockings in 
triplicate. 

5.7. Combinations 

Two models for combining data from amino acid scanning were 
assumed. In the first model (simply-the-best), each position was filled up 
by the amino acid residue with the highest affinity; while in the second 
model (Joker), a prosite grammar was constructed using the amino acid 
residues with higher affinity than the native one, and then the Joker 
algorithm [49] was used to select the residue according to the hydro-
phobicity of each position in the prosite grammar. MODELLER 9.23 [51] 
was used to build a model from each primary sequence, by means of 
environ and model classes. Combinations were forwarded to maximum 
exhaustiveness docking experiments in triplicate. The Joker combina-
tions were used as a control because their hydrophobic scale favors the 
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selection of aliphatic instead of aromatic hydrophobic residues. 

5.8. Statistical analysis 

The one-sided Mann-Whitney-Wilcoxon test was used to verify the 
differences between the affinities among the peptides and 11a inhibitor 
towards Mpro; and among the Mpro and human proteases for each pep-
tide. The test was performed using the R package for statistical 
computing. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2021.104363. 
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