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Abstract 1 

Background 2 

The COVID-19 pandemic has had a devastating impact on global health, the magnitude of which 3 

appears to differ intercontinentally: for example, reports suggest 271,900 per million people have 4 

been infected in Europe versus 8,800 per million people in Africa. While Africa is the second 5 

largest continent by population, its reported COVID-19 cases comprise <3% of global cases. 6 

Although social, environmental, and environmental explanations have been proposed to clarify 7 

this discrepancy, systematic infection underascertainment may be equally responsible.  8 

 9 

Methods 10 

We seek to quantify magnitudes of underascertainment in COVID-19’s cumulative incidence in 11 

Africa. Using serosurveillance and postmortem surveillance, we constructed multiplicative 12 

factors estimating ratios of true infections to reported cases in Africa since March 2020.  13 

 14 

Results 15 

Multiplicative factors derived from serology data (subset of 12 nations) suggested a range of 16 

COVID-19 reporting rates, from 1 in 2 infections reported in Cape Verde (July 2020) to 1 in 17 

3,795 infections reported in Malawi (June 2020). A similar set of multiplicative factors for all 18 

nations derived from postmortem data points toward the same conclusion: reported COVID-19 19 

cases are unrepresentative of true infections, suggesting a key reason for low case burden in 20 

many African nations is significant underdetection and underreporting.  21 
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Conclusions 1 

While estimating COVID-19’s exact burden is challenging, the multiplicative factors we present 2 

furnish incidence estimates reflecting likely-to-worst-case ranges of infection. Our results stress 3 

the need for expansive surveillance to allocate resources in areas experiencing discrepancies 4 

between reported cases, projected infections, and deaths. 5 

Keywords: COVID-19, serology, postmortem surveillance, underreporting, cumulative 6 

incidence 7 
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Introduction 1 

To date, coronavirus disease 19 (COVID-19) has led to a reported 605 million cases and 6.5 2 

million deaths globally [1]. Asia, North America, South America, and Europe have respectively 3 

contributed 180 million, 112 million, 63 million, and 224 million cases to this toll (roughly 4 

39,465; 193,400; 149,100; and 300,100 cases per million population) and over 1.3 million deaths 5 

each, whereas reported COVID-19 morbidity and mortality appear lower in Africa: 12 million 6 

cases (8,800 cases per million population) and 255,000 deaths [1, 2].  7 

This observation has led some to conclude the pandemic has “spared” Africa and parts of 8 

Asia [3]. Several explanations have been proposed, including swift government response, young 9 

age structure, sparse population density, competing comorbidities, and climate effects. However, 10 

the World Health Organization (WHO) has posited that systematic underascertainment explains 11 

continental differences in reporting, further estimating that only 1 in 7 COVID-19 cases in Africa 12 

have been detected compared to 1 in 4 COVID-19 cases in the United States [3-8]. This 13 

hypothesis has been bolstered by several recent national and sub-national studies [3, 9].  14 

Variability in underascertainment reported by these studies motivates practicable 15 

methods that can triangulate between disparate data sources to provide credible estimates of 16 

African nation-specific COVID-19 infections. While the exact number of infections can never be 17 

known, producing a range of estimates reflective of likely- and worst-case scenarios remains 18 

valuable in understanding the burden of disease. Here we propose 2 methods that approximate 19 

the magnitude of COVID-19 cumulative incidence in Africa, the first relying on serosurveillance 20 

data and the second relying on postmortem surveillance data. 21 
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 5 

Methods  1 

Motivation for Serosurveillance 2 

National population-based serosurveys furnish cross-sectional estimates of cumulative incidence 3 

of infection by SARS-CoV-2 in quantifying proportions of a population with SARS-CoV-2 4 

antibodies (“seroprevalence”). Relevant for infection are antibody isotypes IgA, IgG, and IgM, 5 

further classifiable based on specificity for SARS-CoV-2 spike (S), receptor binding domain 6 

(RBD), or nucleocapsid (N) proteins [10, 11]. Antibody specificity can also help differentiate 7 

between antibody production due to natural infection versus vaccination (coverage for which is 8 

still low in Africa), with the latter observed to induce production of anti-S and anti-RBD – but 9 

not anti-N – antibodies [11-13].  10 

 11 

Inferring Infection Underascertainment: Analysis of Serosurveillance Data 12 

Using SeroTracker, a global SARS-CoV-2 seroprevalence database, we identified 29 national-13 

level serosurveys collected throughout the pandemic across 12 African nations: Cape Verde, 14 

Côte d’Ivoire, Egypt, Ethiopia, Gabon, Ghana, Kenya, Malawi, Senegal, Sierra Leone, South 15 

Africa, and Zambia [14]. Table 1 includes seroprevalence point estimates and 95% confidence 16 

intervals (where available) as well as a sample of serosurvey metadata furnished by SeroTracker.  17 

[15].  18 

For each of the 12 African nations, seroprevalences were compared to the proportion of 19 

that nation’s population reported to have COVID-19. The latter proportion was obtained by 20 

dividing reported cumulative cases (Our World in Data) at the end of the serosurvey sampling 21 

period by the nation’s 2020 or 2021 population [16, 17]. Hereafter, we refer to the ratio of 22 

seroprevalence to this proportion as a “multiplicative factor”, extending the work of Angulo et al. 23 
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 6 

(2021) who previously formulated a similar procedure to estimate COVID-19 infections, 1 

hospitalizations, and deaths in the United States [9].  2 

A multiplicative factor of 1 suggests complete concordance in population positivity for 3 

COVID-19 between serology reports and case reports – equivalently, no apparent 4 

underascertainment. In contrast, a multiplicative factor greater than 1 suggests serology-derived 5 

estimates of infection incidence exceed reported cases, reflective of “hidden morbidity”. 6 

Multiplicative factors are expected to be greater than 1 due to the large number of asymptomatic 7 

COVID-19 infections that go undetected, insensitivity of tests, failure to report positive tests, 8 

and/or absence of testing among population strata. Applying multiplicative factors to nation-9 

specific epidemic curves produces scaled curves reflecting infection incidence while maintaining 10 

local-in-time trends (Figure 1). To limit overextrapolation, these scaled curves were only 11 

projected to the nearest half-year. Although there is a 1- to 2-week delay between infection and 12 

seropositivity, lagged reporting of infections counteracts the effect of this delay [18, 19]. 13 

 14 

Inferring Infection Underascertainment: Analysis of Postmortem Surveillance Data 15 

To create another set of multiplicative factors, we drew from 2 Zambian postmortem surveillance 16 

studies using quantitative reverse transcription PCR to detect COVID-19 in decedents: 17 

Mwananyanda et al. (2021), conducted in June – October 2020 following the first infection 18 

wave, and its preprinted (not yet peer-reviewed) follow-up from Gill et al. (2022), conducted in 19 

January – June 2021 following the second infection wave [20-22].  20 

Prior to these studies, fewer than 10% of deaths attributed to or related to COVID-19 in 21 

Lusaka were identified in life with antemortem testing [19]. In contrast, the 2 postmortem studies 22 

found that 58 of 364 (15.9%) decedents in the first and 358 of 1,116 (32%) decedents in the 23 

ACCEPTED M
ANUSCRIP

T



 7 

second were PCR-positive, suggesting underascertainment of COVID-19 cases and deaths. Of 1 

the 364 decedents recruited by Mwananyanda et al. (2021), 96 (26%) occurred in a clinical 2 

facility and 268 (74%) occurred in a community setting (outside of medical care), compared to 3 

573 (51%) facility and 543 (49%) community deaths in Gill et al. (2022).   4 

Noting the limitations associated with generalizing autopsy studies from one nation, with 5 

much of Africa (including Zambia) identified as “high risk” on the Infectious Disease 6 

Vulnerability Index, it is not improbable the aforementioned testing percentages reflect reality in 7 

many African nations [23]. Under this assumption, we multiplied 15.9% and 32% by each 8 

African nation’s estimated all-cause mortality in 2020 and 2021, respectively, to obtain expected 9 

number of year-end deaths with COVID-19 (Supplementary Figure 1) [16, 17]. These 10 

expectations were then divided by infection fatality ratios (IFRs) – a comparison of infections 11 

and deaths due to infection – obtained using parametric methods from Sorensen et al. (2022) and 12 

Onovo et al. (2021) at multiple pandemic time points [24, 25]. The result is the expected number 13 

of year-end COVID-19 infections (Figure 2, Supplementary Figure 2), which can be compared to 14 

reported cumulative COVID-19 cases in 2020 and 2021 to produce another set of multiplicative 15 

factors (Figure 3) that expand the range of credible infection estimates.  16 

When discussing these data, we intentionally note “deaths with COVID-19” instead of 17 

“deaths from COVID-19” because inferring causality is a challenge in postmortem surveillance, 18 

although the United States Centers for Disease Control and Prevention (CDC) have issued 19 

guidance that COVID-19 should be assumed the underlying cause of death if SARS-CoV-2 is 20 

detected [26].  21 

 22 
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 8 

Results 1 

Serology Multiplicative Factors  2 

The available serosurveys yield multiplicative factors illustrative of systematic underdetection 3 

and underreporting (Figure 1). Multiplicative factors ranged from 2 (Cape Verde, July 2020) to 4 

3,795 (Malawi, June 2020), implying that 1 in 2 and 1 in 3,795 infections were respectively 5 

detected in these nations early in the pandemic. Notably, nearly half the multiplicative factors 6 

were of hundreds-order-of-magnitude, facilitating discernment of 4 distinct COVID-19 waves 7 

previously obscured by low amplitude peaks of confirmed cases (Figure 1) [22].  8 

Kenya, for which the largest number of national-level serosurveys were available (6, 9 

spanning April 2020 to September 2021), produced multiplicative factors ranging from 630 in 10 

May 2020 to 110 in December 2020. This observation of declining multiplicative factors as the 11 

pandemic progressed is echoed in data for Malawi, Ghana, Ethiopia, and South Africa. 12 

   13 

Inter-Method Comparison: Estimates of Infection 14 

Figure 2 provides an inter-method comparison of estimated infections (per 100,000 population). 15 

For many nations, the upper bound estimate of COVID-19 infection burden was produced by the 16 

gold estimator, which couples postmortem surveillance data with IFR data from Onovo et al. 17 

(2021). The magnitude of these estimates is less likely a byproduct of the timing of the IFR 18 

estimates (May 2020) and more likely a byproduct of differences in IFR estimation 19 

methodologies, as the [even earlier] April 2020 IFR estimates from Sorensen et al. (2022) 20 

generated infection estimates predominantly smaller by several factors.  21 

The lower-bound estimate of COVID-19 infection burden was produced by the estimator 22 

shown in blue (serosurveillance data). Additionally, infection estimates for most nations cluster 23 
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around 100,000 infections per 100,000 population, signaling that most individuals may have 1 

already experienced infection at least once. 2 

 3 

Inter-Method Comparison: Multiplicative Factors 4 

All African nations yielded multiplicative factors exceeding 1 for both surveillance methods 5 

(Figure 3), indicative of divergence between “ground truth” infections and reported cases. Also 6 

notable in Figure 3 is concordance among multiplicative factors calculated using IFRs from 7 

Sorensen et al. (2022), observable in the clustering of red-shaded markers. Of these, the purple 8 

(April 2020 IFRs) and maroon marker (January 2021 IFRs) corresponded to the smallest and 9 

largest multiplicative factors, respectively.  10 

Multiple North African nations (Tunisia, Morocco, Libya), island nations (Cape Verde, 11 

Seychelles), Botswana, and South Africa yielded small multiplicative factors (<20). 12 

Interestingly, South Africa’s established indicator- and event-based disease surveillance system 13 

and Cape Verde’s and Seychelles’ geographic isolation contrasts with weakened public health 14 

infrastructure in North Africa, where nations have grappled with a paucity of resources to 15 

adequately chronicle COVID-19 [27]. 16 

Finally, the change in x-axis scale from Figure 3 (a) to (b) also reveals an order-of-17 

magnitude decrease in multiplicative factors from 2020 to 2021, perhaps coincident with 18 

improved testing infrastructure and implementation of interventions.  19 

Assessment of Vulnerabilities 20 

One explanation for underascertainment is tied to health, economic, and social 21 

vulnerabilities, the analysis of which Lewis et al. (2022) describe as an unmet need [6, 28]. To 22 

assess these vulnerabilities, we explored Surgo Ventures’ Africa COVID-19 Community 23 
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Vulnerability Index (CCVI) [29]. Across and within 756 regions in 48 African nations, CCVI 1 

encodes 7 dimensions of vulnerability (age, epidemiology, fragility, health system, population 2 

density, socioeconomics, and transport and housing availability), which can contribute to 3 

attenuation of disease signal. We limit our focus to epidemiological factors and health system 4 

factors.  5 

In Supplementary Figure 3, we ranked African nations by variance in their respective 6 

multiplicative factors and compared this to nation-specific health system, epidemiological, and 7 

overall vulnerabilities. South Africa, for example, exhibited not only low variance in its 8 

multiplicative factor estimates but also low health system vulnerability, the combination of 9 

which may reflect more robust surveillance infrastructure.  10 

Calculating the Spearman Rank correlation between the ascending variances for 2020 and 11 

the correspondingly ordered health system vulnerability index values yields a coefficient of 0.44 12 

and p-value of 0.001. At a prespecified  -level of 0.05, we reject the null hypothesis that health 13 

system vulnerability and variability in infection estimates are uncorrelated. While this 14 

comparison does not establish a definitive relationship, on average, nations with lower inter-15 

method variances have a lower degree of vulnerability compared to nations with higher inter-16 

method variances.  17 

 18 

Discussion 19 

Although underascertainment of COVID-19 remains a global challenge, the degree of 20 

underdetection and underreporting in Africa appears higher than in other continents. By 21 

comparison, multiplicative factors were previously estimated to be between 5 and 50 in North 22 

America [30, 31]. Both serosurveillance- and postmortem surveillance-based estimates we 23 

ACCEPTED M
ANUSCRIP

T



 11 

present here suggest COVID-19 infections are tens- to hundreds-fold greater than reported in 1 

Africa. 2 

Our process is complementary to a preprinted (not yet peer-reviewed) meta-analysis from 3 

Lewis et al. (2022), which also quantifies divergence between seroprevalence-derived infections 4 

and reported cases in Africa [6]. However, the meta-analysis relied predominantly on local-level 5 

serosurveys primarily obtained in urban settings for inference. In contrast, the national-level 6 

serosurveys we leverage, which we also do not restrict to those strictly aligned with the WHO’s 7 

SEROPREV protocol, are intended to increase generalizability of results [32].  8 

We additionally do not limit the scope of analysis to serosurveillance data in validating 9 

our results with postmortem surveillance data, which has the added advantage of facilitating 10 

direct estimation of COVID-19-attributable deaths [33]. As Mwananyanda et al. (2021) and Gill 11 

et al. (2022) show, in Lusaka, Zambia, fewer than 10% of those who died with COVID-19 were 12 

tested for prior to death, an underascertainment in mortality that also extends globally [19, 33]. 13 

Supplementary Figure 1 captures this underreporting and underdetection of deaths, comparing 14 

reported COVID-19-attributable deaths in 2020 and 2021 to Zambia- and excess mortality-based 15 

deaths estimates [34]. Although several nations exhibit negative excess mortalities (e.g., 16 

Seychelles), which would suggest that COVID-19 precipitated a reduction in deaths, inflection 17 

points in the epidemic curves at the time of first-recorded COVID-19 deaths illustrates there was 18 

instead an existing negative trend in all-cause mortality that COVID-19 reversed [35].  19 

The results from our multiplicative framework are concordant with other methods. For 20 

example, a stochastic compartmental model for South Africa in a preprinted (not yet peer-21 

reviewed) analysis from Gozzi et al. (2022) suggests South Africa’s surveillance system could 22 

detect 1 in 16 infections between May 2021 and November 2021, compared to our estimates of 1 23 
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in 10 to 20 infections for the same timeframe [36]. Additionally, using a global metapopulation 1 

epidemic model, Davis et al. (2021) recovered infection attack rates around 1% for several 2 

African nations early in the pandemic, further underscoring discrepancies between reported cases 3 

and true infections [31].  4 

One limitation of our approach is that the magnitude of serosurvey-derived multiplicative 5 

factors may be associated with serosurvey-specific risk of bias. Supplementary Figure 4 explores 6 

this association in stratifying serosurveys by bias risk, as measured by the Joanna Briggs Institute 7 

Checklist for Prevalence Studies (JBI). JBI is a validated critical appraisal tool encompassing 9 8 

dimensions of assessment, which SeroTracker uses to classify serosurveys [14, 15]. We find that 9 

although the “high bias” stratum corresponded to the highest median multiplicative factor (161) 10 

and smallest dispersion compared to the “low bias” and “medium bias” strata (128 and 110), this 11 

difference is qualitative, suggesting larger multiplicative factors may not be any more biased 12 

than smaller multiplicative factors. Furthermore, propensity for bias does not translate to 13 

direction of bias: simply because a serosurvey is classified as biased does not indicate that 14 

seroprevalence is lower or higher than true prevalence. Therefore, we cannot establish that 15 

higher multiplicative factors stem from higher bias.     16 

A different bias associated with serosurveillance relates to origins of seropositivity, 17 

specifically differentiating between vaccine- and infection-induced seropositivity. This is less 18 

likely a concern given the low COVID-19 vaccination rate (10%) in Africa for the 2020 – 2021 19 

period of analysis [13]. Even so, about one third of tests chronicled by SeroTracker measure IgG 20 

(about half are anti-S), one third measure IgM and IgG, and one third measure total antibody 21 

[14]. Additionally, we do not explicitly account for waning immunity and resulting reinfection, 22 

which may contribute to certain nations exhibiting infection estimates exceeding the total 23 
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population (i.e., any points in Figure 2 and Supplementary Figure 2 exceeding 100,000 cases per 1 

100,000 population). Relatedly, we cannot rule out underestimation of “ground truth” disease 2 

burden due to lags between time of infection and time of seropositivity, coupled with 3 

seroreversion – the phenomenon in which antibody levels decline to a level below the cutoff for 4 

seropositivity [37]. Especially during exponential growth in infections, the effect of this 5 

underestimation will be magnified, which would reinforce the role of multiplicative factors as 6 

lower bounds for burden of disease.  7 

Another important feature of serosurveys is the populations sampled, which often include 8 

healthcare workers, blood donors, and the elderly – all of whom may be differentially exposed to 9 

SARS-CoV-2. Our analysis does not consider these characteristics of the sample frame and may 10 

therefore overestimate cumulative incidence of COVID-19. In Malawi, for example, the 11 

thousands-order-of-magnitude for the June 2020 multiplicative factor could be not only 12 

attributable to the nation’s status as one of the poorest in Africa but also to an especially 13 

unrepresentative sample of healthcare workers and caregivers [38]. Given the scarcity of 14 

reported infections stratified on serum donor profiles, mitigating this bias could entail 15 

extrapolation of seroprevalence to the general population using weights accounting for 16 

demographic differences. The CDC recently published such a reweighting protocol specific to 17 

blood donors [39]. An alternative could include assessing intra-nation variability of serology 18 

estimates, as nations like Cameroon and South Africa have started releasing local-level 19 

serosurveys to the public, and to employ these estimates in a sensitivity analysis for 20 

multiplicative factor heterogeneity [40].  21 

An added consideration for contextualizing our results is that our methods combine 22 

multiple timeframes to create time-invariant multiplicative factors. Serosurveillance studies from 23 
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SeroTracker cover multiple dates from June 2020 – November 2021, whereas postmortem 1 

surveillance studies reflect either June – October 2020 or January – July 2021. It follows that 2 

multiplicative factors estimated from early pandemic stages may not be as representative of 3 

disease dynamics seen in later pandemic stages due to SARS-CoV-2 strain-specific effects. 4 

However, the cross-sectional nature of serosurveys suggests that cumulative estimates of 5 

infection, such as those presented in our analysis, may be more reliable than conversions to 6 

weekly estimates of infection. 7 

Finally, in calculating the estimated number of infections using serosurveillance and 8 

postmortem surveillance data, we employed 2020 and 2021 national population size estimates 9 

from the World Bank and the United Nations [16, 17]. These estimates were the result of 10 

projections prior to the COVID-19 pandemic, which would have the effect of overestimating 11 

population size due to unaccounted-for deaths. To quantify the impact of this compounding 12 

uncertainty, we performed a sensitivity analysis for 2021 infections and deaths by subtracting the 13 

number of COVID-19-attributable deaths in 2020 from the projected population size in 2021. 14 

The percent difference between unadjusted infections and adjusted infections was <0.5% for all 15 

African nations (Supplementary Table 1), implying that unadjusted projected population sizes 16 

are sufficient for analysis.   17 

Asymptomatic infections and variable rates of testing for COVID-19 in Africa, as well as 18 

globally, have made it particularly challenging to ascertain the true burden of the pandemic from 19 

data, as reflected in the range of multiplicative factors from our analysis and imperfections 20 

individually inherent in serosurveillance and postmortem surveillance data [41, 42]. While 21 

previous studies have sought to estimate this systematic underascertainment in resource-limited 22 

settings, they have relied on a single data stream to make inferences. The innovation of our 23 
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approach lies in leveraging not only serosurveillance data (antibody testing) but also postmortem 1 

surveillance data (PCR testing) to characterize COVID-19 in Africa. Concordance between these 2 

methods, when taken together with other sources of epidemiological data (e.g., syndromic and 3 

digital surveillance) to mitigate biases associated with individual data sources, can be leveraged 4 

in 2 ways: (1) to help inform allocation of resources to areas exhibiting noticeable divergence in 5 

reported infections and recalibrated infections; and (2) to help inform initiatives that can bolster 6 

surveillance infrastructure [19, 43].  7 

 8 
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Figure Legends 1 

 2 
 3 

Figure 1: Confirmed COVID-19 Cases and Serology-Based Infection Estimates for 12 4 
African nations 5 

 6 

 7 
 8 

Reported COVID-19 cases (gray) versus seroprevalence-derived COVID-19 infections (red, 9 

green, blue, orange, yellow, purple) per 100,000 population for 12 African nations. Each non-10 
gray curve is created through scaling the corresponding gray curve by a multiplicative factor, 11 

parenthetically indicated in the legend, with scaling performed to the nearest half-year to reduce 12 
overextrapolation of results. Color order corresponds to chronological temporal order (red: 13 

earliest, purple: latest) of serosurvey. Vertical dotted lines represent the last date of each 14 

serosurvey sampling period.  15 
 16 

Figure 2: Estimated COVID-19 Infections Using Serosurveillance and Postmortem 17 
Surveillance in Africa 18 

 19 
 20 

Comparison of reported COVID-19 cases, cumulative seroprevalence-derived COVID-19 21 

infections (available for 12 nations), and cumulative postmortem-derived COVID-19 infections 22 
(Onovo et al. [2021] available for 44 nations, Sorensen et al. [2022] available for 54 nations) 23 

per 100,000 population in Africa. The solid black line in each subplot represents 100,000 24 

infections per 100,000 population, implying that an entire population has been infected. (a) 25 
represents infection estimates through December 31, 2020, and it draws from serosurveys taken 26 

between July 1, 2020 and December 31, 2020 as well as from postmortem surveys detailed in 27 
Mwananyanda et al. (2021) to derive Zambia-based COVID-19 deaths. (b) represents infection 28 

estimates through December 31, 2021, and it draws from serosurveys taken between July 1, 2021 29 
and December 31, 2021 as well as from postmortem surveys detailed in Gill et al. (2022) to 30 

derive Zambia-based COVID-19 deaths. 31 
 32 
 33 
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Figure 3: Multiplicative Factors Needed to Estimate True Infections from Confirmed Cases 1 

of COVID-19 in Africa 2 
 3 

 4 
 5 

Comparison of multiplicative factors summarizing ratio of seroprevalence-derived COVID-19 6 
infections (available for 12 nations) and postmortem-derived COVID-19 infections (Onovo et al. 7 

[2021] available for 44 nations, Sorensen et al. [2022] available for 54 nations) to reported 8 
cases in Africa. (a) represents ratio estimates through December 31, 2020, and it leverages 9 

postmortem surveys detailed in Mwananyanda et al. (2021) to derive Zambia-based COVID-19 10 
deaths. (b) represents ratio estimates through December 31, 2021, and it leverages postmortem 11 

surveys detailed in Gill et al. (2022) to derive Zambia-based COVID-19 deaths. 12 

 13 
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