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INTRODUCTION 
 

Type 2 diabetes (T2D) is an important health problem 

for more than 380 million people worldwide [1], and the  

 

International Diabetes Federation (IDF) estimates that 

the prevalence of T2D will exceed 10% among the 

global adult population by 2040 [2]. T2D is closely 

correlated with the abnormality of the gut microbiota, 
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ABSTRACT 
 

The relationship between type 2 diabetes mellitus (T2DM) and oral microbiota is still insufficiently recognized. 
In the present study, we compared the salivary microbiome of nondiabetic individuals, treatment-naïve 
diabetic patients, and diabetic patients treated with metformin or a combination of insulin and other drugs. 
The α- and β-diversity demonstrated significant differences in the salivary microbiome between the 
nondiabetic people and patients with a history of diabetes, while little divergence was found among individuals 
with a history of diabetes. After characterizing the effects of periodontitis on the microbial composition of each 
group, the salivary microbiome of the treatment-naïve diabetic patient group was compared with that of 
nondiabetic people and the metformin/combined treatment groups. The results revealed changes in the 
contents of certain bacteria after both the onset and the treatment of diabetes; among these differential 
bacteria, Blautia_wexlerae, Lactobacillus_fermentum, Nocardia_coeliaca and Selenomonas_artemidis varied in 
all processes. A subsequent correlational analysis of the differential bacteria and clinical characteristics 
demonstrated that salivary microbes were related to drug treatment and certain pathological changes. Finally, 
the four common differential bacteria were employed for distinguishing the treatment-naïve diabetic patients 
from the nondiabetic people and the treated patients, with prediction accuracies of 83.3%, 75% and 75%, 
respectively. 
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treatment of mice with Enterobacter cloacae B29 

isolated from the intestines of diabetic patients led to 

obesity and insulin resistance [3]. Subcutaneous 

injection of E. coli endotoxin triggered insulin 

resistance and obesity [4]; On the contrary, intervening 

intestinal flora through effective means may present a 

novel ecological approach for managing T2DM, such as 

targeted restoration of SCFA producers [5], or 

modulating bacteria-mucosal immunity-inflammation 

[6]. A variety of mechanisms have been proposed 

between gut microbes and T2D development. For 

example, the alteration of the gut microbiome in T2D 

patients may promote intestinal permeability, reduce 

butyrate production and increase lipopolysaccharide 

(LPS) production, while LPS levels could trigger 

significant increases in plasma glucose levels and 

insulin resistance [7, 8]. In addition, changes in the gut 

microbiota in T2D patients could alter energy 

homeostasis, modulate intestinal barrier integrity, 

change gastrointestinal peptide hormone secretion, 

promote fat accumulation and modulate host 

inflammatory status [9, 10]. Given that dysbiosis tends 

to occur earlier than clinical characteristics and is more 

sensitive to treatment, the microbiota is possibly of 

importance for the clinical diagnosis and treatment of 

T2D [11]. 

 

The most commonly used drugs for T2D treatment are 

metformin, and the well-known mechanism of 

metformin is to activate hepatic AMP-activated protein 

kinase (AMPK) and reduce liver gluconeogenesis by 

inhibiting mitochondrial glycerophosphate 

dehydrogenase [12]. While studies showed that the 

beneficial effects of metformin may be mediated by 

intestinal microbes [13, 14], metformin treatment 

increased the abundance of mucin-degrading bacteria 

and short-chain-fatty-acid–producing microbes [15, 16] 

and promoted the gut microbiota to produce bsh, a gene 

encoding a bile salt hydrolase, which was significantly 

negatively correlated with the percentage of glycated 

hemoglobin [17]. Another commonly used medication 

for diabetes, insulin, could also increase the 

proliferation of nonbutyrate-producing bacteria, while 

butyrate-producing bacteria in the gut, such as 

Roseburia intestinalis and Eubacterium hallii, could 

improve insulin sensitivity [18, 19]. 

 

Compared with healthy individuals, patients with T2D 

presented significant dissimilarities in oral microbiota 

biodiversity [20], such as decreasing Bifidobacterium 

and increasing Streptococcus and Lactobacillus [21]. 

Mice fed a diabetogenic diet developed gingival 

inflammation and alveolar bone loss and increased 

prevalence of periodontal pathogenic microbes in the 

oral cavity, such as Fusobacterium nucleatum and 

Prevotella intermedia [22]. The multiple bacterial taxa 

in the phylum Actinobacteria were associated with the 

risk of T2D [23], and the periodontal pathogens, such as 

Porphyromonas gingivalis and Aggregatibacter 

actinomycetemcomitans, were correlated with diabetes 

risk and glycemic control [24, 25]. Moreover, diabetes 

enhanced the expression of IL-17, which altered the 

composition of oral microbiota, reduced the secretion of 

IL-6 and RANKL and inhibited neutrophil recruitment 

and bone resorption [26]. 

 

The salivary microbiome reflects the whole oral 

microecosystem, and the analysis of the salivary 

microbiome could reflect alterations in the oral 

microbiome and the development of diabetes. In this 

study, we applied 16S rRNA sequencing to detect 

changes in the salivary microbiome from healthy, 

treatment-naïve diabetic and diabetic treated 

individuals. Our results revealed dramatic changes in 

the salivary microbiome at the onset and during the 

treatment of diabetes. This study enables us to further 

understand the relationship between the oral microbiota 

and T2D. 

 

RESULTS 
 

Grouping information and the comparison of α- and 

β-diversity 

 

We collected 102 salivary samples from four cohorts, 

namely, nondiabetic people (Group A, 32 samples), 

treatment-naïve T2D patients (Group B, 31 samples), 

T2D patients with metformin treatment (Group C, 17 

samples), and T2D patients with combined medication 

treatment (Group D, 22 samples, insulin plus metformin 

or other hypoglycemic drugs) (Supplementary Tables 1 

and 2). As T2D patients are often troubled with 

periodontal disease, the oral healthy states were also 

considered and recorded in detail. All samples were 

analyzed by 16S rRNA sequencing; detailed 

information was introduced in the Materials and 

Methods section. After quality filtering, more than 8.09 

million clean reads were harvested, corresponding to a 

mean of 79,314 effective tags and 211 OTUs per sample 

(Supplementary Tables 3 and 4). The treatment-naïve 

diabetic patient group had a similar number of clean 

reads (Group A: 80816±2810; Group B: 77559±7542; 

Group C: 78826±6623; Group D: 80892±3417) to the 

nondiabetic people and the diabetic patients after 

treatments (p>0.05). The rarefaction curve 

demonstrated that all samples tended to be saturated 

(Supplementary Figure 1), suggesting that the OTUs 

covered most of the bacterial species that exist in the 

saliva. 

 

The α-diversity analysis of the salivary microbiota 

among the four groups showed that the α-diversity 
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indexes of nondiabetic people (group A) were 

significantly higher than patients with a history of T2D 

(group B, C and D) (P value < 0.05) (Figure 1A). 

However, the diversity of the salivary microbiota did 

not change significantly after metformin or combined 

treatment (Figure 1A). The number of OTUs identified 

in nondiabetic people was significantly higher than that 

identified in treatment-naïve diabetic patients 

(p=0.0392) and metformin-treated diabetic patients 

(p=0.0001). On average, 233, 207, 181 and 208 OTUs 

were obtained from the salivary microbiota of Groups 

A, B, C and D, respectively (Supplementary Figure 2). 

The β-diversity results showed the differences between 

nondiabetic people and patients with a history of 

diabetes (Figure 1B). The principal coordinate analysis 

(PCoA) of the unweighted UniFrac distance showed 

that the distribution of salivary microbiota that existed 

in nondiabetic individuals was more dispersed than that 

in individuals with a history of diabetes (Figure 1C), 

while the index was similar in the treatment-naïve 

diabetic and metformin/combined medication groups. 

 

The salivary “core microbiome” shared by each group 

was also analyzed at the genus, OTU and species level, 

respectively. On the genus level, 41, 43, 43, and 42 

genera were shared by the individuals of Groups A, B, 

C and D, respectively (Figure 1D and Supplementary 

Figure 3 and 4); on the OTU level, the numbers were 

101, 114, 123 and 109, respectively (Figure 1D and 

Supplementary Figure 5 and 6); and at the species level, 

the numbers were 52, 58, 56 and 53, respectively 

(Figure 1D). In addition, 37 genera, 82 OTUs and 42 

species were shared among all four groups (Figure 1D). 

The salivary “core microbiome” covers the majority of 

 

 
 

Figure 1. Comparison of alpha diversity and beta diversity. The α-diversity (A), β-diversity (B), and the principal coordinate analysis 

(PCoA) of the Unweighted Unifrac distance (C) results of the salivary microbiota among the four groups; (D) The salivary “core microbiome” 
shared by each group at the genus, OTU and species level, respectively.  
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bacteria at different taxonomic levels in each group; 

therefore, the abundance of salivary bacteria in the 

“core microbiome” varied significantly during the onset 

and treatment of diabetes. 

 

The study of salivary microbiota changes and 

periodontitis  

 

As the differences in the severity of periodontitis in 

each group may lead to changes in the oral microbiome 

between groups, we first examined the differences in 

the severity of periodontitis between groups. The 

severity of periodontitis was elevated in the individuals 

with treatment-naïve diabetes in comparison to 

nondiabetic people, and treatment with metformin, 

insulin or some other hypoglycemic drugs did not 

alleviate the severity of periodontitis. The PCoA results 

of the salivary microbiota calculated by the differences 

in the severity of periodontitis in all individuals showed 

no significant differences in β-diversity in mild (L), 

moderate (M), and severe (H) periodontitis (Figure 2A); 

the p value obtained by the adonis function 

(permutational MANOVA) analysis of the 

periodontitis-associated bacteria was 0.45, 0.15, 0.65 

and 0.24, respectively, for Groups A, B, C and D, 

suggesting that the change in the β-diversity of the 

salivary microbiota between different T2D groups was 

not related to the severity of periodontitis 

(Supplementary Figure 7). 

 

In addition, microbial changes due to periodontitis 

within Group A were analyzed, and a variety of 

periodontitis-related pathogens, such as 

Porphyromonas_gingivalis and Parvimonas_micra, 

were increased with the severity increase of 

periodontitis (Supplementary Table 5). However, the 

number of microbes that correlated with the severity of 

periodontitis within the T2D groups (Groups B, C and 

D) was reduced after the onset of diabetes. Noticeably, 

the periodontitis pathogen Porphyromonas_gingivalis 

was not significantly increased with the severity of 

periodontitis in individuals with a history of T2D. 

Moreover, the bacterial genera and species with 

significant changes in the L, M, and H stages of 

periodontitis in nondiabetic individuals were not 

included as the differential genera and species in the 

onset and treatment of diabetes (Figure 2B); these 

differential genera and species were used to compare 

the treatment-naïve diabetic group with the other three 

groups, and the p value showed a significant difference. 

The above results demonstrate that the bacterial 

difference between T2D groups is not significantly 

. 

 
 

Figure 2. The study of salivary microbiota changes and periodontitis. (A) PCoA results of the salivary microbiota calculated by the 

severity of different periodontitis in all individuals, the p values were obtained by ADONIS (permutational MANOVA) analysis with Bray Curtis, 
Jaccard, unweighted and Weighted Unifracs. (B) The bacterial genera (Left) and species (Right) with significant changes in L, M, and H stage of 
periodontitis in healthy individuals were not included as the differential genera and species in the onset and treatment of diabetes, and the p 
value showed no significant difference when these differential genera and species were used to compare the naïve diabetic group with the 
other three groups. 
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influenced by periodontitis and that T2D may alter the 

salivary microbiome caused by periodontitis. 

 

Changes in the salivary microbiota under the 

conditions of diabetes and its treatments 

 

To clarify the effects of diabetes on salivary microbiota, 

we first compared the salivary microbiome in 

nondiabetic people (Group A) and in treatment-naïve 

diabetic patients (Group B) at the phylum, genus and 

species levels. At the phylum level, Proteobacteria was 

the most abundant phylum in nondiabetic people, 

covering more than 40% of the salivary bacterial mass, 

while it was significantly reduced in treatment-naïve 

diabetic patients (Figure 3A). In contrast, Bacteroidetes, 

Firmicutes and Fusobacteria were increased 

significantly in Group B. At the genus level, 27 genera 

showed significant changes between the two groups 

(Supplementary Tables 6 and 7). Prevotella was the 

most abundant genus among the salivary microbiota of 

Group B, covering approximately 15% of the whole 

salivary bacterial mass (Supplementary Figure 8), while 

its abundance was lower than that of the genera 

Neisseria and Haemophilus in Group A (Supplementary 

Figure 8). At the species level, a total of 37 species 

changed significantly in Group B in comparison to 

Group A (Supplementary Tables 6 and 7), such as 

Prevotella_aurantiaca, Prevotella_oris and 

Streptococcus_mutans. Haemophilus parainfluenzae 

was the most abundant bacteria in both groups 

(Supplementary Figure 8), but it was not significantly 

different between the two groups. Pseudomonas_beteli 

showed a clear change between Groups A and B 

(Supplementary Figure 8 and Supplementary Tables 6 

and 7). 

 

To evaluate the effect of diabetes treatment on salivary 

microbiota, we explored the bacterial difference in 

treatment-naïve diabetic (Group B) and metformin-

treated individuals (Group C) at the phylum, genus and 

species levels. At the phylum level, Fusobacteria was 

reduced after metformin treatment (Figure 3A). At the 

genus level, 11 genera showed significant changes 

between Group B and Group C (Supplementary Figure 

8 and Supplementary Tables 6 and 7), including 

Corynebacterium, Blautia, Nocardia, Lactococcus, etc. 

At the species level, a total of 18 species differed 

significantly (Supplementary Figure 8 and 

Supplementary Tables 6 and 7), such as 

Corynebacterium_matruchotii, Lactobacillus_animalis 

and Roseburia_inulinivorans. 

 

We further compared the salivary microbiome changes 

between treatment-naïve diabetic patients (Group B) 

and diabetes patients treated with combined medication 

(Group D). At the phylum level, Proteobacteria were 

decreased and were Bacteroidetes increased 

significantly in Group D (Figure 3A). At the genus 

level, 15 genera showed significant changes in T2D 

patients with combined medication treatment 

(Supplementary Figure 8 and Supplementary Tables 6 

and 7), and the ratio of the relatively abundant genera 

Neisseria, Haemophilus and Streptococcus remained 

unchanged. At the species level, a total of 19 microbes 

changed significantly in Group D (Supplementary 

Figure 8 and Supplementary Tables 6 and 7), such as 

Faecalibacterium_prausnitzii, Lactobacillus_iners and 

Streptococcus_sobrinus. The above results are 

summarized in Scheme 1. 

 

The bacterial genera and species that showed significant 

differences are illustrated in Figure 3B and 

Supplementary Figure 9, respectively. Noticeably, the 

amount of three genera (Blautia, Cobetia and Nocardia) 

and four species (Blautia_wexlerae, 

Lactobacillus_fermentum, Nocardia_coeliaca and 

Selenomonas_artemidis) with relatively high abundance 

in the treatment-naïve diabetic patients were 

significantly different from that of both nondiabetic 

people and the treatment groups (Figure 3C and 3D, 

Supplementary Tables 6 and 7). 

 

To study the correlation between the differently 

distributed bacteria among the four groups, |Spearman 

correlation| ≥0.7 and q value≤0.01 were employed to 

examine the salivary microbiota at the genus and 

species levels with an abundance ≥0.02%. The results 

showed that there were close correlations within groups 

at the genus level, and clear differences in the bacterial 

correlation numbers were observed among the four 

groups (Figure 3E). The bacterial interactions at the 

species level were similar to those at the genus level 

(Figure 3F), indicating the interdependence of bacteria 

in the salivary microbiota and the change in their 

correlation under the conditions of treatment-naïve 

diabetes and drug treatments. 

 

Correlations between salivary bacteria and clinical 

parameters 

 

The correlations between differentially distributed 

bacteria in each group and various clinical 

characteristics (Supplementary Tables 1 and 2) were 

analyzed by Spearman correlation analysis (“Hmisc” in 

R package), species and clinical parameters with p 

adj<=0.05, ǀcorǀ >=0.3 were selected. The results 

showed that some differential genera (Figure 4A and 

Supplementary Figure 10) and species (Figure 4B and 

Supplementary Figure 11) were related to clinical 

characteristics, such as fasting blood sugar (Glu), body 

mass index (BMI), periodontitis (PD), blood urea 

nitrogen (BUN), systolic blood pressure (SBP), total 
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Figure 3. Changes of the salivary microbiota under the circumstance of diabetes and treatments. (A and B) The salivary microbiome 

in healthy people (Group A) and naïve diabetic patients (Group B) as well as diabetes treated with metformin (Group C) and combined 
medication (Group D) were compared at the phylum level; (C and D) the amount of three genera (Blautia, Cobetia and Nocardia) and four species 
(Blautia_wexlerae, Lactobacillus_fermentum, Nocardia_coeliaca and Selenomonas_artemidis) with relatively high abundance in the naïve 
diabetic patients were significantly different from both healthy people and the treatment groups; (E and F) |Spearman correlation| ≥0.7 and q 
value≤0.01 analysis of the salivary microbiota at the genus and species levels with the abundance ≥ 0.02%.  
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Scheme 1. Summary of the differences between saliva microbiota of healthy people (Group A), naïve diabetic patients 
(Group B), diabetes treated with metformin (Group C) and combined medication (Group D).  

 

 
 

Figure 4. Correlations between salivary bacteria and clinical parameters. |Spearman correlation| ≥0.7 and q value≤0.01 analysis of 

the salivary microbiota at the genus (A) and species (B) levels with the abundance ≥ 0.02%. 
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cholesterol (TCHO), glycosylated serum protein (GA.L), 

creatinine (Cre) and alanine aminotransferase (ALT). 

These characteristics showed that abnormalities in the 

salivary microbiome were closely correlated with 

diabetes, such as the blood glucose level and parameters 

used to assess the effects of treatment. In addition, in the 

salivary microbiota of nondiabetic people, 

SR1_genera_Incertae_sedis was related to blood glucose 

levels at the genus level; Capnocytophaga, Moraxella, 

Filifactor and Abiotrophia were related to BMI; 14 

genera, such as Porphyromonas, Treponema, Catonella 

and Tannerella, were related to PD; 11 genera, such as 

Prevotella, Veillonella and Alloprevotella, were related to 

sex; and Moraxella was related to age. This condition was 

changed in treatment-naïve T2DM patients, Abiotrophia 

was related to BUN, Veillonella was related to PD, 

Lautropia was related to ALT, and Wolinella was related 

to smoking or drinking. At the species level, 12 species, 

such as Veillonella_dispar, Rothia_mucilaginosa and 

Prevotella_jejuni, were positively related to sex In healthy 

control saliva, 16 species, Porphyromonas_gingivalis, 

Campylobacter_rectus, Neisseria_oralis, and 

Granulicatella_elegans, were positively related to PD; 

Porphyromonas_gingivalis and Cardiobacterium_ 

valvarum were positively related to age; 

Abiotrophia_defectiva was positively related to BMI; and 

Oribacterium_asaccharolyticum was positively related 

to GLU. In patients with a history of diabetes, 

Leptotrichia_hofstadii was positively related to sex; 

Wolinella_succinogenes was positively related to 

smoking and drinking; Veillonella_dispar was 

positively related to PD; Haemophilus_sputorum was 

positively related to SBP; Prevotella_shahii was 

positively related to GA.L; Lautropia_mirabilis was 

positively related to ALT; Neisseria_oralis was 

positively related to BUN; Abiotrophia_defectiva was 

positively related to BUN; Granulicatella_elegans and 

Alloprevotella_rava was positively related to CRE; and 

Cardiobacterium_hominis was positively related to 

TCHO. The above results suggest a close connection 

between salivary bacteria and the clinical characteristics 

of diabetes. 

 

Detection and testing of salivary microbial markers 

 

To study the effect of sex and age of the subject as well as 

the number of OTUs on the composition of the oral 

bacterial community, we grouped the samples according 

to their sex, age, and OTUs, and ADONIS (also known as 

permutational MANOVA) was employed to analyze the 

contribution of different grouping factors to sample 

differences, and use the Permutation test for statistical 

significance p value and R2). According to the results of 

PERMANOVA analysis, only the OTUs of each sample 

has a significant effect on the composition of saliva 

bacterial community (P< 0.05) (Supplementary Table. 8). 

Next, we did a correlation analysis between the 

microbiota and OTUs to find out whether the bacteria that 

have the larger correlation with OTUs coincide with the 

biomarker we found earlier. The results showed that 22 

species were obtained when p<= 0.05, the absolute value 

of the correlation coefficient |cor|> = 0.3 (Supplementary 

Table. 9). However, the bacteria we choose as biomarker, 

Blautia_wexlerae, Lactobacillus_fermentum, Nocardia_ 

coeliaca and Selenomonas_artemidis, do not intersect 

with these 22 species of bacteria (Supplementary Figure 

12), so the biomarkers we found in this study are not 

affected by the upward factors. 

 

As salivary microorganisms are closely related to 

diabetes indicators, salivary microbes could be used as 

potential biomarkers for the early warning of T2D. A 

random forest classifier model was applied for the group 

prediction, and a 5-fold cross-validation was used for the 

data preparation of the random forest model. The original 

data were randomly divided into 5 groups: one random 

subset was employed as the test set, and the remaining 4 

groups were used as a training subset. Finally, five 

models were obtained, and the average accuracy of a 

model obtained from the test sets was used for the 

performance evaluation of the model. The random forest 

model directly produces the significance scores of a 

biomarker in the sample groupings, therefore it is 

conducive to finding the most important influencing 

factors. Differential bacterial species were evaluated by 

the random forest model, and the results showed that the 

order of importance for the four bacteria was 

Selenomonas artemidis, Lactobacillus fermentum, 

Blautia wexlerae, and Nocardia coeliaca (Supplementary 

Figure 13). To distinguish treatment-naïve diabetic 

patients from healthy nondiabetic people and those 

receiving insulin therapies and metformin treatment, the 

four differential bacteria were applied for the succeeding 

random forest classification, and the ROC curve was 

used to evaluate the accuracy of the sample 

classifications. The results showed that the accuracy rate 

of the application of the differential bacteria as 

biomarkers to distinguish treatment-naïve diabetic 

patients from nondiabetic people (Figure 5A) and 

patients treated with metformin (Figure 5B) or combined 

medication (Figure 5C) reached 83.3%, 75%, and 75%, 

respectively (Figure 5B).  

 

Using the Random Forest model by 

Lactobacillus_fermentum and Selenomonas_artemidis 

established in this manuscript, we analyze the salivary 

microbiome data of two previous literatures for 

verification [27, 28], and the results show that the 

accuracy are 0.742 for distinguishing obese people with 

diabetes to those without diabetes [27]; and 0.746 for 

differentiating diabetes from non-diabetes [28], 

respectively (Supplementary Figure 14). Considering 
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that two validation cohort was mainly from US 

population, these two salivary microbial biomarkers 

may have a global efficacy in assessing diabetes. 

 

DISCUSSION 
 

Individuals with diabetes exhibit different patterns of gut 

microbiota compared to healthy individuals, and the gut 

microbiota of these individuals is considered to be in a 

dysbiosis state [29]. Saliva is considered to be the easiest 

available sample for disease risk prediction [30]. The 

change in saliva composition is closely related to the 

pathophysiological state of the body, and it is of great 

significance to explore disease-associated biomarkers in 

saliva [31]. Our study found that T2D could also 

significantly alter the salivary microbiota, while 

treatment did not lead to flora recovery. This finding is 

of great significance for the study of the pathogenesis 

and treatment mechanisms of diabetes and could be 

explained by two different mechanisms. First, elevated 

glucose levels in the saliva of diabetic patients could 

have impacted the oral environment, increasing the 

growth of certain bacteria at the expense of others [32, 

33]; however, the change may be irreversible, and drug 

treatment cannot restore the oral environment to the 

original state. For example, elevated glucose in gingival 

crevicular fluid in diabetic patients may affect the 

growth of certain bacteria [34], and the bacterial 

composition in the subgingival plaque was altered [35]. 

The presence of Porphyromonas gingivalis in the 

periodontal pockets affects the glycemic index in 

diabetes [25], and the periodontitis-inducing cytokines 

TNF-α, IL-6 and IL-1β are also insulin antagonists [36], 

triggering irreversible changes in the body's immune 

response and inflammatory state. Second, hyperglycemia 

could have caused the acidification of the oral 

environment and perturbed the oral microbiota [37], the 

oral microbial diversity of diabetic patients decreases, 

and some bacteria have been "lost". These "lost" bacteria 

could not grow after the oral pH returned to normal after 

drug treatment. In addition, patients usually reduce the 

intake of starchy foods after they know their diabetes. 

Starchy foods probably affect the composition of the oral 

flora because only starch in the food can degrade in the 

mouth to produce glucose. However, a previous study 

found that regardless of how people with diabetes 

reduced their intake of starch, their oral glucose levels 

were always higher than normal [37], which eliminated 

the effects of starchy foods on the oral flora. T2DM is a 

state associated with a lack of diversity in the 

microbiota, and studies have reported that specific oral 

microbes are associated with diabetes [20, 25]. It has 

been observed that the microbiota is converted from 

healthy Gram-positive cocci and filaments to Gram-

negative anaerobic bacteria in gingivitis. Qin et al. 

reported that the species enriched in the control samples 

included Clostridiales sp. SS3/4, Eubacterium rectale, 

Faecalibacterium prausnitzii, Roseburia intestinalis and 

Roseburia inulinivorans [8]. By contrast, T2D-enriched 

bacteria were Bacteroides caccae, Clostridium 

hathewayi, Clostridium ramosum, Clostridium 

symbiosum, Eggerthella lenta and Escherichia coli. 

However, these bacteria were not included in the 

differentiated oral bacteria in T2D in this study, 

suggesting that the oral microbiota and the intestinal 

flora play divergent roles when interacting with diabetes. 

In this study, the levels of Faecalibacterium_prausnitzii 

and Lactobacillus spp. were observed to be increased 

during the onset of diabetes but decreased after drug 

treatment, which was contrary to the previously reported 

results of the intestinal flora [38]. The reason may be 

that the oral cavity and the intestine are different 

microenvironments, leading to divergence in microbiota 

changes. Subsequent correlational analysis of the 

differential bacteria and clinical characteristics 

demonstrated that oral microbes were related to drug 

treatment and certain pathological changes, e.g., 

Acinetobacter nosocomialis was positively related to

 

 
 

Figure 5. Detection and testing of salivary microbial markers. The four differential bacteria differential bacteria were applied for the 

succeeding random forest classification, and the ROC curve was used to evaluate the accuracy of sample classifications. The results showed 
that the accuracy rate of application of the differential bacteria as a biomarker to distinguish naïve diabetes patients from healthy people (A) 
and patients treated with metformin (B) or combined medication (C) could reach to 83.3%, 75%, and 75%, respectively.  
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metformin, while Haemophilus parainfluenzae was 

positively associated with combined treatment. 

Abiotrophis was positively associated with blood urea 

nitrogen, Lautropia was positively associated with 

alanine aminotransferase, and Veillonella was positively 

associated with periodontitis. The correlation between 

salivary bacteria and clinical parameters might be 

related to disease occurrence and deserves in-depth 

study. 

 

Periodontitis is an inflammatory disease induced by 

microbial infection that eventually destroys the 

connective tissue and bone supporting the teeth [39]; 

in addition, specific bacteria in the mouth are 

associated with the development and progression of 

periodontal disease [40]. Oral microbiota may be 

associated with diabetes, and there is evidence that 

diabetic patients are more likely to develop severe 

periodontal disease than healthy patients [41, 42]. At 

the same time, periodontitis makes blood sugar more 

difficult to control in T2DM patients [46], and 

periodontal disease could also worsen type 2 diabetes; 

thus, there is a two-way relationship between diabetes 

and periodontal disease [43, 44]. Patients with severe 

periodontal disease had higher levels of TNF-α in the 

blood circulation [45], and the cytokines TNF-α, IL-6 

and IL-1β are insulin antagonists, which play  

an important role in the pathogenesis of periodontitis 

[36, 46]. Although there is some evidence that 

treatments aimed at reducing the burden of 

inflammation in periodontal disease can moderately 

improve glycemic control, a recent randomized trial of 

adults using nonsurgical periodontal treatment showed 

contradictory results [47]. In this study, the bacteria 

with significant differences in L, M, and H levels of 

periodontitis were not included in the aforementioned 

differential bacteria in the onset and treatment of 

diabetes, indicating that bacterial changes caused by 

periodontitis do not affect the bacterial differences 

caused by diabetes and treatment. Thus, this discovery 

diminishes the effect of periodontitis on the oral 

microbiota structure in an attempt to link the observed 

changes in the oral flora and the diabetic status with 

minimal impact from other factors. 

 

It was previously found that the V3-V4 and V4-V5 

regions of 16S rRNA yielded the most accurate results, 

regardless of sequencing technology and quality [48]. 

The capture of diversity using the primer pair spanning 

the V3-V4 hypervariable region had better capture 

when compared to the primer pair for the V1-V3 region 

[49]. Meanwhile, the V4 hypervariable region is 

traditionally selected for work as it provides adequate 

information for taxonomic classification of microbial 

communities and has demonstrated a lower error rate on 

the Illumina platform [50]. 

It is of great significance to explore disease-associated 

biomarkers in saliva [31], and metabolic markers have 

already been applied to the diagnosis, treatment and 

prognosis evaluation of periodontal disease and diabetes. 

Previous studies revealed that the level of α-2-

macroglobulin in the saliva of T2D patients was 

significantly elevated, and its concentration was decreased 

after the control of blood glucose, suggesting that the 

detection of salivary α-2-macroglobulin level could be 

used to monitor the blood sugar in diabetic patients [51]. 

Studies also found that patients with T2D and 

periodontitis had decreased levels of melatonin in saliva, 

suggesting that melatonin in diabetes and teeth plays an 

important role in the pathogenesis of diseases and may 

become a key molecule in the diagnosis and therapy of 

these two diseases [52]. Barnes et al examined salivary 

metabolites in healthy and diabetic patients with or 

without periodontal disease and found that the levels of 

glucose and α-hydroxybutyrate in the saliva of diabetic 

patients increased, and the markers related to 

carbohydrates, lipids and oxidative stress changed 

significantly [53]. There are also studies that detected 

salivary blood glucose and glycated hemoglobin levels in 

patients with T2D and healthy people and found a positive 

correlation between them [54]. However, testing using 

saliva biomarkers is rare, and there is no report of diabetes 

detection and treatment effectiveness evaluation using 

saliva microbiota. In this study, we found significant 

differences between diabetic and nondiabetic individuals, 

and some differential bacteria emerged after treatment 

with metformin or combined medication. Our predictions 

with the random forest model had high accuracy, 

indicating that the use of saliva bacteria for disease 

diagnosis has great potential and is worthy of validation 

and optimization in the future. 

 

MATERIALS AND METHODS 
 

Ethics statement and samples collection 

 

This study was reviewed and approved by the Ethical 

Committee of Shandong Academy of Medical Sciences. 

All volunteers gave their written informed consent prior 

to their inclusion of the study. All methods were 

performed in accordance with the relevant guidelines 

and regulations. Saliva specimens were obtained from 

Diabetes Research Hospital affiliated to Shandong 

Academy of Medical Sciences (Jinan city, Shandong 

province). Please refer to Supplementary Tables 1 and 2 

for details of sampling patients. 

 

Non-diabetic volunteers inclusion criteria: no antibiotics, 

glucocorticoids, immunosuppressive agents that stimulate 

the body's immune system have been used in the past 3 

months; no probiotics have been used in large doses in the 

past 1 month; no local antibiotics treatment (such as that 
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in mouth washes) have been used in the past 7 days; no 

infectious diseases such as hepatitis and tuberculosis; 

women not in pregnancy and lactation; without chronic 

diseases and clinical long-term medication, such as 

chronic functional diseases (such as lung, cardiovascular, 

gastrointestinal, liver and kidney, and tumors). Diabetes 

patient inclusion criteria: meet the WHO diagnostic 

criteria for type 2 diabetes; the other inclusion criteria are 

the same as those for non-diabetic volunteers. Exclusion 

criteria: those with malignant tumors; those with 

infectious diseases such as tuberculosis and viral hepatitis; 

those who take antibiotics or immunosuppressive agents 

for a long time; those with autoimmune diseases; those 

with blood diseases; those with obvious liver and kidney 

dysfunction; those with acute infection, trauma, or in 

other stressful state; those with a history of surgery; 

alcoholics (greater than 210g/week for male; greater than 

140g/week for female); those with probiotics uptake; 

those with clinical trials of other drugs. Standards for mild 

to moderate periodontitis: each patients was examined and 

recorded his oral status includes oral hygiene, sacral 

stones and underarm stones, presence or absence of 

pigmentation on the tooth surface; and periodontal status 

includes gingival inflammation, periodontal pocket depth, 

gingival recession, and tooth looseness. The oral health 

status was then assessed by the dentist according to the 

condition of the examination record. 

 

Saliva specimen collection: Volunteers did not eat after 

dinner on the day before the saliva sample collection, and 

brushed their teeth before going to bed; the volunteers did 

not brush their teeth on the day of collection, and saliva 

was collected 2h after breakfast (time is around 9:00). In 

detail, 15 min before sampling, the volunteers washed the 

oral cavity with sterile distilled water three times, each 

time the amount of sterile distilled water was 15ml. The 

volunteers collected saliva immediately after gargle, and 

the volunteers should not eat or drink, smoking or chewing 

gum in this 15 min. The patients should wash their hands 

and carry out other necessary cleaning measures before 

taking the sample; the collection container delivered to the 

patient should mark the donor's name and date; the subject 

keeps the saliva in the mouth for at least 1 min, and then 

collects the saliva sample using a microcentrifuge tube. In 

order to ensure that enough saliva is collected (2-3 mL, 2 

specimens per person), this process usually needs to be 

repeated several times. Each sample was transferred to the 

laboratory within 20 minutes and immediately stored at -

80 °C.  

 

DNA extraction, library construction and 

sequencing 

 

Extraction of DNA 

Total DNA was extracted with CTAB/SDS method. 1% 

agarose gels was used for checking the DNA 

concentration and purity. DNA was diluted to 1ng/μl 

using sterile water based on the obtained concentration. 

 

Library construction and sequencing 

Genome DNA from all the samples was used as 

amplification templates. PCR primers were from the 

V3-V4 region of 16S rDNA, specific primers used was: 

forward primer, 5'-ACTCCTACGGGAGGCAGCA-3'; 

and reverse primer, 5'-GGACTACHVGGGTW 

TCTAAT-3'. All PCR reactions were carried out in 

30μL reactions with 15μL of Phusion® High-Fidelity 

PCR Master Mix (New England Biolabs); 0.2μM of 

forward and reverse primers, and about 10 ng templates 

DNA. Thermal cycling included a denaturation step at 

95°C for 5 min, followed by 30 cycles of denaturation 

at 95°C for 30s, annealing at 50°C for 30s, and 

elongation at 72°C for 40s. Finally 72°C for 7 min. 

 

Then the PCR products were purified with GeneJET 

Gel Extraction Kit (Thermo Scientific) and qualified by 

electrophoresis on 2% agarose gel, samples with single 

amplification product were chosen for further 

experiments. The library was sequenced on an Illumina 

Hiseq 2500 platform at Novogene company (Beijing, 

China).  

 

Data processing 

 

In data preprocessing, quality filtering and analysis of the 

Raw sequence were performed using the next-generation 

microbiome bioinformatics platform (QIIME2 version 

2018.6 pipeline). The quality filtering algorithm, a 

software package included in Usearch, was used to 

identify exact sequence variants (ESVs). Alpha and beta-

diversity analyses were performed in R using 

the phyloseq package. Alpha diversity was calculated by 

Faith's Phylogenetic Diversity, Shannon index, and 

observed OTUs. Principal coordinate analysis (PCoA) 

was analyzed based on unweighted UniFrac distances, a 

method for computing differences between microbial 

communities based on phylogenetic information. 

Permutational multivariate analysis of variance 

(PERMANOVA, R function adonis (vegan, 999 

permutations)) was employed to analyze statistical 

differences in beta diversity. Bray-Curtis dissimilarity is 

an indicator used to measure differences in taxonomic 

composition in ecology, and Jaccard Distance is to 

measure the difference between two groups. Benjamini–

Hochberg false discovery rate (fdr) correction was 

applied to correct multiple hypothesis testing. The 

contribution of periodontal disease to the weighted, 

unweighted, UniFrac, bray Curtis, and jaccard 

dissimilarities was also evaluated using PERMANOVA 

(R function adonis (vegan), 999 permutations), and the 

dissimilarity matrix was decomposed into “variance”. We 

used Usearch to cluster the Effective Tags of all samples, 
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cluster the sequences into 1055 Operational Taxonomic 

Units (OTUs) with 97% identity, and then perform 

species annotation on the representative sequences of 

OTUs according to the database Ribosomal Database 

Project (The database version is RDP Release 11.5). At 

the genus and species levels, differences were analyzed 

between the A, B, C, and D groups. The average relative 

abundance of less than 0.02%, and the frequency of 

occurrence in the sample less than 30% (R package: 

"dplyr") was screened out for the Wilcoxon test. The 

species with p <= 0.05 were selected with R package: 

"pheatmap" for the heat map, and the average relative 

abundance in the group was demonstrated with a 

histogram (R package: "ggplot2"). Correlation analysis 

was performed at the genus and species levels, all the 

differential genera and species identified in the variation 

analysis were pooled for spearman correlation analysis of 

their correlation with all the bacteria and clinical 

parameters after 0.002% and 30% screening (R package: 

"Hmisc"). The genera and Species with padj<=0.05, 

|cor|>=0.5 were shown with a network map (software 

cytoscape, R package “pheatmap”). To further explore 

the relationship between salivary microbiota and the 

degree of diabetes, we used a random forest algorithm to 

predict the classification of samples. Random forest 

regression was done with 1,000 regression trees based on 

5-fold cross-validation and the Random Forest regressor 

in the R programming environment. A random drawn 

80% of samples were used for model training and the 

remaining 20% were used for validation. The predicted 

results were shown with the roc curve (R package: 

"proc"). In the random forest prediction classification 

algorithm, the contribution of different species can be 

kown. The top four species were selected and the random 

forest algorithm prediction classification performed. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Rarefaction curve: the abscissa is the number of randomly selected sequences and the ordinate is 
the number of OTUs clustered based on the number of sequences. Each curve represents a sample, and the curve tends to be stable, 

indicating that the number of extracted sequences is enough to reflect the OTUs of the sample. 
 

 
 

Supplementary Figure 2. The number of OTUs in each group. 
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Supplementary Figure 3. The “core microbiome” at the genus level. 
 

 
 

Supplementary Figure 4. The abundances of salivary “core microbiome” among individuals at the genus level. 
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Supplementary Figure 5. The salivary “core microbiome” at the OTU level. 
 

 
 

Supplementary Figure 6. The abundance of salivary “core microbiome” among individuals at the OTU level. 
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Supplementary Figure 7. Beta diversity of periodontitis associated bacteria in each group. 
 

 
 

Supplementary Figure 8. The top 20 abundant genus (A) and species (B) of salivary microbiome in the non-diabetic control (Group A), 

diabetes (Group B), metformin (Group C) and combination treatment (Group D) of diabetes. 
 

 



 

www.aging-us.com 13110 AGING 

 

 

 
 

Supplementary Figure 9. The differential species of salivary microbiome in the non-diabetic control (Group A), diabetes 
(Group B), metformin (Group C) and combination treatment (Group D) of diabetes. 
 

 
 

Supplementary Figure 10. Correlation between differential bacteria in the microbiota and various clinical parameters in each 
group at the genus level. (A) Group A; (B) Group B, C and D. 
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Supplementary Figure 11. Correlation between differential bacteria in the microbiota and various clinical parameters in each 
group at the species level. (A) Group A; (B) Group B, C and D. 

 

 
 

Supplementary Figure 12. The intersection of biomarkers, Blautia_wexlerae, Lactobacillus_fermentum, Nocardia_coeliaca 
and Selenomonas_artemidis, with the bacteria that have larger correlation with OTUs. 

 

 
 

Supplementary Figure 13. The differential bacteria species were evaluated by the random forest model. 
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Supplementary Figure 14. Using the Random Forest model by Lactobacillus_fermentum and Selenomonas_artemidis to 
analyze the data of two previous literatures [Janem et al., 2017]. (A and B); [Sabharwal et al., 2019] (C). 
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Supplementary Tables 
 

Supplementary Table 1. The information of the four groups of people. 

Groups A B C D 
Number of people 32 31 17 22 
Sex 16M, 16F 23M, 8F 13M, 4F 14M, 8F 
Symptoms PD PD+Diabetes PD+Diabetes PD+Diabetes 

Treatments Non Non Metformin 
Insulin+metformin or other 

hypoglycemic drugs 
PD 18L, 14M 6L, 24M, 1H 6L, 6M, 5H 18M, 4H 
BMI 24.77±2.70 26.54±5.40 27.14±4.41 26.36±3.46 
Glu 5.38±0.48 12.43±4.66 10.54±3.51 11.67±3.22 
ALT 20.91±7.69 37.55±31.99 30.43±18.09 24.67±8.32 
AST 17.36±2.82 24.24±16.49 22.85±11.70 18.25±3.81 
BUN 4.79±1.37 5.379±1.23 5.03±1.10 5.71±1.26 
CRE 62.43±9.70 64.34±10.66 68.65±11.45 56.96±10.16 
UA 319.79±102.03 337.26±126.36 330.14±92.26 286.46±86.61 
TG 1.90±1.71 2.69±2.55 1.85±0.80 1.89±1.55 
TCHO 5.02±0.44 5.80±1.11 5.06±0.78 5.29±0.81 
SBP No data 134.87±15.10 137.35±12.38 143.41±15.77 
GA.L No data 26.99±9.28 27.31±10.33 28.37±4.69 
HDL-C 1.34±0.27 1.27±0.38 1.27±0.30 1.39±0.41 

Their Fasting blood sugar (Glu), Body Mass Index (BMI), periodontitis (PD), blood urea nitrogen (BUN), Systolic blood pressure 
(SBP), Total cholesterol (TCHO), Glycosylated serum protein (GA.L), Creatinine (Cre) and alanine aminotransferase (ALT) were 
measured. 
 

Please browse Full Text version to see the data of Supplementary Tables 2 to 7. 
 

Supplementary Table 2. Details of the sampled volunteers. 

Supplementary Table 3. Assessment of the data quality. 

Supplementary Table 4. Annotated microbiota to different taxa. 

Supplementary Table 5. The periodontitis-associated taxa in each group. 

Supplementary Table 6. Taxa with significant difference in content between groups 

Supplementary Table 7. Genera and species with significant difference in content between groups. 

 

Supplementary Table 8. ADONIS analysis of the contribution of age, sex and OTUs to sample differences. 

R2, P Age Sex OTUs of each sample 
Bray_curtis 0.00896, 0.545 0.01229, 0.227 0.0678, 0.001 
Jaccard 0.01147, 0.181 0.01165, 0.137 0.07751, 0.001 
Unweighted_unifrac 0.01112, 0.275 0.00877, 0.495 0.12732, 0.001 
Weighted_unifrac 0.01112, 0.276 0.00877, 0.503 0.12732, 0.001 
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Supplementary Table 9. Correlation analysis between the microbiota and OTUs, 22 species were obtained when p <= 
0.05, the absolute value of the correlation coefficient |cor|> = 0.3. 

Species had p<= 0.05 and |cor|>= 0.3 
Pseudomonas_beteli 

Porphyromonas_gingivalis 
Campylobacter_rectus 

Neisseria_oralis 
Streptobacillus_moniliformis 

Phyllobacterium_myrsinacearum 
Dialister_pneumosintes 
Mycoplasma_faucium 
Prevotella_denticola 

Wolinella_succinogenes 
Dialister_invisus 

Prevotella_dentalis 
Anaeroglobus_geminatus 

Selenomonas_noxia 
Lautropia_mirabilis 
Leptotrichia_shahii 

Fretibacterium_fastidiosum 
Selenomonas_infelix 

Selenomonas_sputigena 
Tannerella_forsythia 
Treponema_medium 

Treponema_amylovorum 

 


