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Abstract

Background: Investigating the responses of autonomic nervous system (ANS) in
hypoxia may provide some knowledge about the mechanism of neural control and
rhythmic adjustment. The integrated cardiac and respiratory system display
complicated dynamics that are affected by intrinsic feedback mechanisms controlling
their interaction. To probe how the cardiac and respiratory system adjust their
rhythms in different simulated altitudes, we studied heart rate variability (HRV) in
frequency domain, the complexity of heartbeat series and cardiorespiratory phase
synchronization (CRPS) between heartbeat intervals and respiratory cycles.

Methods: In this study, twelve male subjects were exposed to simulated altitude of
sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power
spectral analysis. The complexity of heartbeat series was quantified by sample
entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram.

Results: The power spectral HRV indices at all frequency bands depressed according
to the increase of altitude. The SampEn of heartbeat series increased significantly
with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not
significantly different from that at sea level. However, it was significantly longer at
4000 m (P < 0.01).

Conclusions: Our results suggest the phenomenon of CRPS exists in normal subjects
when they expose to acute hypoxia. Further, the autonomic regulation has a
significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and
HRV parameters revealed the different regulatory mechanisms of the cardiac and
respiratory system at high altitude.

Keywords: Hypoxia, Autonomic nervous system, Heart rate variability, Sample
entropy, Cardiorespiratory phase synchronization
Background
Nowadays, advanced transport technology gives people more opportunity to visit high

altitude, such as Tibet. However, most visitors who have not enough time to

acclimatize to the hypoxic environment may have some risk for physical problems, in-

cluding cardiovascular disorders [1]. Burtscher [2] demonstrated that up to 30% of all

deaths in mountain sports at altitude were ascribed to sudden cardiac death. Hypoxia

induces tachycardia when oxygen concentration is lower than 17% [3]. In addition,

moderate altitude could increase the incidence of cardiac arrhythmia in healthy older
© 2014 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:yms1601@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Zhang et al. BioMedical Engineering OnLine 2014, 13:73 Page 2 of 12
http://www.biomedical-engineering-online.com/content/13/1/73
people [4]. Kujanik et al. [5] also reported the occurrence of supraventricular and ven-

tricular extrasystoles was proportional to the altitude in acute hypoxia in healthy older

man. These findings suggest that hypoxia-induced changes in cardiac rhythm may be a

threat for the health of people exposed to hypoxic environment.

The responses of autonomic nervous system (ANS) are crucial for acclimatization to

hypoxia. Acute hypoxia activates several autonomic mechanisms, mainly in cardiovascular

system such as increasing in resting heart rate (HR), cardiac output and blood pressure

[6,7], and in respiratory system like causing pulmonary hypertension and hyperventilation

[8]. Hypoxic exposure is a potent activator of ANS [9]. The responses of ANS are usually

evaluated by heart rate variability (HRV). Many researchers employed power spectral tech-

nique to estimate power distribution as a function of frequency. In this method, the power

spectral density of R-R interval (RRI) series is used to quantified to three main spectral

power components: very low frequency (VLF, 0–0.04 Hz), low frequency (LF, 0.04-0.15 Hz)

and high frequency (HF, 0.15-0.4 Hz) [10]. HF power components are associated with car-

diac parasympathetic activity, whereas LF power components reflect both sympathetic and

parasympathetic activities [10]. The LF/HF ratio is an index of sympathovagal balance or

the reflection of sympathetic modulations [10]. VLF components do not have explicit

physiological properties and should be avoided in short term HRV analysis [10].

Generally, the linear methods on HRV analysis including time- and frequency-

domain have been widely used in hypoxia, because the results of linear approaches are

easy to interpret in physiologic terms. But they also have some limitations, and their re-

sults are inconsistent. Most studies indicated that both LF and HF power decreased at

high altitude [1,6,9,11-16]. However, some other studies showed that the increase of LF

power was accompanied with the decrease of HF power [17], or unchanged HF power

was concomitant with the increase of LF power [3]. These discrepancies may attribute

to the complicated fluctuations of the sinus rhythm and multiple feedback control in

cardiovascular regulation. Meanwhile, it has been demonstrated that some nonlinear

processes are involved in the regulation of the cardiovascular and respiratory system,

especially in extreme conditions [18]. Therefore, we could lose a lot of information

about cardiac complex dynamics when we analyze heartbeat series with traditional lin-

ear methods. On the other hand, nonlinear changes of heart rate time series are deter-

mined by the complicated interactions of haemodynamic, electrophysiological and

humoral variables [10]. It has been speculated that the analysis of heartbeat series based

on nonlinear approaches may provide complementary and extra information about

how cardiovascular system regulates. Therefore, it is necessary to combine linear and

nonlinear approaches to analyze heartbeat series in an attempt to characterize cardio-

vascular regulation during hypoxic exposure. Sample entropy (SampEn) has been used

to examine complexity or irregularity of heartbeat series. Nonetheless, the interpret-

ation of nonlinear properties such as SampEn is not completely clear because there are

only few studies referring to the nonlinear parameters of cardiovascular changes in dif-

ferent physiological states or environmental stimuli.

Compared with the univariate analysis, bivariate method may provide more detail infor-

mation about the neural regulatory mechanism. Cardiovascular and respiratory system

are functionally integrated by neural regulation and intrinsic feedback mechanisms. It is

necessary to determine interactions between the two key systems. The interactions be-

tween cardiac and respiratory system are traditionally identified by respiratory sinus
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arrhythmia (RSA), which represents HR acceleration during inspiration and deceleration

during expiration [10]. Recently, nonlinear dynamics and mathematical physics have been

developed to quantify cardiorespiratory coupling through phase synchronization between

cardiac series and respiratory signal [19-21]. Earlier studies had quantitatively assessed the

changes of cardiorespiratory phase synchronization (CRPS) in different states, like vigor-

ous in Zen meditation [22] and in reciting hexameter verse [23], diminished during strain

[24] and mental task [25]. Moreover, CRPS is dramatically increased in non-rapid eye

movement sleep [26] and reduced in elder subjects [27]. Both cardiac and respiratory dy-

namics display long-term transient changes related to different physiological states and

environmental stimuli. How CRPS responds to acute hypoxia in association with under-

lying mechanisms of physiological control remains unclear.

In the present study, to evaluate the changes of ANS in acute hypoxia, we investi-

gated how acute exposure to simulated altitude of 3000 m and 4000 m influenced HRV

in frequency domain. On the other hand, exploring SampEn of heartbeat series in acute

hypoxia could help us to understand the autonomic regulation of cardiac dynamics.

We hypothesized that cardiorespiratory coupling might undergo phase transitions with

the changes of physiological stress. At the same time, we are curious about their phase

transitions in different simulated altitudes. We investigated the variations of cardiore-

spiratory coupling through phase synchronization during transitions from one physio-

logic state (normoxia) to another (hypoxia).

Methods
Subjects and experimental protocol

Twelve rigorously screened healthy subjects participated in this study. The mean age,

height and body mass was 29 ± 7 year, 172.54 ± 4.97 cm and 71.08 ± 9.11 kg (mean ±

SD), respectively. None of them had ever been to high altitude site above 2000 m

within six months before the experiment. All the subjects were required to avoid drink-

ing alcohol or beverage with caffeine within 12 hours before this experiment. The

protocol of this study was approved by the Ethics Committee of Beihang University

and all subjects gave informed consent to take part in the study.

This study was conducted in a hypobaric hypoxic chamber (Institute of Aviation

Medicine, Beijing, China) with a volume of more than 20 m3 (length, width, and height

is 6 m, 2 m, and 1.8 m, respectively). The chamber is situated at 31.3 m height as the

sea level (SL), which is the altitude of Beijing, with the atmospheric pressure approxi-

mating 101 kPa (China Meteorological Data Sharing Service System, http://cdc.cma.

gov.cn). The chamber is able to lower atmospheric pressure to simulate the altitude of

5500 m (approximately 51 kPa).

In this study, three levels of altitude were simulated: SL, 3000 m (approximately 70

kPa) and 4000 m (approximately 62kPa). The simulated altitude changed between each

other at a rate of 3 m/s. Each subject stayed at each simulated altitude for 15 minutes

(Figure 1). The physiological variables of the last 10 minutes was considered as steady

state and adopted for analysis. During the experiment, all subjects were required to stay

in the chamber quietly and breathe spontaneously in a seating position. Throughout

the whole experiment, temperature in the chamber was kept constant at 22°C.

Physiological signals of ECG, respiration and arterial oxygen saturation (SpO2) were

monitored during the entire experiment. ECG was acquired by standard Ag/AgCl

http://cdc.cma.gov.cn
http://cdc.cma.gov.cn


Figure 1 Experimental protocol described with a diagram showing altitude vs. time. Each subject
stayed at each simulated altitude for 15 minutes. The physiological data of the last 10 minutes was
considered as steady state and adopted for analysis. The simulated altitude ascended from sea level (SL) to
3000 m and 3000 m to 4000 m at the rate of 3 m/s.
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electrodes from right flank to left (modified 3-lead) and sampled by a 16-bit A/D con-

verter at 1000 Hz. Respiration was recorded by electrical impedance pneumograph

from ECG electrodes simultaneously. SpO2 was monitored by a finger pulse oximeter

(Radical-7, Masimo, CA, USA).

Data analysis

All data were analyzed off-line in MATLAB (The MathWorks Inc., Natick, MA, USA).

At each altitude, the mean value of HR, respiratory rate (RespR) and SpO2 was calcu-

lated. At the same time, linear and nonlinear indices, reflecting the regulatory mechan-

ism between cardiovascular and respiratory systems, such as HRV and CRPS, were

investigated.

For accurate QRS complex detection, the raw ECG waveforms were filtered by a linear

phase finite impulse response filter with pass-band 10–25 Hz [28] to remove power line

interference, high frequency noise and baseline wander. ECG beat detection was per-

formed using Hamilton & Tompins’ QRS detector [29] and each beat annotation was

visually inspected. Then, R-waves were identified from QRS complexes. RRI time series

was obtained from consecutive R peaks. HR was calculated based on R-R intervals.

The raw respiratory signal was filtered by a linear phase finite impulse response filter

with the pass-band 0.1-1.0 Hz to assure the signal was a narrow-band signal. For re-

spiratory rate (RespR) detection, the troughs and peaks of the respiratory curve were

used as indicators of the onsets of inspiration and expiration, respectively.

Spectral HRV analysis

HRV was assessed by both linear (power spectral analysis) and nonlinear (sample en-

tropy) method. The RRI time series was firstly interpolated to 4 Hz to provide equidis-

tant data points. The resulting RRI series was band-pass filtered to remove components

below 0.015 Hz and fluctuations above the Nyquist frequency (2 Hz). The power spec-

tral density of RRI was estimated by the Welch’s periodogram method. We applied a

Hamming window of 1024 points length for each data segments, shifted by 512 points
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overlap. The spectral power was evaluated for each subject as the integrated area under

the power spectrum curve in LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) ranges. The ratio

of LF power to HF power (LF/HF) was also calculated.

Sample entropy analysis

Besides the power spectral analysis, RRI time series was also analyzed by nonlinear dy-

namics method. After removing the linear trend, SampEn was introduced to quantify

the complexity of RRI series at different simulated altitudes.

SampEn is defined as the negative natural logarithm of the conditional probability that

two sequences similar for l points remain similar at the next point within a tolerance r,

where self-matches are not included in calculating the probability [30]. An irregular se-

quence will conduce to larger SampEn values, whereas regular signal is associated with

lower SampEn. The expression of SampEn is SampEn r; lð Þ ¼ −ln A
B

� �
, where A and B are

the total numbers of forward matches of length l + 1 and l [30]. In theory, SampEn does

not depend on the length of time series. Although l and r critically affect the result of

SampEn, there are no guidelines for optimal selection of their values [31]. Therefore, ac-

cording to the advice of Lake et al. [31], we used the two values l = 2 and r = 0.25 × SD

(RRI), where SD is the standard deviation of the 10 minutes RRI time series.

CRPS and synchrogram

In this study, we investigated the CRPS by cardiorespiratory synchrogram in all subjects

at each simulated altitude. Cardiorespiratory synchrogram or synchrogram is a visual tool

for inspecting synchronization between R-waves and respiratory phase. It displays the

phase of respiratory signal at the times of R-peaks. The key feature of synchrogram is that

the phase of a consecutive signal (respiration) is plotted at occurrences tR of a second sig-

nal (R peaks in ECG at tR) described by a point process [27]. Parallel horizontal lines ap-

pear in phase synchrogram when cardiorespiratory phase synchronization exists.

We observed the phase of respiratory signal φb at the times of the Rth R-peak tR, and

plotted this phase versus tR. The instantaneous phase of respiratory signal is calculated

by analytic signal approach [27]. In this way, the instantaneous respiratory phase φb
represents the angle between the breathing signal and its Hilbert transform [32], which

is the imaginary part of the breathing signal. The plot of φb(tR) versus tR is defined the

synchrogram. In the simplest case of n:1 synchronization, where n is the number of

heartbeats, there are n distinct values in each respiratory phase, thus, the plot would

display n parallel horizontal lines when phase synchronization exists. In n:m locking,

where n heartbeats occur in m respiratory cycles, the times tR of the occurrence of

R-peaks are plotted on the cumulative respiratory phase Φm, and the respiratory phase

of the m breathing cycles is expressed as:

ϕm
b trð Þ ¼ 1

2π
Φm trð Þmod 2πmð Þ

where tR is the time of the Rth heart beat and Φm is the cumulative respiratory phase.

ϕm
b is wrapped into [0, 2πm] interval (Figure 2). Plotting these phase points ϕm

b tRð Þ as a
function of tR would shows n horizontal plateaus when synchronization is present be-

tween the two systems (Figure 3). An important feature of this method is that, only one



Figure 2 ECG (a), respiratory signal (b) and the instantaneous phase of the respiratory signal (c) for
subject 5 at sea level.
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integer m should be selected by trial. Moreover, several synchronous regimes could be

distinguished visually within one plot, and the transitions between them can be traced.

In this study, phase recurrence was used to quantify the cardiorespiratory synchro-

gram. This method is based on the heuristic approach [33]. In parallel horizontal lines,

the relative distance of each nth R-peak has to be approximately identical. Otherwise,

the horizontal strips would not occur. A n:m phase synchronization will be detected if

the discrepancy between the respiratory phase corresponding to the (i + n)th R-peak

and the phase corresponding to the ith R-peak is within a predefined tolerance ε. This

condition has to be conducted for at least k successive R-peaks.

∃k > 1; ϕb tiþnð Þ−ϕb tið Þj j < ε; i∈ j;⋯; jþ k−1 0≤j≤Nr−k þ 1gjf

where Nr is the total number of R-peaks. To be compatible with the description of ‘par-

allel horizontal lines’ during coupling, k ≥m needs to be fulfilled [33]. This process
Figure 3 The cardiorespiratory synchrogram for subject 5 at sea level was plotted at the top. The
solid dots located at 48 s to 88 s and 230 s to 251 s respectively composed 7 parallel lines in synchrogram
and demonstrated CRPS with the ratio of 7:2 (n = 7 heartbeats within m = 2 consecutive respiratory cycles)
during the 300 s periods. fHR/fRespR which was the instantaneous ratio of heart rate (fHR) to respiratory rate
(fRespR) was plotted at the bottom.
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needs to detect the structure of parallel horizontal strips with a length of 2n successive

normalized relative phases. For example, a 4:1 synchronization may be retrieved from

at least successive 8 R-peaks. This method needs to be applied to each ratio of n:m. In

our paper, phase recurrence was applied to adjacent respiratory cycles from m = 1 to 4.

The tolerance ε was set to ε = 0.025 [33]. If one segment of synchronization was identi-

fied, the time duration of this segment was calculated. To exclude spurious detection of

cardiorespiratory synchronization, only the segments of phase synchronization with

time intervals more than 20s was considered. We summed the total time of the identi-

fied synchronization segments, and denoted it as the synchronization time (T).

Statistical analysis

The results were presented as mean ± SD. Bartlett’s test was used for equal variance

test. Logarithmic transform was performed on SpO2 and T to make data normal distri-

bution before statistical analysis. One-way repeated ANOVA was used to compare the

data at different simulated altitudes. Further difference was tested by pairwise multiple

comparison with Bonferroni modification. All statistical analysis was performed in

MATLAB and P value <0.05 was considered as statistical significance.

Results
Physiologic parameters

The mean values of SpO2, HR and RespR at each altitude were listed in Table 1. Hyp-

oxia led to increasing resting HR and RespR accompanied with decreasing SpO2

(Table 1). Both resting HR and SpO2 were significantly changed at 4000 m compared

with the value at SL and 3000 m. RespR at 3000 m was not significantly different from

that at SL. However, it was significantly increased at 4000 m.

HRV parameters

The results of HRV analysis at different altitudes were shown in Table 2. Both LF and

HF power decreased dramatically with the increase of altitude. Significant increase in

the LF/HF ratio suggested HF power was suppressed much more than LF power. This

result indicated the activities of ANS were attenuated in acute hypoxia and sympatho-

vagal balance shifted to sympathetic dominance. Nonlinear analysis displayed a signifi-

cant increase in SampEn according to the ascent of altitude, revealing a higher

irregularity of cardiac rhythm in acute hypoxia.

CRPS

For cardiorespiratory coupling, our analysis showed that nine out of twelve subjects

presented obvious CRPS at SL, and phase synchronization emerged at 3000 m and
Table 1 SpO2, HR and RespR recorded at SL, 3000 m and 4000 m

SL 3000 m 4000 m

SpO2 (%) 97 ± 1 90 ± 3 84 ± 4 §

HR (1/min) 72 ± 5 77 ± 5 84 ± 5 ‡

RespR (1/min) 22 ± 2 23 ± 2 24 ± 2 †

§ Significantly lower compared with the value at SL and 3000 m (both P < 0.001).
‡ Significantly increase compared with the value at SL (P < 0.001) and 3000 m (P = 0.002).
† Significantly change compared to the value at SL (P = 0.012), but there was no significant change between SL and
3000 m (P = 0.169), neither between 3000 m and 4000 m (P = 0.217).



Table 2 HRV indices recorded at different altitudes

SL 3000 m 4000 m

LF(ms2) 623 ± 290 427 ± 192 253 ± 137 ¶

HF(ms2) 754 ± 649 473 ± 517 177 ± 266 §

LF/HF 1.2 ± 0.8 1.9 ± 1.7 2.7 ± 1.3 ‡

SampEn 1.7 ± 0.1 1.8 ± 0.1 † 1.9 ± 0.1 †

¶ Significantly decreased compared with the value at SL (P < 0.001) and 3000 m (P = 0.008).
§ Significantly reduced compared to the value at SL (P < 0.001) and 3000 m (P = 0.007).
‡ Significantly increased from SL to 4000 m (P = 0.006), but there was no significant difference between SL and 3000 m
(P = 0.062), neither between 3000 m and 4000 m (P = 0.321).
† Significantly increased compared with the value at SL (P = 0.004 at 3000 m and P < 0.001 at 4000 m). However, there
was no significant difference between 3000 m and 4000 m (P = 0.127).
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4000 m in all subjects. The change of CRPS was plotted in Figure 4. It illustrated the

duration of phase synchronization increased with the altitude. T at 3000 m was not sig-

nificantly different from that at SL. However, it increased significantly at 4000 m com-

pared with the value at SL. The result indicated acute hypoxia had a significantly

stronger effect on CRPS in normal subjects.

Discussion
Acute exposure to hypoxia triggers autonomic mechanisms in cardiovascular and re-

spiratory system. In this study, we not only investigated the changes of power spectrum

and SampEn of heartbeat series, but also observed cardiorespiratory coupling through

phase synchronization at each simulated altitude. The main finding in the present study

is that acute hypoxia evokes vigorous CRPS, as evidenced by the longer values of

T. Meanwhile, hypoxia can also lead to higher value of SampEn and decrease in power

spectral HRV indices.

Acute hypoxia evokes several regulatory mechanisms of ANS. Spectral analysis of RRI

series is considered as an effective tool to investigate autonomic activities. The effect of

acute hypoxia on autonomic nervous activity is complicated and not fully understood.

Previous studies that were revealed in different protocols showed that autonomic nervous
Figure 4 Synchronization time T (s) changed with the simulated altitude. The value was 60 ± 26 s,
80 ± 41 s and 113 ± 48 s at sea level (SL), 3000 m and 4000 m, respectively. The T at 4000 m was
significantly longer than the value at SL (asterisk indicates P = 0.003) and 3000 m (plus indicates P = 0.040),
but there was non-significantly change between at 3000 m and at SL (P = 0.214). The error bars indicated
the standard deviation.
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activities were attenuated in hypoxic conditions, and that the sympathetic activities

were predominant compared with the parasympathetic at high altitude [1,7,9,15]. In

the present study, depression of HRV parameters in frequency domain might be the

result of a general decline of ANS responses. The drastic increase of the LF/HF ratio

in our results indicated the sympathovagal balance shifted toward sympathetic domin-

ance through sympathetic activation and parasympathetic withdrawal in acute hyp-

oxic exposure. The result implied the sympathetic HR control was relatively less

blunted than the parasympathetic HR control. Therefore, the observed increase of

resting HR in acute hypoxia was ascribed to the general attenuation of autonomic HR

control and also the shift of autonomic balance.

Compared with the linear HRV analysis, nonlinear dynamics analysis is a powerful

tool to understand biological characteristics, because nonlinear analyses of heart rate

time series could not only complement the traditional time- and frequency-domain

analyses but also provide essential information on human heartbeat dynamics. Richman

and Moorman [30] introduced the sample entropy to quantify irregularity and com-

plexity of analyzed sequences. Previous studies indicated that complexity of beat-to-

beat variability was controlled by ANS [34]: parasympathetic blockade could reduce

heartbeat complexity [35]; parasympathetic activation increased complexity [36]. On

the other hand, sympathetic excitation by pharmacological [35] or physiological method

[34] reduced complexity and sympathetic blockade with propranolol increased irregu-

larity [37]. Heffernan et al. [38] found no changes in spectral HRV parameters after re-

sistance training accompanied with significant increase in SampEn. However, Javorka

et al. [39] found heart rate complexity was slightly reduced after exercise. These ex-

periments indicated that parasympathetic and sympathetic tone modulated cardiovas-

cular nonlinear activities in normal subjects. However, the exact contributions of

sympathetic and parasympathetic branches to nonlinear fluctuations in heartbeat

series required more studies to separate. On the other hand, Vigo et al. [7] demon-

strated that changes in nonlinear HRV parameters might not be directly associated

with the fluctuations of heartbeat, especially when the heart rate increased. Our result

that the increase of SampEn in acute hypoxia was accompanied with parasympathetic

depression and predominance of sympathetic tone supported the proposition of Porta

et al. [34] that irregularity of heartbeat series reflected general sympathovagal balance.

This indicated that acute hypoxia enhanced autonomic modulation of heartbeat

irregularity, reflecting the increase in sympathetic activity and/or the decline in para-

sympathetic autonomic control.

Our results obtained from healthy subjects showed changes in the degree of CRPS at

different simulated altitudes. The results demonstrated that autonomic regulation with

different physiological stress strongly influenced cardiorespiratory coupling. In different

simulated altitudes, we found that phase synchronization, which was a complicated

nonlinear physiologic coupling, increased significantly in hypoxia. The observation that

phase synchronization was present at different altitudes in our study provided an evi-

dence for the existence of CRPS in healthy relaxed subjects. However, the total episodes

of synchronization did not exceed 90 seconds within the 10 minutes recordings in

all subjects at SL. This was shorter than Schafer et al. [19,40] results that within the

30 minutes segment the longest duration of synchronization was more than 4 minutes.

This discrepancy may be ascribed to the different composition of subjects (athletes vs.
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non-athletes). Further, we analyzed phase synchronization in different simulated alti-

tudes and demonstrated the total synchronization times at 3000 m was no significantly

different from that at SL, but it increased significantly at 4000 m. The result indicated

CRPS in hypoxia was more pronounced than that at SL. Hypoxia was associated with

physiologic regulation characterized by different neuro-autonomic tone and levels of

sympathovagal balance [27]. A higher degree of CRPS in acute hypoxia when sympa-

thetic excitation accompanied with parasympathetic depression suggested that cardio-

respiratory coupling was intensively affected by neuro-autonomic regulation. Further,

this relation between CRPS and autonomic nervous activity agreed with our observa-

tion that the trends of the LF/HF ratio were consistent with T in hypoxia.

Phase synchronization between heartbeats and breathing was a manifestation of the

temporal organization and regulation of cardiac and respiratory rhythms owning to their

central coupling between cardiovascular and respiratory neural activities [32]. Because the

variability and nonlinear properties of cardiac and respiratory system varied with physio-

logical state and with environmental stimulus, quantifying CRPS in different simulated

altitudes may provide insight into how physiologic adjustment affected cardiorespiratory

coupling. Although HR increased significantly at 3000 m, neither T nor breathing rate

changed significantly in our result. At 4000 m, both HR and respiratory rate augmented

significantly than that at SL as well as phase synchronization time. These results sup-

ported the hypothesis of Rosenblum [20] that cardiopulmonary interaction was unidirec-

tional from breathing to cardiovascular system. The explanation was suggested in the

following. Because the cardiac influence on respiration was weak and frequency independ-

ent [20], the increase of HR was limited to influence phase synchronization. At the same

time, for the low breathing frequencies (RespR < 0.5 Hz) the respiratory driving effect was

relatively strong compared to the strength of the cardiac influence [20].

In our results, the vigorous CRPS in hypoxia was concomitant with the increase of

heartbeat series SampEn and the shift of sympathovagal balance. This indicated more

complex interconnections between the cardiac and respiratory system in hypoxic con-

dition. There would be some different effects of autonomic regulation in terms of the

modulation of cardiorespiratory coupling in acute hypoxia. The decrease of spectral

HRV parameters in hypoxia could be explained as a general decline of the autonomic

nervous activities. Reduction in HRV led to decreasing the responses of ANS and being

unable to adapt to challenging external and internal stimuli [1]. On the other hand, car-

diorespiratory system was inherently nonstationary and contained only quasiperiodic

oscillations [26]. We observed that the coupling was more pronounced when the com-

plexity of heartbeat series increased in acute hypoxia. This meant the features of car-

diac dynamics were more irregularity and nonlinearity in hypoxia. Therefore, the more

irregularity RRI series was, the higher the probability that heartbeats consistently oc-

curred at the same respiratory phase for continuous breathing cycles was. Moreover,

the cardiopulmonary system was a thermodynamic open system [41], and the external

disturbances on it could be considered as noise. The pronounced CRPS was associated

with the decline of HRV, indicating that the low activities of ANS in hypoxia restrained

autonomic responses to noise and accentuated the intrinsic rhythm of cardiac and re-

spiratory system. The other possibility was the mechanical coupling between cardiac

and respiratory system. This interaction was generated by mechanical stretch of the

sinus node [42] and not blunted by neural control.
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Mostly notably, this is the first study, to our knowledge, to investigate CRPS in hyp-

oxia. Our results provide compelling evidence that the variability and nonlinear feature

of the cardiac and respiratory systems change with physiologic conditions. Exposure

time and hypoxic degree are two major variables in hypoxia [9]. Investigation on CRPS

in different exposure protocols helps us to understand how physiological stress affects

CRPS in healthy subjects. However, some limitations of this study need to be taken

into account. The number of subjects was limited and only male subjects took part in

the experiment. Studies with larger sample size, both genders and a wide age range

are necessary to elucidate the potential changes of CRPS in different physiologic

states and conditions.

Conclusion
This study observed that HRV spectral parameters decreased and the complexity of

heartbeat series increased in acute hypoxia. Moreover, cardiorespiratory coupling was

investigated through phase synchronization during transitions in different simulated

altitudes. The results suggested that CRPS, which was more vigorous in hypoxia, was a

manifestation of cardiac and respiratory regulation due to their underlying coupling.

This study is the first step to understand how physiological stress influences CRPS in

healthy subjects. A thorough understanding of cardiorespiratory coupling in different

physiological states and conditions may provide valuable information about mecha-

nisms of physiological regulation, which would be explored in the following studies.
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