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Our purpose was to analyze associations between positron emission tomography (PET), diffusion weighted imaging (DWI), and
dynamic contrast-enhanced (DCE) imaging in patients with head and neck squamous cell carcinoma (HNSCC).The study involved
34 patients (9 women, 25 men, mean age: 56.7±10.2 years). In all patients a simultaneous 18F-FDG-PET/MR was performed. DWI
was obtained by using of an axial EPI sequence. Minimal ADC values (ADCmin), mean ADC values (ADCmean), andmaximal ADC
values (ADCmax) were estimated. DCE MRI was performed by using dynamic T1w DCE sequence. The following parameters were
estimated:𝐾trans, 𝑉𝑒, and𝐾ep. Spearman’s correlation coefficient was used to analyze associations between investigated parameters.
In overall sample, ADCmean correlated significantlywith𝑉𝑒 and𝐾trans, ADCmin correlatedwith𝑉𝑒, andADCmax correlatedwith𝐾trans
and 𝑉

𝑒
. SUVmean tended to correlate slightly with 𝐾trans. In G1/2 tumors, only 𝐾trans correlated well with ADCmax and SUVmean. In

G3 tumors, 𝐾trans correlated well with 𝐾ep and 𝑉𝑒. 𝑉𝑒 showed significant correlations with ADCmean and ADCmax. 𝐾trans correlated
with ADCmax.𝐾ep was higher in cancers with N2/3 stages. Tumor metabolism, water diffusion, and tumor perfusion have complex
relationships in HNSCC. Furthermore, these associations depend on tumor grading.𝐾ep may predict lymphonodal metastasizing.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
most frequent malignancy of the upper aerodigestive tract in
humans [1].

Contrast-enhanced computed tomography (CT) and
magnetic resonance imaging (MRI) provide the mainstay
of imaging for diagnosis, staging, and treatment response
assessment in HNSCC [2]. Functional imaging such as
positron emission tomography (PET), diffusion weighted
imaging (DWI), and dynamic contrast-enhanced (DCE)
MRI provide complementary information on the underlying
biology such as metabolic activity, cellularity, vascularity, and
oxygenation [2, 3].

It has been shown that HNSCC lesions had high stan-
dardized uptake values (SUV) and low apparent diffusion
coefficient (ADC) values [4, 5]. Furthermore, malignant
tumors showed also high perfusion parameters in compari-
son to benign lesions [6].

Some authors performed multiparametric investigation
of HNSCC including 18F fluorodeoxyglucose PET (18F-FDG-
PET), DWI, and DCE and attempted to characterize com-
plexity of imaging findings reflecting tumor biology [3, 7, 8].
The reported data, however, were inconsistent. Some authors
found significant correlations between analyzed parameters
and, therefore, suggested complex interactions among tumor
biologic characteristics [7–10]. Thereby, DWI, PET, and
DCE parameters were reported to have similar potential to
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characterize HNSCC [10]. For example, Nakajo et al. showed
that both SUV and ADC values correlated well together and
could similarly predict disease-free survival or disease events
in HNSCC [10].

However, in other studies, no significant correlations
between these parameters were identified [11–13]. Therefore,
it has been mentioned that parameters derived from PET,
DWI, andDCEare independent biomarkers and complement
one another [11–15].

This discrepancy of reported data questions the possibil-
ity of using multiparametric imaging findings as surrogate
markers of tumor consistency in HNSCC.

The analysis of possible relationships between microcir-
culation, cellularity, and glucose metabolism has not only
scientific importance but also clinical significance. As men-
tioned previously, an understanding of such complexities
could expand the knowledge of tumor characteristics and
have clinical implications such as in guidance for treatment
planning, early prediction of treatment responses, and evalu-
ation of treatment outcome [3].

The purpose of this study was to analyze possible
associations between multiparametric imaging findings of
simultaneous 18F-FDG-PET/MR including DWI andDCE in
patients with HNSCC.

2. Materials and Methods

This prospective study was approved by the institutional
review board of the University of Leipzig and all patients gave
their written informed consent. All methods were performed
in accordance with the relevant guidelines and regulations.

2.1. Patients. Overall, 34 patients with primary HNSCC of
different localizations were involved in the study (Table 1).
There were 9 (26%) women and 25 (74%) men with a mean
age of 56.7±10.2 years, range 33–77 years. At initial presenta-
tion, the tumors were localized in the tonsil (23.6%), followed
by oropharynx (20.6%) and tongue (20.6%), hypopharynx
(17.6%), larynx (14.6%), and epipharynx (2.9%). Inmost cases,
high grade lesions (51.8%) were diagnosed. Furthermore,
most frequently, the identified lesions were staged as T3
(29.4%) or T4 tumors (47.1%) with additional nodal (91.2%)
metastases (Table 1).

2.2. Imaging

2.2.1. Simultaneous PET/MR. In all patients a simultaneous
18F-FDG-PET/MR (Magnetom Biograph mMR-Biograph,
Siemens Healthcare Sector, Erlangen, Germany) was per-
formed from the upper thigh to the skull after a fasting
period of at least 6 hours. Application of 18F-FDG was
performed intravenously with a body weight-adapted dose
(4MBq/kg, range: 168–427MBq, and mean ± SD: 279 ±
60MBq). PET/MR image acquisition started on average 170
minutes (range 60–300 minutes) after 18F-FDG application.
In 28/34 patients a PET/CT scan was performed prior to
PET/MRI, which explains the later PET/MRI image acqui-
sition time in these patients. For attenuation correction of
the PET data a coronal 3D-encoded gradient-echo sequence

Table 1: Localization and stage of the identified tumors.

𝑛 (%)
Diagnosis
Carcinoma of epipharynx 1 (2.9)
Carcinoma of oropharynx 7 (20.6)
Carcinoma of hypopharynx 6 (17.6)
Carcinoma of larynx 5 (14.7)
Carcinoma of tongue 7 (20.6)
Tonsillar carcinoma 8 (23.6)
Tumor stage
T stage
T1 1 (2.9)
T2 7 (20.6)
T3 10 (29.4)
T4 16 (47.1)
N stage
N0 3 (8.8)
N1 6 (17.7)
N2 22 (64.7)
N3 3 (8.8)
M stage
M0 30 (88.2)
M1 4 (11.8)
Tumor grading
G1 1 (2.9)
G2 12 (35.3)
G3 21 (51.8)

(Dixon-VIBE) was used. For each tumor, maximum and
mean SUV (SUVmax; SUVmean) were determined.

PET images were analyzed by one nuclear medicine
physician (S. P.) with 7 years of experience.

2.3. Image Interpretation. PET/MR datasets were evaluated
by a board certified nuclear medicine and a board certified
radiologist with substantial PET/MR experience in onco-
logical image interpretation. PET/MR image analysis was
performed on the dedicated workstation of Hermes Medical
Solutions, Sweden.

Tumor margins of the HNSCC were identified on MR
images (T1-sequence) and a polygonal volume of interest
(VOI) was placed in the fused PET/MR dataset (SUVmax
threshold 40%) (Figure 1(a)).

2.4. DWI. DWI was obtained by using an axial EPI (echo
planar imaging) sequence with 𝑏-values of 0 and 800 s/mm2
(TR/TE: 8620/73ms, slice thickness 4mm, and voxel size 3.2
× 2.6 × 4.0mm). ADCmaps were automatically generated by
the implemented software. DWI images were analyzed by one
radiologist (L. L., 2 years of general radiological experience).
Polygonal regions of interest (ROI) were manually drawn on
the ADC maps along the contours of the tumor on each slice
(Figure 1(b)). In all lesions minimal ADC values (ADCmin),
mean ADC values (ADCmean), and maximal ADC values
(ADCmax) were estimated (Figure 1(b)).
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Figure 1: Imaging findings in a 58-year-old man with squamous cell carcinoma of the tongue (G1, T4 N2 M0). (a) 18F-FDG-PET imaging
(fused image) showing a right sided large lesion of the tongue; SUVmax = 24.11. (b) ADCmap.The ADC values (×10−3mm2s−1) of the lesion
are as follows: ADCmin = 0.68, ADCmean = 0.97, and ADCmax = 2.1. (c–e) DCE imaging findings. Estimated DCE parameters are as follows:
𝐾trans = 0.53min−1 (c), 𝑉

𝑒
= 0.68% (d), and 𝐾ep = 0.75min−1 (e).

2.5. DCE. In 31 patients, DCE MRI was performed by using
dynamic T1w DCE sequence (TR/TE 2.47/0.97ms, slice
thickness 5mm, flip angle 8∘, and voxel size 1.2 × 1.0 ×
5.0mm) after intravenous application of contrast medium
(0.1mmol Gadobutrol per kg of body weight) (Gadovist�,
Bayer Healthcare, Leverkusen, Germany) as reported pre-
viously [8, 15]. The acquired images were transferred to a
software module for tissue perfusion estimation (Tissue 4D,
SiemensMedical Systems, Erlangen, Germany).The software
offers a population based approach for the arterial input
function (AIF) and the best of three available AIF-options
was chosen according to the result of the chi2-parameter,
which serves as an error measure for the model fit [7, 8].
The AIF was scaled in relation to the gadolinium dose and
modelled according to the biexponential model of Tofts and
Kermode [16]. The following pharmacokinetic parameters
[7, 8, 15] were automatically calculated for whole lesion in
every case (Figures 1(c)–1(e)):

(i) 𝐾trans: volume transfer constant, which estimates
the diffusion of contrast medium from the plasma

through the vessel wall into the interstitial space,
representing vessel permeability

(ii) 𝑉
𝑒
: volume of the extravascular extracellular leakage

space (EES)
(iii) 𝐾ep: parameter for diffusion of contrastmedium from

the EES back to the plasma. It is in close relation with
𝐾trans and 𝑉𝑒 and is calculated by the formula 𝑘ep =
𝐾trans × 𝑉𝑒

−1.

DCE images were analyzed by one radiologist (L. L., 2 years
of general radiological experience).

2.6. Statistical Analysis. Statistical analysis and graphics cre-
ation were performed using SPSS 20 (IBM SPSS Statistics,
Armonk, New York, USA). Collected data were evaluated
by means of descriptive statistics (absolute and relative
frequencies). Spearman’s correlation coefficient (𝑝) was used
to analyze associations between investigated parameters. 𝑃
values < 0.05 were taken to indicate statistical significance.
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Table 2: DWI, PET, and DCE parameters of HNSCC.

Parameters M ± SD Range
SUVmax 19.01 ± 9.81 5.81–48.00
SUVmean 8.19 ± 3.55 3.76–17.70
ADCmean × 10

−3mm2s−1 1.14 ± 0.21 0.78–1.68
ADCmin × 10

−3mm2s−1 0.71 ± 0.23 0.17–1.24
ADCmax × 10

−3mm2s−1 1.77 ± 0.30 1.35–2.39
𝐾trans 0.20 ± 0.12 0.01–0.53
𝐾ep 0.58 ± 0.69 0.16–3.37
𝑉
𝑒

0.51 ± 0.18 0.05–0.79

3. Results

A complete overview of the results including mean values,
standard deviation, and ranges is shown in Table 2.

borrelation analysis identified the following: in overall
sample, ADCmean correlated significantly well with 𝑉

𝑒
(𝑃 =

0.0002) and slightly with 𝐾trans (0.04), ADCmin correlated
with 𝑉

𝑒
(𝑃 = 0.0007), and ADCmax correlated with 𝐾trans

(0.0032) and 𝑉
𝑒
(0.045) (Table 3). 𝐾trans correlated well with

𝐾ep (𝑃 = 0.0017) and 𝑉𝑒 (𝑃 = 0.0002).
In addition, SUVmax tended to correlate slightly inversely

with ADCmin (𝑃 = 0.08) and SUVmean had a tendency to cor-
relate with𝐾trans (𝑃 = 0.08).

On the next step, the estimated parameters were corre-
lated in different tumor subgroups. In G1/2 tumors, 𝐾trans
correlated well with ADCmax and SUVmean (Table 4). No
other significant correlations were identified. SUVmax tended
to correlate inversely with ADCmin (𝑃 = 0.09). 𝑉

𝑒
had a

tendency to correlate with ADCmean and ADCmin (in both
cases, 𝑃 = 0.08). In addition, DCE parameters did not
correlate together.

However, in G3 tumors, 𝐾trans correlated well with 𝐾ep
(𝑃 = 0.015) and 𝑉

𝑒
(𝑃 = 0.003) (Table 5). 𝑉

𝑒
showed

significant strong correlations with ADCmean (𝑃 = 0.0014)
and ADCmin (𝑃 = 0.01). 𝐾trans correlated moderately with
ADCmax (𝑃 = 0.04). Finally, SUV values did not correlate
with ADC and perfusion parameters.

No significant differences were identified in the analyzed
parameters between poorly and moderately/well differenti-
ated tumors (Table 6).

There were no significant differences of the analyzed
parameters between several tumor stages (Tables 7(a)–7(c)).
Only𝐾ep was higher in cancers with N2/3 stages versus N0/1
stages (Table 7(b)).

4. Discussion

Our study identified several significant associations between
PET, DWI, and DCE parameters in primary HNSCC in a
complex investigation.

The analysis of previous studies regarding multiparamet-
ric imaging findings in HNSCC shows that the reported
results are controversial. This applies both comparisons of
the investigated parameters in different tumor stages and
correlation between the variables. For example, Fruehwald-
Pallamar et al. analyzed sequentially acquired 18F-FDG-PET

and MR images of 31 HNSCC patients and did not observe
significant differences in ADC values and SUVmax between
variousT stages of the investigated tumors [11].However, Kim
et al. found that T3/4 tumors had higher SUVmax values than
T1/2 lesions [17]. In addition, N positive tumors showed also
higher SUVmax values [17]. According to Zhang et al., T3/4
tumors showed statistically significant higher ADC values in
comparison to T1/2 lesions [18]. It has also been reported
that DCE parameters correlated well with tumor stage in
nasopharyngeal carcinoma [19].

In the present study, we also identified significant dif-
ferences in analyzed parameters between several tumor
stages. Firstly, advanced carcinomas had higher SUVmax
values. However, there were no significant differences in
other investigated parameters between T1/2 andT3/4 tumors.
This finding suggests that advanced tumors have higher
metabolic activity but not higher cell density or perfusion.
Secondly, 𝐾ep was higher in N2 tumors. Previously, strong
correlations between𝐾ep and microvessel density in HNSCC
were reported [15]. Therefore, our findings may indicate
that tumor microvessel density might influence lymphatic
metastatic spread in HNSCC.

To the best of our knowledge, previously, only two stud-
ies investigated associations between imaging findings and
tumor grading in HNSCC [11, 12]. So, Choi et al. mentioned
that poorly differentiated tumors had statistically significant
lower ADC values and higher SUV values than G1/G2
tumors [12]. Other authors, however, reported that SUV and
ADC values could not distinguish tumor stages [11]. Also in
the present study no significant differences were identified
between well/moderately and poorly differentiated carci-
nomas. Grading system of HNSCC includes the following
parameters: degree of keratinization, nuclear pleomorphism,
number of mitoses, pattern of invasion, and presence or
absence of inflammatory infiltrates [20, 21]. However, this
system does not include parameters, such as cell count, cell
size, extracellular space, and microvessel density, which are
known to influence water diffusion, glucose metabolism, and
perfusion. This may explain our negative results regarding
associations between tumor grading and multiparametric
imaging findings.

According to previous reports, several parameters of
tumor perfusion, diffusion, and glucose metabolism were
associated together [7–10]. So Bisdas et al. identified signif-
icant correlations between SUV values and 𝑉

𝑒
(𝑝 = 0.42,

𝑃 = 0.03) [7]. Furthermore, analyzed perfusions parameter
(𝐾trans, 𝑉𝑒, and 𝐾ep) also correlated well together [7]. In
the study of Nakajo et al., a statistically significant inverse
correlation between SUVmax and ADCmean (𝑝 = −0.566,
𝑃 = 0.005) was found [10]. Additionally, according to Covello
et al., ADCmean correlated inversely with Ktrans (𝑝 = −0.42,
𝑃 = 0.04) [9].

However, other authors did not identify significant cor-
relations between analyzed parameters [11–13]. For instance,
Rasmussen et al. could not find significant associations
between SUV and ADC values [13]. Similar results were also
reported in other researches [11, 12, 14]. Furthermore, Han
et al. detected no significant associations between DCE and
glucose metabolism parameters in HNSCC [3].
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Table 3: Correlations between DCE, DWI, and PET parameters in all tumors.

Parameters SUVmax SUVmean ADCmean ADCmin ADCmax 𝐾trans 𝐾ep 𝑉
𝑒

SUVmax — p = 0.86 𝑝 = −0.25 𝑝 = −0.30 𝑝 = 0.18 𝑝 = 0.09 𝑝 = 0.10 𝑝 = −0.07

P < 0.0001 𝑃 = 0.15 𝑃 = 0.08 𝑃 = 0.32 𝑃 = 0.63 𝑃 = 0.59 𝑃 = 0.70

SUVmean — 𝑝 = −0.08 𝑝 = −0.15 𝑝 = 0.22 𝑝 = 0.32 𝑝 = 0.26 𝑝 = 0.13

𝑃 = 0.67 𝑃 = 0.39 𝑃 = 0.22 𝑃 = 0.08 𝑃 = 0.16 𝑃 = 0.49

ADCmean — p = 0.88 p = 0.54 p = 0.37 𝑝 = −0.10 p = 0.62
P < 0.0001 P = 0.0009 P = 0.04 𝑃 = 0.847 P = 0.0002

ADCmin — 𝑝 = 0.27 𝑝 = 0.26 𝑝 = −0.08 p = 0.58
𝑃 = 0.12 𝑃 = 0.16 𝑃 = 0.65 P = 0.0007

ADCmax
p = 0.51 𝑝 = 0.12 p = 0.36
P = 0.003 𝑃 = 0.52 P = 0.0445

𝐾trans
p = 0.54 p = 0.62

P = 0.0017 P = 0.0002

𝐾ep — — 𝑝 = −0.12

𝑃 = 0.51

𝑉
𝑒

—
Significant correlations are highlighted in bold.

Table 4: Correlations between DCE, DWI, and PET parameters in G1 and 2 tumors.

Parameters SUVmax SUVmean ADCmean ADCmin ADCmax 𝐾trans 𝐾ep 𝑉
𝑒

SUVmax — p = 0.74 𝑝 = −0.47 𝑝 = −0.49 𝑝 = 0.10 𝑝 = 0.27 𝑝 = 0.16 𝑝 = 0.14

P = 0.0041 𝑃 = 0.10 𝑃 = 0.09 𝑃 = 0.75 𝑃 = 0.42 𝑃 = 0.63 𝑃 = 0.69

SUVmean — 𝑝 = −0.23 𝑝 = −0.29 𝑝 = 0.31 p = 0.65 𝑝 = 0.24 𝑝 = 0.34

𝑃 = 0.45 𝑃 = 0.34 𝑃 = 0.30 P = 0.03 𝑃 = 0.48 𝑃 = 0.31

ADCmean — p = 0.68 p = 0.56 𝑝 = 0.44 𝑝 = −0.10 𝑝 = 0.55

P = 0.01 P = 0.046 𝑃 = 0.18 𝑃 = 0.77 𝑃 = 0.08

ADCmin — 𝑝 = −0.08 𝑝 = 0.22 𝑝 = 0.11 𝑝 = 0.55

𝑃 = 0.79 𝑃 = 0.52 𝑃 = 0.75 𝑃 = 0.08

ADCmax
p = 0.65 𝑝 = 0.09 𝑝 = 0.25

P = 0.03 𝑃 = 0.79 𝑃 = 0.45

𝐾trans
𝑝 = 0.36 𝑝 = 0.500

𝑃 = 0.27 𝑃 = 0.12

𝐾ep
𝑝 = −0.37

𝑃 = 0.26

𝑉
𝑒

Significant correlations are highlighted in bold.

Table 5: Correlations between DCE, DWI, and PET parameters in G3 tumors.

Parameters SUVmax SUVmean ADCmean ADCmin ADCmax 𝐾trans 𝐾ep 𝑉
𝑒

SUVmax — p = 0.85 𝑝 = −0.25 𝑝 = −0.26 𝑝 = 0.11 𝑝 = 0.02 𝑝 = 0.15 𝑝 = −0.24

P < 0.0001 𝑃 = 0.28 𝑃 = 0.27 𝑃 = 0.65 𝑃 = 0.95 𝑃 = 0.54 𝑃 = 0.33

SUVmean — 𝑝 = −0.11 𝑝 = −0.09 𝑝 = 0.05 𝑝 = 0.10 𝑝 = 0.34 𝑝 = −0.12

𝑃 = 0.63 𝑃 = 0.71 𝑃 = 0.82 𝑃 = 0.69 𝑃 = 0.16 𝑃 = 0.63

ADCmean — p = 0.94 p = 0.60 𝑝 = 0.33 𝑝 = −0.15 p = 0.68
P < 0.0001 P = 0.005 𝑃 = 0.17 𝑃 = 0.55 P = 0.0014

ADCmin — p = 0.47 𝑝 = 0.18 𝑝 = −0.16 p = 0.57
P = 0.04 𝑃 = 0.45 𝑃 = 0.52 P = 0.01

ADCmax — p = 0.48 𝑝 = 0.16 𝑝 = 0.37

P = 0.04 𝑃 = 0.51 𝑃 = 0.12

𝐾trans — p = 0.55 p = 0.65
P = 0.015 P = 0.003

𝐾ep — 𝑝 = −0.06

𝑃 = 0.79

𝑉
𝑒

—
Significant correlations are highlighted in bold.
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Table 6: Comparison of PET and DWI values between different tumor grades.

Parameters G1 + 2 G3 + 4 Mann–Whitney 𝑈
Mean ± SD Mean ± SD 𝑝 values

SUVmax 21.11 ± 8.37 17.79 ± 9.86 0.20
SUVmean 8.92 ± 3.92 7.75 ± 3.40 0.28
ADCmin × 10

−3mm2s−1 0.74 ± 0.15 0.69 ± 0.28 0.65
ADCmean × 10

−3mm2s−1 1.16 ± 0.14 1.13 ± 0.25 0.47
ADCmax × 10

−3mm2s−1 1.75 ± 0.25 1.79 ± 0.34 0.96
𝐾trans 0.20 ± 0.13 0.20± 0.12 0.93
𝐾ep 0.39 ± 0.16 0.70 ± 0.85 0.22
𝑉
𝑒

0.55 ± 0.19 0.49 ± 0.17 0.37

Table 7

(a) Comparison of PET and DWI values between different tumor T stages

Parameters T1/2 (mean ± SD) T3/4 (mean ± SD) Mann–Whitney 𝑈
(𝑝 values)

SUVmax 14.98 ± 7.88 20.25 ± 9.34 0.19
SUVmean 6.46 ± 1.60 8.73 ± 3.83 0.17
ADCmin × 10

−3mm2s−1 0.64 ± 0.23 0.73 ± 0.23 0.41
ADCmean × 10

−3mm2s−1 1.09 ± 0.17 1.16 ± 0.21 0.56
ADCmax × 10

−3mm2s−1 1.73 ± 0.33 1.78 ± 0.30 0.58
𝐾trans 0.17 ± 0.13 0.21 ± 0.11 0.27
𝐾ep 1.05 ± 1.25 0.42 ± 0.17 0.37
𝑉
𝑒

0.41 ± 0.22 0.55 ± 0.15 0.25

(b) Comparison of PET and DWI values between different tumor N stages

Parameters N 0/1 (mean ± SD) N 2 (mean ± SD) Mann–Whitney 𝑈
(𝑝 values)

SUVmax 19.72 ± 7.99 18.75 ± 9.72 0.78
SUVmean 8.50 ± 3.88 8.08 ± 3.50 0.97
ADCmin × 10

−3mm2s−1 0.78 ± 0.24 0.69 ± 023 0.75
ADCmean × 10

−3mm2s−1 1.18 ± 0.24 1.13 ± 0.20 0.64
ADCmax × 10

−3mm2s−1 1.78 ± 0.29 1.77 ± 0.31 0.88
𝐾trans 0.16 ± 0.08 0.22 ± 0.13 0.25
𝐾ep 0.32 ± 0.11 0.68 ± 0.79 0.0477
𝑉
𝑒

0.52 ± 0.18 0.50 ± 0.18 0.88

(c) Comparison of PET and DWI values between different tumor M stages

Parameters M0 (mean ± SD) M1 (mean ± SD) Mann–Whitney 𝑈
(𝑝 values)

SUVmax 18.98 ± 9.14 16.49 ± 10.06 0.56
SUVmean 8.01 ± 3.40 6.87 ± 1.50 0.60
ADCmin 0.68 ± 0.22 0.89 ± 0.28 0.21
ADCmean 1.12 ± 0.19 1.28 ± 0.30 0.33
ADCmax 1.76 ± 0.30 1.89 ± 0.37 0.46
𝐾trans 0.21 ± 0.12 0.14 ± 0.08 0.47
𝐾ep 0.62 ± 0.72 0.28 ± 0.17 0.16
𝑉
𝑒

0.50 ± 0.19 0.55 ± 0.10 0.78

It is still unclear why some authors found significant
correlations between water diffusion, glucose metabolism,
and perfusion parameters in HNSCC while others did not.
Presumably, tumor heterogeneity may play a role here. For
example, well, moderately, and poorly differentiated tumors

might show also different associations of imaging parameters.
In fact, our results confirmed this hypothesis.

In the present study, no significant correlations between
different ADC parameters and SUV values were identified
in overall sample. Furthermore, SUVmax tended to correlate
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slightly with𝐾trans andADCmin. All ADCparameters showed
significant associations with 𝑉

𝑒
. In addition,𝐾trans correlated

slightly with ADCmean andmoderately with ADCmax and𝐾ep
and well with 𝑉

𝑒
.

Separate correlation analyses in the G1/2 and G3 tumors
showed, however, other associations between the investigated
parameters. As seen, perfusion parameters𝐾trans,𝑉𝑒, and𝐾ep
did not significantly correlate together inwell andmoderately
differentiated tumors. However, they correlated well in high
grade carcinomas. Additionally, 𝐾trans correlated well with
SUVmean in G1/2 lesions but not in G3 tumors. Finally, 𝑉

𝑒

correlated well with ADCmean and ADCmin in G3 tumors, but
not in G1/2 lesions.

Our data suggest that tumor metabolism, cellularity, and
perfusion show complex relationships in HNSCC. Further-
more, these associations depend on tumor grading. Previ-
ously, it has been shown that SUV and ADC values as well
as perfusion parameters correlated with different histopatho-
logical features in HNSCC [14, 15]. We hypothesize on the
basis of our findings that tumors with different grading may
have also different relationships between cell count, stroma,
and microvessel density, that is, different tumor architecture.
Furthermore, our data suggest that tissue architecture plays
a great role in tumor characteristic. Our findings may also
explain controversial data of previous reports. Presumably,
previous studies might contain well, moderately, and poorly
differentiated lesions in several proportions thatmay result in
different associations between the analyzed parameters.

In conclusion, multiparameter imaging provides infor-
mation regarding tumor composition. Our study shows that
tumor metabolism, water diffusion, and tumor perfusion
have complex relationships in HNSCC. Furthermore, these
associations depend on tumor grading. Perfusion parameter
𝐾ep may predict lymphonodal metastasizing.
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