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Summary. The etiology, pathogenesis, and prognosis for a newly emerging disease are generally unknown
to clinicians. Effective interventions and treatments at the earliest possible times are warranted to suppress
the fatality of the disease to a minimum, and inappropriate treatments should be abolished. In this situation,
the ability to extract most information out of the data available is critical so that important decisions can
be made. Ineffectiveness of the treatment can be reflected by a constant fatality over time while effective
treatment normally leads to a decreasing fatality rate. A statistical test for constant fatality over time is
proposed in this article. The proposed statistic is shown to converge to a Brownian motion asymptotically
under the null hypothesis. With the special features of the Brownian motion, we are able to analyze the first
passage time distribution based on a sequential tests approach. This allows the null hypothesis of constant
fatality rate to be rejected at the earliest possible time when adequate statistical evidence accumulates.
Simulation studies show that the performance of the proposed test is good and it is extremely sensitive in
picking up decreasing fatality rate. The proposed test is applied to the severe acute respiratory syndrome
data in Hong Kong and Beijing.

Key words: Brownian motion; Infectious disease; Real-time fatality rate; Severe acute respiratory syn-
drome; Zero-mean martingale.

1. Introduction
One of the key statistics for monitoring a newly emerging
disease is the fatality rate. Traditionally, the fatality rate is
assumed to be constant throughout the epidemic, and is gen-
erally estimated as the ratio of the cumulative number of
deaths to the cumulative number of cases. It is well known
that this estimator is insensitive to changes in fatality over
the course of the epidemic (Last, 1995). Studies have shown
that this traditional estimator has underestimated the fatal-
ity of the severe acute respiratory syndrome (SARS) con-
siderably especially in the early part of the epidemic (Yip,
Lam, et al., 2005; Yip, Lau, et al., 2005). The consequence
of this underestimation could be very serious because the
implementation of suitable preventive measures at the early
stage of an outbreak may heavily depend on the estimated
fatality rate. Moreover, the fatality rate of a newly emerg-
ing epidemic may vary over time possibly due to improve-
ment in clinical treatments and hospital management. Some-
times, changes in weather or environmental conditions over
the course of the epidemic may also have an effect on the fa-
tality. It is important to keep track of the fatality rate over
the course of the epidemic so that the effectiveness of any im-
plemented health policy or clinical treatment can be assessed
and evaluated. The estimator for the time-varying fatality
rate via a counting process and kernel function was proposed
in Yip, Lam, et al. (2005). An estimator derived from the

chain multinomial model was considered by Yip, Lau, et al.
(2005).

In this article, we propose a test for testing the null hypoth-
esis of constant fatality rate against the alternative hypothesis
of decreasing fatality rate. Due to the urgency in an outbreak
of an epidemic, effective interventions and treatments at the
earliest possible time are warranted to suppress the fatality
of the disease to a minimum. Hence, a desirable property of
the test is the ability to reject the null hypothesis as soon
as we have enough evidence of a decreasing fatality as infor-
mation accumulates over time. This property is particularly
important in practice when combating a newly emerging dis-
ease. For example, the etiology, pathogenesis, clinical features,
clinical management, or prognosis for the SARS epidemic were
almost unknown to clinicians. Therefore, appropriate and ef-
fective interventions should be undertaken at the earliest pos-
sible time during the outbreak or else any delayed effort will
result in less impact in controlling the epidemic. In this situ-
ation, the ability to extract the most information out of the
data available is critical for making a focused and effective
decision. Therefore, it is desirable if we can reject the null hy-
pothesis of constant fatality rate at the earliest possible time
during the outbreak of the epidemic.

A constant fatality rate is, very likely, a result of the in-
effectiveness of the current health policy or treatment in
combating the disease or virus. In the SARS epidemic in 2003,
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it was suggested by the World Health Organization (WHO)
that simple methods for calculating case-fatality ratios from
aggregate data will not give reliable estimates during the
course of an epidemic (WHO, 2003). This statement is not
entirely true. In the case of a constant fatality rate, a sim-
ple estimator based on the ratio of the cumulative number of
deaths to the sum of the cumulative numbers of deaths and
recoveries is shown to be its maximum likelihood estimator
(MLE). This estimator is demonstrated to be more efficient
in Section 3 and is more preferred if the assumption of con-
stant fatality is valid. If the fatality rate is known to vary over
time, a real-time fatality rate estimator should be used (Yip,
Lam, et al., 2005; Yip, Lau, et al., 2005), which was shown
to be able to capture the changes and to monitor the fatality
rate in a timely manner.

The proposed test, together with the real-time fatality
rate estimator, can help to assess the effectiveness of exist-
ing health policies and interventions and to decide the need of
new treatments especially in the absence of large scale clinical
trials for a newly emerging epidemic. The setup of the prob-
lem, the proposed test, and its asymptotic properties will be
discussed in the next section. The proposed method is applied
to Hong Kong and Beijing SARS data in Section 3. Results of
a simulation study to assess the performance of the test are
reported in Section 4.

2. A Test for Constant Fatality Rate
Consider a population initially consisting of n healthy indi-
viduals subject to infection during an epidemic. When an in-
dividual is infected, he/she will be admitted to and treated
in a hospital some time after the incubation period, usually
longer at the beginning of the epidemic and shorter after the
epidemic has taken off when the community is more aware of
the disease. Inpatients are assumed to either die at a rate of
γ1(t) or recover at a rate of γ2(t) on day t, where t is the
calendar time since the beginning of the epidemic rather than
the time since individual onset as in traditional survival anal-
ysis. By focusing on the calendar time instead of the survival
time, we gain more insight in the trend of the fatality rate
at the population level over the course of the epidemic. The
population real time or time-varying fatality rate is defined
as

π(t) =
γ1(t)

γ1(t) + γ2(t)
, (1)

which can be viewed as the conditional probability of death
given that an event of death or recovery occurs at time t.
This fatality rate is a measure of the combined effect of the
processes of death and recovery which is similar to the setting
of the competing risks model (Yip and Lam, 1992; Kalbfleisch
and Prentice, 2002, Chapter 7).

The data consist of the processes {N 1(t), N 2(t)}, the cu-
mulative numbers of deaths and recoveries up to time t and
{I(t)}, the number of inpatients just before time t, 0 ≤ t ≤ τ ,
where τ is a prespecified time measured in days. We decide
to observe the process till time τ in the hope that τ is large
enough to cover the entire anticipated length of the epidemic.
Now suppose that N1(t) and N2(t) are counting processes with
intensity processes γ1(t) and γ2(t), respectively, that satisfy
the multiplicative intensity model

Pr{dN i(t) = 1 | Ft−} = γi(t)I(t) dt i = 1, 2,

where Ft = {I(u), Ni(u), i = 1, 2;u ∈ [0, t]} is the σ-field rep-
resenting the history of the epidemic process up to time t that
satisfies the usual regularity conditions (Andersen et al., 1993,
p. 60). Define

Mi(t) = Ni(t) −
∫ t

0

γi(s)I(s) ds, i = 1, 2.

These are zero mean martingales with respect to the filtration
{Ft−, t ≥ 0} (Andersen et al., 1993, pp. 72–82). Also, define
J(s) = 1{I(s) > 0}, the indicator function of having at least
one inpatient at time s−. We assume that no two events occur
simultaneously. It is of interest to test the null hypothesis
that the fatality rate π(t) as defined in (1) is constant over
the period [0, τ ] against the alternative hypothesis that π(t)
decreases with t. We note that γ1(t)/γ2(t) = 1/{1/π(t) −
1}. Thus we seek a statistical test for testing the equivalent
hypothesis

H0 :
γ1(t)

γ2(t)
= c0, against H1 :

γ1(t)

γ2(t)
↓ in t, 0 ≤ t ≤ τ,

where c0 is an unknown constant. Let

Zn(t) =
1√
n

{∫ t

0

J(s)N1(s−)

I(s)
dN 2(s)

−
∫ t

0

J(s)N2(s−)

I(s)
dN 1(s)

}
. (2)

Note that there is no contribution to Zn(t) for the period

during which J(s) = 0. Define Λi(t) =
∫ t

0 γi(s)I(s) ds and

Γi(t) =
∫ t

0 γi(s) ds. Using integration by parts, Zn(t) may be
rewritten as

Zn(t) =
1√
n

{∫ t

0

J(s)N1(s−)

I(s)
dM 2(s)

+

∫ t

0

M1(s−) + Λ1(s)

I(s)
J(s)γ2(s)I(s) ds

}

− 1√
n

{∫ t

0

J(s)N2(s−)

I(s)
dM 1(s)

+

∫ t

0

M2(s−) + Λ2(s)

I(s)
J(s)γ1(s)I(s) ds

}

=
1√
n

[∫ t

0

{
J(s)N1(s−)

I(s)
− (Γ1(t) − Γ1(s))

}
dM 2(s)

−
∫ t

0

{
J(s)N2(s−)

I(s)
− (Γ2(t) − Γ2(s))

}
dM 1(s)

]

+
1√
n

{∫ t

0

Λ1(s)γ2(s) ds −
∫ t

0

Λ2(s)γ1(s) ds

}
. (3)

The last term in (3) is 0 under H0 and Zn(t) is strictly posi-
tive under H1. Hence, the proposed test statistic is consistent
against any decreasing fatality rate. We assume that

(i) limn→∞
N1(t−)

n
= p1(t) in probability,
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(ii) limn→∞
N2(t−)

n
= p2(t) in probability,

(iii) limn→∞
I(t)
n

= pI(t) > 0 in probability,

for 0 < t < τ . Using the Rebelledo martingale central limit
theorem (Andersen et al., 1993, p. 83), we get that as n → ∞
and under H0, the process Zn = {Zn(t), 0 ≤ t ≤ τ} converges
weakly to a process U = {U(t), 0 ≤ t ≤ τ} in D[0, τ ] with
the Skorohod topology, where {U(t), 0 ≤ t ≤ τ} is a contin-
uous zero-mean Gaussian martingale and cov{U(s), U(t)} =
σ2{min(t, s)} with

σ2(t) =

∫ t

0

{
p1(s)

pI(s)
− (Γ1(t) − Γ1(s))

}2

pI(s)γ2(s) ds

+

∫ t

0

{
p2(s)

pI(s)
− (Γ2(t) − Γ2(s))

}2

pI(s)γ1(s) ds.

Let

σ̂2
n(t) =

1

n

∫ t

0

{
J(s)N1(s−)

I(s)
− (Γ̂1(t) − Γ̂1(s))

}2

dN 2(s)

+
1

n

∫ t

0

{
J(s)N2(s−)

I(s)
− (Γ̂2(t) − Γ̂2(s))

}2

dN 1(s),

where Γ̂i(t) =
∫ t

0
J(s)
I(s) dNi(s) is just the usual Nelson–Aalen

estimator for Γi (t). Then, one can easily show that

sup
t∈[0,τ ]

∣∣σ̂2
n(t) − σ2(t)

∣∣→ 0 in probability (4)

as n → ∞ using the same theorem.
At some prespecified time τ , we can establish a straightfor-

ward test statistic given by

Vn(τ) =
Zn(τ)

σ̂n(τ)
. (5)

Under the usual mild regularity conditions, the statistic Vn(τ)
has a standard normal distribution asymptotically under the
null hypothesis. The performance of the test is very good in
terms of unbiasedness and the power of the test. However, the
test statistic in (5) does not possess the desirable property of
being able to reject the null hypothesis as soon as we have
accumulated enough statistical evidence, but the decision can
only be made at time τ .

Here, σ̂2
n(t) is not necessarily a nondecreasing function

even though a decrement in σ̂2
n(t) is very unlikely empir-

ically. To get around this problem, we simply let hn(s) =
inf{t ≥ 0 | σ̂2

n(t) ≥ s} and h(s) = inf{t ≥ 0 |σ2(t) ≥ s}. Note
that h is a nondecreasing, continuous, nonrandom function on
[0, σ2(τ)]. It follows from (4) that hn(s) converges in proba-
bility to h(s) uniformly for s ∈ [0, σ2(τ)] as n → ∞ and that
(Zn, hn) converges weakly to (U, h) in D[0, τ ] × D[0, σ2(τ)]
(Billingsley, 1999, Theorem 3.9). Using an argument similar
to Billingsley (1999, p. 151), it can be shown that the process
Zn(hn) = {Zn(hn(s)), 0 ≤ s ≤ σ̂2

n(τ)} converges weakly to the
Gaussian process {U(h(s)), 0 ≤ s ≤ σ2(τ)} as n →∞. Further,

cov{U(h(s1)), U(h(s2))}=σ2(min(h(s1), h(s2)))= min(s1, s2),

implying that the process {U(h(s)), 0 ≤ s ≤ σ2(τ)} is a Brow-
nian motion.

Technically, for the above results to hold, we require that
no two events occur simultaneously and the processes N 1(t),
N 2(t), and I(t) are observed continuously. However, in prac-
tice, the observations are usually taken on a daily basis and
the exact transition times are generally unobservable. In such
situations, we propose to randomly impute the death and dis-
charge (recovery) times within the day, or simply impute the
order of deaths and discharges on that day because the test
statistic only requires the order of occurrences of the events
rather than the exact time to occurrences of the events. Also,
we assume that all inpatients enter the system at the begin-
ning of each day. From our empirical experience, the effect of
randomization of the sequence of the deaths and discharges
within a day has minimal effect on the behavior of the pro-
posed test statistic.

As the processes were observed on a daily basis in practice,
for ease of presentation, we define a partition 0 = s0 ≤ s1 ≤
s2 ≤ · · · ≤ sτ where st = σ̂2

n(t) if σ̂2
n(t) > σ̂2

n(t− 1) or else st =
σ̂2
n(t− 1) for t = 1, . . . , τ . A sequential test for constant fatal-

ity rate can then be based on {Zn(hn(s1)), . . . ,Zn(hn(sτ ))}.
The idea is to compute a statistic Zn(t) at the end of the tth
day and compare it with its corresponding stopping bound-
ary ct for t = 1, . . . , τ . The null hypothesis of constant fatality
rate can be rejected at the end of day t if Zn(t) exceeds ct for
the first time.

The set of appropriate stopping boundaries (c1, . . . , cτ ) are
chosen such that

α = 1 − P
[
∩τ
t=1 {Zn(hn(st)) < ct}

]
,

in order to preserve the overall probability of committing a
type I error at the prespecified level α (Armitage, McPher-
son, and Rowe, 1969). Adjustments are made on the level of
significance for each comparison in the repeated significance
tests using the α-spending function idea as proposed in Lan
and DeMets (1983). A monotone increasing function of t for
t = 0, 1, . . . , τ with α(0) = 0 and α(τ) = α is specified. Let
T = min{t :Zn(hn(st)) > ct}. A popular choice of the α-
spending function is

α(t) = 4 − 4Φ

(
zα/4√
t/τ

)
,

proposed by Lans and DeMets (1983), where Φ(.) is the dis-
tribution function of a standard normal random variable and
zα satisfies Φ(zα) = 1 − α. This α-spending function will be
used throughout this article.

The probability that H0 is rejected on the tth day is then

P (T = t) = P (Zn(hn(st)) > ct;Zn(hn(si))

< ci, 1 ≤ i ≤ t− 1).

With the set of α(t)’s obtained from the α-spending function,
we have the recursive relationship

α(1) = P (T = 1) = P (Zn(hn(s1)) > c1),

α(2) = α(1) + P (T = 2)

= α(1) + P{Zn(hn(s2)) > c2;Zn(hn(s1)) < c1},

α(j) = α(j − 1) + P (T = j) for j = 3, . . . , τ.



872 Biometrics, September 2008

As the process Zn(hn(s)) converges in distribution to
a Brownian motion process, the asymptotic joint distri-
bution of {Zn(hn(s1)), . . . ,Zn(hn(sτ ))} is Gaussian with
Cov{Zn(hn(si)), Zn(hn(sj))} = min(si, sj) for all s1, . . . , sτ ,
and that the increments Zn(hn(sj)) − Zn(hn(sj−1)) (j =
1, . . . , τ) are independent. The values of the stopping bound-
aries c1, . . . , ck can thus be obtained recursively through

P(T = k) = α(k) − α(k − 1)

=

∫ ∞

ck

∫ ck−1

−∞
· · ·
∫ c1

−∞

k∏
t=1

1√
2π(st − st−1)

× exp

{
− (ut − ut−1)

2

2π(st − st−1)

}
du1 du2 · · · duk

numerically, with u0 = 0.
The value of the stopping boundary ct is largely affected

by the value of st. Hence the standardized statistic Vn(t) =

Zn(hn(st))/(st)
1
2 is considered in the following discussion and

will be compared with the new stopping boundaries given by
bt = ct/(st)

1
2 so that a plot of the V n(t) and bt over t will

be smoother. In the cases with st = st−1 for t = 1, . . . , τ ,
the value of Zn(hn(st)) will remain unchanged, and we will
simply skip through the comparison at the end of day t, move
forward to day t + 1 and compare V n(t + 1) with bt+1 where
bt+1 satisfies P (T = t + 1) = α(t + 1) − α(t − 1) provided
that st+1 > st−1.

3. Applications
The proposed test is applied to Hong Kong and Beijing SARS
data. There were 1755 SARS cases in total, with 299 deaths in
Hong Kong (Department of Health, HKSAR, 2003) and 2521
cases with 193 deaths in Beijing (Beijing Center for Disease
Control and Prevention, 2003).The daily numbers of deaths,
recoveries and inpatients in the two regions are used. For Hong
Kong, the data available spanned from March 12, 2003 to
June 30, 2003 with a total of 110 days. For Beijing, the data
available spanned from April 21, 2003 to July 1, 2003, with a
total of 72 days. There were only 29 and 27 inpatients left in
the hospitals, respectively, for Hong Kong and Beijing at the
end of the periods as specified above. When there are more
than one death or discharge on the same day, we impute the
rank of the death and discharge times within the same day at
random. For simplicity, we set τ = 60 for both cases and the
overall level of significance is set at α = 0.05.

For easy reference, we plot the standardized statistics Vn(t)
(represented by the star) and the stopping boundaries bt (rep-
resented by the solid line) against the corresponding day for
the Hong Kong and Beijing data in the left and right pan-
els of Figure 1, respectively. The null hypothesis of constant
fatality is not rejected for Hong Kong data throughout the
said period. The same conclusion was drawn based on the
proposed sequential tests with τ = 110 and the test statis-
tic V n(τ) in (5). However, the null hypothesis is rejected on
day 22 (May 12, 2003) for Beijing data. In other words, the
SARS fatality rate in Hong Kong was concluded to be con-
stant throughout the period, while that in Beijing showed a
decreasing trend in fatality over time, which could possibly
be due to their improvement of treatment including the use

of Chinese medicine. In Beijing, they had also implemented
very strict quarantine measures in controlling the infections
of SARS and a specialized hospital was built for SARS pa-
tients in seven days and was opened on May 1, 2003 (Pang et
al., 2003) that helped to control the spread of the epidemic
in the hospital settings because most of the hospitals are not
well equipped to deal with the SARS patients and infection
within hospital would become serious.

In the case of constant fatality, a simple estimator for π =
π(t) at time t is given by

π̂(t) =
N1(t)

N1(t) + N2(t)
for 0 < t ≤ τ,

which is shown to be the MLE in the Appendix. The esti-
mated π̂(t) for the constant fatality rate and the estimated
time-varying fatality rate π̃(t) of Yip, Lam, et al. (2005) over
t were obtained for the Hong Kong and Beijing data. The es-
timates and their associated 95% pointwise confidence limits
were plotted in the left and right panels of Figure 2, respec-
tively. The above conclusion that the null hypothesis of con-
stant fatality rate is not rejected for the Hong Kong data is
further supported by the plot in the left panel of Figure 2.
The estimate based on π̂(t) has been very stable since April
22, while the estimated time-varying fatality rate π̃(t) simply
fluctuates around π̂(t) over t. The two sets of estimates agree
closely with each other in general. The 95% pointwise confi-
dence intervals based on π̂(t) are much narrower than those
based on the time-varying fatality estimates, π̃(t). Hence the
simple estimator π̂(t) should be more efficient if the constant
fatality assumption is valid. The plot in the right panel of Fig-
ure 2 shows that the constant fatality is highly unlikely to be
the case for Beijing data. The patterns of the two estimates
differ considerably. The estimate based on π̂(t) does not ap-
pear to be constant itself, but exhibits a decreasing trend over
time. However, it has a similar pattern as π̃(t) but the value
of π̂(t) is consistently about 10–13% greater than that of π̃(t).
It is mainly due to the inertia of the MLE which is strongly
influenced by the higher number of deaths in the early part
of the epidemic. In Beijing, there were more confirmed cases
after May 1, but with fewer deaths afterward. The proposed
test statistic for constant fatality seems to work well in these
applications. A large scale simulation study is reported to in-
vestigate the performance of the proposed test empirically in
the next section.

4. Simulation Study
We simulate several scenarios to assess the performance of the
proposed test. In the simulation we assume that data with ex-
act death and recovery times are not available. This mimics
the practical situation that only the daily counts are avail-
able. Because only the death and recovery processes but not
the infection process determine the test statistic, simulating
the infection times is unnecessary while our focus is on the
fatality rate. Therefore, we simply make use of the observed
daily number of inpatients as in Hong Kong SARS epidemic
in the simulation. The daily numbers of deaths and recoveries
are simulated according to a multinomial distribution with
probabilities q1(t) and q2(t) on day t, respectively. The value
of τ is assumed to be 60 days, and the overall level of signifi-
cance is set at α = 0.05 throughout. In each set of simulations,
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Figure 1. Plot of the standardized statistic Vn(t) (star) and the stopping boundaries (solid line) against the corresponding
day for outbreak of SARS in Hong Kong (left panel) and Beijing (right panel).
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Figure 2. The estimated time-varying fatality rate (dashed line) and π̂(t) for the constant fatality rate (solid line) and their
corresponding 95% pointwise confidence limits for outbreak of SARS in Hong Kong (left panel) and Beijing (right panel).

10,000 data sets are generated and the proportion of data sets
with the null hypothesis being rejected is the empirical size
or power. Results are tabulated in Tables 1 and 2.

Different scenarios with constant fatality rate, that is
the null hypothesis, namely (A) constant death and recov-
ery probabilities; (B) linearly decreasing/increasing death
probability with proportional recovery probability; and (C)
exponentially decreasing death probability with proportional
recovery probability, are simulated to assess the empirical sig-
nificance level of the test. Table 1 shows that the empirical
sizes of the test are very close to α = 0.05 in all cases. The
proposed test is seen to be nearly unbiased.

Different scenarios with decreasing fatality rate, namely
(A) constant death probability and piecewise constant re-
covery probability with a sudden increment at day t0; (B)
constant death probability and linearly increasing recovery
probability; (C) linearly decreasing death probability and

constant recovery probability; and (D) linearly increasing
recovery probability and linearly increasing/decreasing death
probability, are simulated to assess the empirical power of the
proposed test. The simulation results are tabulated in Ta-
ble 2. It is obvious that the empirical powers are very high
(over 90%) in general unless the decrement in the fatality
rate is extremely slow like the last case of scenario (C). From
the results based on scenario (A), we may conclude that the
test is extremely sensitive to the changes in the fatality rate
and the null hypothesis may be rejected as early as within a
week since the sudden drop in the fatality rate on the average.
The column 1 − π(τ)/π(0) represents the relative decrement
in the fatality rate from the start to time τ or the end of
the epidemic. The power of the test increases with the rel-
ative decrement. Moreover the empirical powers remain to
be quite high in general even when the relative decrement is
only around 20%. Considering all scenarios, the proposed test
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Table 1
Simulation results for the empirical significance levels of the proposed test under different scenarios: (A)

constant death and recovery probabilities; (B) linearly decreasing/increasing death probability with proportional
recovery probability; and (C) exponentially decreasing probability with proportional recovery probability.

avg.N1(τ) and avg.N2(τ) indicate the averages over all the simulations of the total numbers of deaths and
recoveries, respectively. avg.rej.day represents the mean number of days (from the origin) on which the null

hypothesis is first rejected among all the rejected cases.

Empirical
Scenario q1(t) q2(t) avg.N1(τ) avg.N2(τ) π size (%)

(A) 0.008 0.01 273.3646 341.7217 0.4444 4.93
(A) 0.008 0.02 273.2267 683.2609 0.2857 4.91
(A) 0.008 0.04 273.3955 1367.3130 0.1667 4.99
(A) 0.008 0.08 273.4382 2735.7120 0.0909 5.13
(A) 0.01 0.01 341.6004 341.6844 0.5000 4.78
(A) 0.01 0.02 341.4107 683.5364 0.3333 4.90
(A) 0.01 0.04 341.9348 1367.5020 0.2000 4.97
(A) 0.005 0.01 170.7891 341.5622 0.3333 4.94
(A) 0.005 0.05 170.9705 1709.1450 0.0909 5.20

(B) 0.005 + 0.0001t q1(t) 294.9111 294.6624 0.5000 4.69
(B) 0.005 + 0.0001t 2 q1(t) 294.9808 589.2811 0.3333 4.87
(B) 0.005 + 0.0001t 4 q1(t) 295.0944 1179.5370 0.2000 5.06
(B) 0.005 + 0.0001t 8 q1(t) 295.0426 2360.1870 0.1111 5.18
(B) 0.1 − 0.0008t q1(t) 2426.8190 2426.9260 0.5000 5.09
(B) 0.1 − 0.0008t 2 q1(t) 2426.7940 4853.7840 0.3333 4.83
(B) 0.1 − 0.0008t 4 q1(t) 2426.4980 9706.9090 0.2000 5.07
(B) 0.1 − 0.0008t 8 q1(t) 2426.6430 19415.1500 0.1111 5.04

(C) 0.01 exp(−0.01t) 2 q1(t) 239.4667 479.4933 0.3333 4.96
(C) 0.01 exp(−0.01t) 8 q1(t) 239.7724 1918.8120 0.1111 5.36
(C) 0.02 exp(−0.01t) 2 q1(t) 479.3387 958.8171 0.3333 4.90
(C) 0.02 exp(−0.01t) 8 q1(t) 479.6293 3836.9340 0.1111 5.17
(C) 0.1 exp(−0.04t) 4 q1(t) 916.0915 3664.2280 0.2000 5.11
(C) 0.2 exp(−0.02t) 4 q1(t) 3422.5490 13689.1600 0.2000 5.05

statistic seems to be very powerful in general, and is sensitive
enough to pick up various forms of changes in the fatality
rate. Therefore, the performance of the proposed test is very
satisfactory and will be useful to monitor the fatality rate of
a newly emerging disease.

5. Discussion
We have presented a testing procedure which is able to de-
tect a decreasing fatality rate in a macro perspective, espe-
cially when the decrease in death probability or increase in
recovery probability happens within a more intense period in
the midst of an epidemic. When an effective new treatment
or an intervention policy is implemented, it should cause a
marked drop in the fatality rate. By formulating a model with
time-varying fatality rate, the proposed test is a useful tool to
justify or to evaluate the effectiveness of the adopted health
policies and/or the clinical management. A main advantage of
this test is that as information accumulates over time, we are
able to reject the null hypothesis as soon as there is enough
evidence of decreasing fatality over time. Hence, more effec-
tive intervention measures can be launched in place to reduce
fatality.

Applications of Vn(τ) to the Hong Kong (with τ = 110)
and Beijing data (with τ = 72) lead to essentially the same
conclusions with asymptotic p-values 0.3082 and < 0.0001, re-
spectively. The performance of the test statistic Vn(τ) is also

studied in a simulation study not reported here. The perfor-
mance is very similar to the one proposed, but the shortcom-
ing of the test Vn(τ) is that it is evaluated at a prespecified
time τ , but we are not able to reject H0 before time τ even
though there exhibits strong statistical evidence. However,
this could also be the merit in some other applications. Mod-
ification of the proposed sequential tests can be made easily
by using different times of interim analysis, say by making a
comparison every three days instead of every day. This ver-
sion has the advantage that the environmental and weather
conditions will be more homogeneous within each period un-
der consideration so that some uncontrollable variation can
be grouped together or marginalized as the fatality rate may
also be affected by the temperature or humidity. More work
needs to be done to explore the feasibility of the modified test
in practice.

As of January 29, 2007 (WHO, 2007), there are a total of
164 deaths out of 270 human cases of H5N1 avian influenza,
giving an estimated traditional fatality rate greater than 50%.
If the strain acquires human-to-human transmissibility, its
virulence to humans may or may not be the same as the histor-
ical level when transmission is limited to avian-to-human only.
In the case of an outbreak due to human-to-human transmis-
sion, the proposed test will then be an extremely useful tool
to provide a formal statistical method to test the hypoth-
esis of decreasing fatality presumably due to some effective
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Table 2
Simulation results for the empirical powers of the proposed test under different scenarios: (A) stepwise increase in recovery

probability; (B) constant death probability and linearly increasing recovery probability; (C) linearly decreasing death probability
and constant recovery probability; and (D) linearly increasing recovery probability and linearly increasing/decreasing death

probability. avg.N1(τ) and avg.N2(τ) indicate the averages over all the simulations of the total numbers of deaths and recoveries,
respectively. avg.rej.day represents the mean number of days (from the origin) on which the null hypothesis is first rejected

among all the rejected cases.

Scenario q1(t) q2(t) avg.N1(τ) avg.N2(τ) π(0) 1 − π(τ)
π(0) Power (%) avg.rej.day

(A) 0.008 0.04 + 0.04 I(t ≥ 30) 274.0853 2315.7870 0.1667 0.4545 98.55 35.7
(A) 0.008 0.04 + 0.04 I(t ≥ 40) 274.1753 1944.7080 0.1667 0.4545 99.64 44.0
(A) 0.008 0.04 + 0.04 I(t ≥ 50) 273.3781 1608.6220 0.1667 0.4545 95.39 53.5
(A) 0.008 0.04 + 0.04 I(t ≥ 55) 273.6446 1484.8250 0.1667 0.4545 61.16 57.3
(A) 0.01 0.02 + 0.02 I(t ≥ 30) 341.7206 1157.8750 0.3333 0.4000 98.29 35.8
(A) 0.01 0.02 + 0.02 I(t ≥ 40) 342.1126 971.2872 0.3333 0.4000 99.83 44.0
(A) 0.01 0.02 + 0.02 I(t ≥ 50) 341.5698 803.1143 0.3333 0.4000 94.85 54.1
(A) 0.01 0.02 + 0.02 I(t ≥ 55) 341.8031 742.0484 0.3333 0.4000 58.74 57.3
(A) 0.01 0.05 + 0.04 I(t ≥ 30) 341.9205 2657.4600 0.1667 0.4000 97.25 36.0
(A) 0.01 0.05 + 0.04 I(t ≥ 40) 341.7803 2286.5690 0.1667 0.4000 99.48 44.6
(A) 0.01 0.05 + 0.04 I(t ≥ 50) 341.6964 1950.2510 0.1667 0.4000 92.24 54.3
(A) 0.01 0.05 + 0.04 I(t ≥ 55) 341.9452 1827.1990 0.1667 0.4000 52.05 57.2

(B) 0.05 0.05 + 0.0008t 1709.7360 2703.1530 0.5000 0.3243 98.52 40.3
(B) 0.05 0.05 + 0.001t 1710.1950 2951.0670 0.5000 0.3750 99.89 37.3
(B) 0.05 0.05 + 0.004t 1710.2290 6677.1620 0.5000 0.7059 100.00 26.0
(B) 0.005 0.005 + 0.002t 171.1493 2653.7260 0.5000 0.9230 99.06 37.6
(B) 0.005 0.005 + 0.004t 171.2511 5136.4080 0.5000 0.9600 99.51 36.6
(B) 0.005 0.005 + 0.008t 171.2199 10104.5500 0.5000 0.9796 99.48 35.9
(B) 0.005 0.005 + 0.01t 171.2208 12587.5500 0.5000 0.9836 99.42 35.8

(C) 0.05 − 0.0004t 0.05 1212.7220 1709.3670 0.5000 0.3158 96.92 44.3
(C) 0.05 − 0.0002t 0.05 1460.6430 1708.7680 0.5000 0.1364 42.13 48.5
(C) 0.05 − 0.0001t 0.05 1585.4610 1709.6150 0.5000 0.0638 15.36 48.4

(D) 0.005 + 0.0001t 0.01 + 0.005t 294.9207 6550.5110 0.3333 0.9314 91.40 40.5
(D) 0.02 + 0.001t 0.02 + 0.008t 1925.6180 10617.9800 0.5000 0.7241 99.11 33.8
(D) 0.1 − 0.001t 0.05 + 0.005t 2178.4020 7919.4180 0.6667 0.7805 100.00 20.5
(D) 0.3 − 0.004t 0.2 + 0.005t 5295.1120 13048.2300 0.6000 0.8214 100.00 20.3

interventions in a sense that the alternative hypothesis can
be accepted as soon as there is enough statistical evidence
so that prompt and decisive action can be taken more effec-
tively to suppress the fatality at the earliest time. A delay in
the implementation of some effective intervention may result
in more life loss globally. Nevertheless, we hope this test will
never be used in practice.
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Appendix

If the null hypothesis of a constant fatality rate is true, it can
be shown that the MLE of π̂ of π(t) takes the simple form
N 1(t)/(N 1(t) + N 2(t)), which has higher efficiency compared

with other nonparametric kernel type estimators (Yip, Lam,
et al., 2005; Yip, Lau, et al., 2005).

Proof. Let θ(t) = γ1(t)/γ2(t) = π(t)/(1 − π(t)). Under H0,
θ(t) ≡ θ. The likelihood function is given by

L =
∏

0≤u≤τ

[
{θγ2(u)I(u) du}dN 1(u){1 − θγ2(u)I(u) du}1−dN 1(u)

×{γ2(u)I(u) du}dN 2(u){1 − γ2(u)I(u) du}1−dN 2(u)
]

∝
∏

0≤u≤τ

{θγ2(u)I(u)}dN 1(u){γ2(u)I(u)}dN 2(u)

× exp

{
−
∫ τ

0

(θ + 1)γ2(u)I(u) du

}
and hence the log-likelihood function is

&(θ) =

∫ τ

0

log{θγ2(u)I(u)} dN 1(u) +

∫ t

0

log{γ2(u)I(u)} dN 2(u)

−
∫ t

0

(θ + 1)γ2(u)I(u) du.

Differentiating the log-likelihood function &(θ) with respect to
θ and γ2(u), it can be shown easily that the joint MLE for θ
and γ2(u) solve the equations

γ2(u) du =
dN 1(u) + dN 2(u)

(θ + 1)I(u)
and

θ =
N1(τ)∫ τ

0

I(u)γ2(u) du

and hence θ̂ = N1(τ)/N2(τ). By the invariant property of the
MLE, we have π̂ = θ̂/(1 + θ̂) = N1(τ)/(N1(τ) + N2(τ)) which
completes the proof.


