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Abstract: Defining reliable tools for early prediction of outcome is the main target for physicians
to guide care decisions in patients with brain injury. The application of machine learning (ML) is
rapidly increasing in this field of study, but with a poor translation to clinical practice. This is basically
dependent on the uncertainty about the advantages of this novel technique with respect to traditional
approaches. In this review we address the main differences between ML techniques and traditional
statistics (such as logistic regression, LR) applied for predicting outcome in patients with stroke and
traumatic brain injury (TBI). Thirteen papers directly addressing the different performance among ML
and LR methods were included in this review. Basically, ML algorithms do not outperform traditional
regression approaches for outcome prediction in brain injury. Better performance of specific ML
algorithms (such as Artificial neural networks) was mainly described in the stroke domain, but the
high heterogeneity in features extracted from low-dimensional clinical data reduces the enthusiasm
for applying this powerful method in clinical practice. To better capture and predict the dynamic
changes in patients with brain injury during intensive care courses ML algorithms should be extended
to high-dimensional data extracted from neuroimaging (structural and fMRI), EEG and genetics.

Keywords: machine learning; linear regression; brain injury; prediction model; stroke; traumatic
brain injury

1. Introduction

Brain injury consists of damage to the brain that is not hereditary, congenital, degen-
erative, or induced by birth trauma or perinatal complications. The injury results in a
modification of the brain’s neural activity, structure, and functionality with a consequent
loss of cognitive, behavioral, and motor functions. Head trauma, ischemic and hemor-
rhage stroke, infections, and brain tumors are among the most common causes of acquired
brain injury.

Due to the severe social and economic burden of brain injury, the expectation of long-
term outcome is an important factor in clinical practice, and this is particularly important
after severe traumatic brain injury (TBI), which still presents high mortality and unfavorable
outcome rates with a severe global disability [1].
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Outcome prediction is basically determined by prior knowledge of patient physical
factors, and mainly involves demographic factors as well as comorbidities that are equally
important factors to evaluate for clinical and rehabilitative prognosis [2]. It is obvious
that each different pathology determining a brain injury has different prognostic factors in
relation to the specific deficits that characterize each clinical picture.

Concerning clinical and demographic outcomes in stroke patients, it has been demon-
strated that younger age, no injured corticospinal tract, residual good leg strength, conti-
nence, the absence of unilateral spatial neglect or other cognitive impairment, the level of
trunk control, and independence in activities of daily living in patients, predict independent
walking 3 months later injury in patients who are non-ambulatory after stroke [3–5].

Regarding the prognosis of TBI patients, it is well known that these patients achieve
greater functional and cognitive improvements with respect to patients with cerebrovascu-
lar and anoxic aetiologies [6]. In TBI patients the most important clinical factors affecting
outcome are age, Glasgow Coma Scale (GCS) score, Coma Recovery Scale-revised (CRS-r),
pupil response, Marshall Computer Tomography (CT) classification, and associated trau-
matic subarachnoid hemorrhage. According to the literature, there is strong evidence for
the prognostic value of the GCS on admission to the hospital which means lower admission
GCS is associated with worse outcomes; furthermore, the GCS score shows a clear linear
relationship with mortality. The most common CT classification used in TBI is the Marshall
classification according to which levels III and IV are especially related to mortality, while
levels I or II are more frequently associated with a favorable outcome. Specific outcomes
have been reported in relation to individual CT characteristics, midline shifts, and mass
lesions. As regards neuroimaging studies with magnetic resonance imaging (MRI), it has
been demonstrated that the presence of diffuse axonal injury on MRI in patients with
TBI results in a higher chance of unfavorable outcomes [7]. Gender does not seem to
determine a difference in the outcome, while concerning the level of education higher
educational levels are weakly related to a better outcome. Other important prognostic fac-
tors include hypotension, hypoxia, glucose, coagulopathy, and hemoglobin. In particular,
hyperglycaemia and coagulopathy are the major determinants of disability and death in
TBI patients. Indeed, prothrombin time showed a positive linear relationship with the
outcome, where increasing values are associated with poorer outcomes [8–11]. One of the
most recent and promising research lines of prognostic factors of rehabilitative outcomes
regards biological markers in patients with brain injury determined by stroke or traumatic
brain injuries [12,13].

In stroke patients, a recent meta-analysis has identified c-reactive protein, albumin,
copeptin, and D-dimer to be significantly associated with long-term outcomes after ischemic
BI [14]. In TBI Patients, novel and emerging predictors include the genetic constitution,
advanced magnetic resonance imaging, and biomarkers. In particular, increased levels of
interleukin (IL)-6, IL-1, IL-8, IL-10, and tumor necrosis factor-alpha are associated with
worse outcomes, concerning both morbidity and mortality [15,16].

Although over the past few years many prognostic factors have been identified,
relationships among demographical, clinical, biological, and psychological factors and out-
comes could be not linear and intertwined. For this reason, most conventional approaches
may fail in revealing these complex relationships.

Consequentially, machine learning (ML) approaches have emerged as a more robust
way to discriminate between various classes of potential prognostic factors useful for
predicting outcomes in TBI and stroke patients. In this prospective study we sought to
summarize, for the first time, the main findings emerging from this new field of study,
discussing the differences between traditional statistical methods (for example, linear
regression) and the modern ML approaches, and future opportunities to be translated into
primary care practice. We only discussed results from studies where ML algorithms were
compared against traditional statistical methods such as logistic regression (LR).
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2. Machine Learning Methods

ML is a subfield of Artificial Intelligence, studying the ability of computers to au-
tomatically learn from experience and solve specific problems without being explicitly
programmed for it. These learning systems can continuously self-improve their perfor-
mance and increase their efficiency in extracting knowledge from experimental data and
analytical observations. ML includes three main approaches that differ in learning tech-
nique, type of input data and outcome, and typology of the task to solve: Supervised
Learning, Unsupervised Learning and Reinforcement Learning.

Supervised learning is the most common paradigm of ML, applied when input vari-
ables and output targets are available, and relevant for neurorehabilitation clinicians. This
approach consists of algorithms that analyze the mapping function between “input” and
“output” variables with the goal to learn how to predict a specified “output” given a set of
“input” variables, also called “predictors”. Supervised Learning can be broadly divided
into two main types:

• Classification: where the output variable is made up of a finite set of discrete categories
that indicate the class labels of input data, and the goal is to predict class labels of new
instances starting from a training set of observations with known class labels;

• Regression: where the output is a continuous variable, and the goal is to find the
mathematical relationship between input variables and outcome with a reasonable
level of approximation.

The unsupervised approach is characterized by unlabeled input data. The algorithm
explores and models data inherent in structure and patterns without the guidance of a
labeled training set. Typical applications of Unsupervised Learning are:

• Clustering (or unsupervised classification): with the aim to divide data so that similar-
ity of instances of the same cluster is maximized and similarity of different clusters
is minimized;

• Dimensionality Reduction: where input instances are projected into a new lower-
dimensional space.

Reinforcement Learning has the goal to develop a system called agent that improves
through interaction with the environment. In particular, at each iteration the agent receives
a reward (or a penalty) based on its action, which is a measure of how much this activity
is good for the desired goal. An exploratory trial-and-error approach is exploited to find
actions that maximize the cumulative reward. Very common applications of reinforcement
learning are in computer games and robotics.

Among the wide number of possible machine learning algorithms, there are some
conventional techniques that are considered the gold standard for classification problems
and that have been employed in the studies presented in this review:

• LR [17]: the simplest among classification techniques, it is mainly used for binary
problems. Assuming linear decision boundaries, LR works by applying a logistic
function in order to model a dichotomous variable of output:

Logistic Function =
1

1 + e−x

where x is the input variable.
This oversimplified model allows low training time and the poor possibility of over-

fitting, but at the same time, it may carry to underfitting for complex datasets. For these
reasons, LR is suitable for simple clinical datasets such as those related to patients with
brain injuries. Ridge Regression and Lasso Regression are distinguished from Ordinary
Least Squares Regression because of their intent to shrink predictors by imposing a penalty
on the size of the coefficients. Therefore, they are particularly useful in the case of big
data problems:
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• Generalized Linear Models (GLM) [18] are an extension of linear models where data
normality is no longer required because predictions distribution ŷ is transformed into
a linear combination of input variables X throughout the inverse link function h:

ŷ(w, X) = h(Xw) (1)

Moreover, the unit deviance d of the productive exponential dispersion model (EDM)
is used instead of the squared loss function;

• Support Vector Machine (SVM) [19]: it applies a kernel function with the aim to
map available data into a higher dimensional feature space where they can be easily
separated by an optimal classification hyperplane.

• k-Nearest Neighbors (k-NN) [20]: it assigns the class of each instance computing the
majority voting among its k nearest neighbors. This approach is very simple but
requires some not trivial choices such as the number of k and the distance metric. Stan-
dardized Euclidean distance is one of the most used because neighbors are weighted
by the inverse of their distance:

d(q, xi) =

√√√√ n

∑
i=1

(
q− xi

σi

)2

where q is the query instance, xi is the i-th observation of the sample and σi is the
standard deviation;

• Naïve Bayes (NB) [21]: based on the Bayes’ Theorem, it computes for each instance
the class with the highest probability of applying density estimation and assuming
independence of predictors;

• Decision Tree (DT) [22]: a tree-like model that works performing for each instance a
sequence of cascading tests from the root node to the leaf node. Each internal node is a
test on a specific variable, each branch descending from that node is one of the possible
outcomes of the test, and each leaf node corresponds to a class label. In particular, at
each node the function Information Gain is maximized to select the best split variable:

Gain(A) = I − Ires(A)

where I represents the information needed to classify the instance and it is given by
the entropy measure:

I = −∑
c

p(c)log2 p(c)

With p(c) equal to the proportion of examples of class c.
And Ires is the residual information needed after the selection of variable A:

Ires = −∑
v

p(v)∑
c

p(c|v)log2 p(c|v)

• A common technique employed to enhance models’ robustness and generalizability is
the ensemble method [23–26] that combines predictions of many base estimators. The
aggregation can be done with the Bootstrap Aggregation technique (Bagging) applying
the average among several trees trained on a subset of the original dataset (such as in
the case of Random Forests (RF)) or with the Boosting technique applying the single
estimators sequentially giving higher importance to samples that were incorrectly
classified from previous trees (like in AdaBoost algorithm);

• Artificial Neural Networks (ANNs) [27]: are a group of machine learning algorithms
inspired by the way the human brain performs a particular learning task. In particular,
neural networks consist of simple computational units called neurons connected by
links representing synapses, which are characterized by weights used to store informa-
tion during the training phase. A standard NN architecture is composed of an input
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layer whose neurons represent input variables {xi| x1, x2, . . . , xm}, a certain number
of hidden layers for intermediate calculations, and the output layer that converts
received values in outputs. Each internal node transforms values from the previous
layer using a weighted linear summation (u = w1x1 + w2x2 + . . . + wmxm), followed by
a non-linear activation function (y = φ(u + b)) such as step, sign, sigmoid or hyperbolic
tan functions. The learning process is performed throughout the backpropagation al-
gorithm that computes the error term from the output layer and then back propagates
this term to previous layers updating weights. This process is repeated until a certain
stop criterion, or a certain number of epochs, are reached.

3. Predicting Outcome: Conventional Statistics versus Machine Learning

The recent literature that incorporates ML in the neurorehabilitation field raises a
natural question: what is the innovation compared with conventional statistical techniques
such as linear or LR? From one side, traditional statistics have long been used for regression
and classification tasks, can also determine a relationship between input and output, and
have been used for classification tasks. Some other authors may even claim that both linear
and LR are themselves ML techniques, although some important distinctions needed to be
made between classical statistical learning and ML (Table 1).

Table 1. Comparison between classical statistics and machine learning methods.

Classical Statistics Machine Learning

Approach Top-down (applied to data) Bottom-up (extracted by data)
Model Hypothesized by the researcher Auto-defined

Power of analysis Medium Usually High

Accuracy Medium It could be superior or inferior to that of
classical statistics

Reliability The same data always provide the
same results

The results are affected by the
initialization of parameters

Type of relationships among variables Often Linear, in general not complex Complex relationships
Interpretability Simple More complex

Statistical methods are top-down approaches: it is assumed that we know the model
from which the data have been generated (this is an underlying assumption of techniques
like linear and LR), and then the unknown parameters of this model are estimated from
the data. The potential drawback is that the link between input and output is user chosen
and could result in a suboptimal prediction model if the actual input–output association
is not well represented by the selected model. This may occur if a user chooses LR, even
though the relationship between input and output is non-linear, or when many input
variables are involved.

Otherwise, ML methods are bottom-up approaches. No particular model is assumed,
but starting from a dataset an algorithm develops a model with a prediction as the main
goal. Generally, the resulting models are complex, and some parameters cannot be directly
estimated from the data. In this case, the common procedure is to choose the best parameters
either from previous relevant studies or tuning them during the training in order to give
the best prediction. ML algorithms can handle a larger number of variables with respect
to traditional statistical methods, but also require larger sample sizes for predicting the
outcome with greater accuracy.

A potential limit of ML is that the repetition of the analysis may lead to slightly
different results. The reliability of classical statistics is mainly related to the sampling
process, but the same data lead to the same results independently of the number of times
in which the same analysis was applied. The uncertainty is simply related to the concept
that the sample was randomly extracted by the population. Techniques such as split-half,
parallel form or bootstrap analysis have been introduced to retest the reliability of results
among different resampled data. In ML, there is often an over-dimensioned system that
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could provide the same level of accuracy in predicting the outcome in different ways, and it
means associated different weights to each variable even when the same model is applied to
the same data sample. In a recent study, the importance associated with factors influencing
harmonic walking in patients with stroke was found to have a variability going from 6%
(for the iliopsoas maximum force) up to 37% (for the patient’s gender) [28].

3.1. Conventional Statistics versus Machine Learning Methods in TBI Patients

In the last few years, seven papers have been published aimed at comparing the
performance of the regression models with respect to ML in extracting the best clinical
indicators of outcome in TBI patients (Table 2). Historically, Amorim and colleagues firstly
applied ML approaches to 517 patients with various severity of TBI. A large amount of
demographic (gender, age), clinical (pupil reactivity at admission, GCS, presence of hypoxia
and hypotension, computed tomography findings, trauma severity score), and laboratory
data were used as predictors. Using a mixed ML classification model, they found that
the naive Bayes algorithm had the best predictive performance (90% accuracy), followed
by a Bayesian generalized linear model (88% accuracy) when mortality was used as an
outcome. The most important variables used by ML models for prediction were: (a) age;
(b) Glasgow motor score; (c) prehospital GCS; and (d) GCS at admission. In this paper,
linear regression analysis has been directly merged into the ML models in order to improve
prediction performance. Following a similar multimodal approach where a series of ML
algorithms were individually used and finally pooled together in an ensemble model
to evaluate the performance with respect to the LR approach, our group demonstrated
high but similar performance among methods [29]. Indeed, we found similar performance
among LM (82%) and ML (85%) algorithms when two classes of outcome approach (Positive
vs. Negative measures of the Glasgow Outcome Scale-Extended (GOS-e)) were used. Age,
CRS-r, Early Rehabilitation Barthel Index (ERBI), and entry diagnosis were the best features
for classification. Tunthanathip et al., evaluated the performance of several supervised
algorithms (SVM, ANNs, RF, NB, k-NN) compared to LR in a wide population of pediatric
TBI. With respect to other studies, the traditional binary LR was performed with a backward
elimination procedure for extracting the best prognostic factors useful to classification
(GCS, hypotension, pupillary light reflex, and sub-arachnoid hemorrhage). The authors
found that the SVM was the best algorithm to predict outcomes (accuracy: 94%). Instead,
Gravesteijn et al. [30] directly compared LR with respect to a series of ML algorithms
(SVM, RF, gradient boosting machines, and ANNs) to predict outcomes in more than
11,000 TBI patients. All statistical methods showed the same performance in predicting
mortality or unfavorable outcomes (ranging from 79% to 82%), where the RF algorithm
was the worst. Similarly, Nourelahi et al. [31] described the same results by evaluating
2381 TBI patients. Despite the employment of the only SVM and RF for ML analysis,
they reached an accuracy in post-trauma survival status prediction of 79%, where the best
features extracted were Glasgow coma scale motor response, pupillary reactivity and age.
Similarly, Eftekhar et al. [32] only used the Artificial neural networks (ANN) algorithm
to evaluate the prediction performance with respect to the LR model. ANN was able to
predict mortality of TBI patients in almost all patients (95% of accuracy), although this
performance was lower than LR (96%). Finally, following a one-single ML approach, Chong
et al., used Neural Network to evaluate the predictive accuracy of different clinical data
(i.e., presence of seizure, confusion, clinical signs of skull fracture). Evaluating data from a
very small sample of TBI patients they reported high but similar performance among LR
and ML approaches (93% versus 98%), indicating as best features a list of never reported
clinical variables.
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Table 2. Comparison between Machine Learning and linear regression approaches in traumatic brain
injury patients to predict outcome at discharge.

TBI PATIENTS

Authors Algorithms Sample (n◦) Data Type Outcome

Accuracy
Regression

vs. ML
Models

Best Features
Extracted

Nourelahi et al. [31]

• Logistic
Regression

• Random Forest
• Support Vector

Machine

2381

Parameters measured
at admission:

• Age
• Sex
• Rotterdam

index
• Blood sugar

level
• Pupil reactivity
• Coagulation

measures
prothrombin
time-
international
normalized
ratio

• GCS motor
response

• Systolic blood
pressure

Binary
outcome
based on
GOS-e:
“favorable” or
“unfavor-
able”

78%/78%

• Age
• GCS motor

response
• Pupil

Reactivity
• Blood sugar

level

Tunthanathip et al. [33]

• Logistic
Regression

• Support Vector
Machine

• Neural
Networks

• Random Forest
• Naïve Bayes
• k-Nearest

Neighbor

828

Baseline and Clinical
Characteristics:

• Age
• Gender
• Mechanism of

Injury
• Association of

Injuries
• Comorbidities
• GCS score
• Pupillary light

Reflex

Imaging
Characteristics:

• Skull Fracture
• Intracranial

Injuries
• Basal Cistern
• Midline Shift
• Surgical

Treatment

King’s
Outcome
Scale for
Childhood
Head Injury

93%/93%

• GCS
• Hypotension
• Pupillary

light Reflex
• Subarachnoid

Hemorrhage

Bruschetta et al. [29]

• Logistic
Regression

• Support Vector
Machine

• k-Nearest
Neighbors

• Naïve Bayes
• Decision Tree

102

• Age
• Sex
• Marshall Score
• Entry Diagnosis
• CRS-R
• Rancho Los

Amigos Levels
of Cognitive
Functioning
Scale

• Disability
Rating Scale

• ERBI A and B

GOS-e 85%/82%

2 classes:

• Age
• CRS-R
• ERBI A-B

4 classes:

• Age
• Sex
• Entry

Diagnosis
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Table 2. Cont.

TBI PATIENTS

Authors Algorithms Sample (n◦) Data Type Outcome

Accuracy
Regression

vs. ML
Models

Best Features
Extracted

Amorim et al. [34]

• Generalized
Linear model

• Random Forest
• Neural Network
• Decision Tree
• Boosting
• Partial Least

Square
• Multivariate

Adaptive
Regression
Splines

• Naïve Bayes

517

• Gender
• Age
• Level of pupil

reactivity at
admission

• Prehospital GCS
• GCS at

admission
• GCS motor

score
• Hypoxia
• Hypotension.
• Midline shift

bigger than 5
mm

• Brain herniation
detected on CT

• Subarachnoid
hemorrhage

• Epidural
hemorrhage

• Subdural
hemorrhage

• Intracerebral
hemorrhage

• Trauma severity
• Prothrombin

time
• Partial

thromboplastin
time

Death within
14 days

88%/90%
(Best
Model:
Naïve
Bayes)

• GCS at
admission

• Age
• Prehospital

GCS
• Partial throm-

boplastin
time

Gravesteijn et al. [30]

• Logistic
Regression

• Lasso
Regression

• Ridge
Regression

• Support Vector
Machine

• Random Forest
• Gradient

Boosting
Machine

• Artificial Neural
Networks

11022

• Age
• Hypoxia
• Hypotension
• Marshall CT

class
• Traumatic

Subarachnoid
Hemorrhage

• Epidural
Hematoma

• Glucose
• Hemoglobin
• GCS motor
• Pupil
• GOS

6 months
mortalityand
unfavorable
outcome
(GOS < 3, or
GOS-e < 5).

80%/80% N.R.

Eftekhar et al. [32]
• Logistic

Regression
• Artificial Neural

Networks
1271

• GCS
• Sex
• Tracheal

intubation
status

• Age
• Systolic blood

pressure
• Respiratory rate
• Pulse rate
• Injury Severity

Score

Mortality 96.37%/95.09%N.R.



Biomedicines 2022, 10, 2267 9 of 15

Table 2. Cont.

TBI PATIENTS

Authors Algorithms Sample (n◦) Data Type Outcome

Accuracy
Regression

vs. ML
Models

Best Features
Extracted

Chong et al. [35]
• Logistic

Regression
• Neural Network

39 children
with TBI

For both methods:

• Involvement in
road traffic
accident

• History of loss
of consciousness

• Vomiting
• Signs of base of

skull fracture

Only for Neural
Network:

• Presence of
seizure

• Confusion
• Clinical signs of

skull fracture.

CT scan 93%/98%

• Involvement
in road traffic
accident

• History of
loss of
consciousness

• Vomiting
• Signs of base

of skull
fracture

• Presence of
seizure

• Confusion
• Clinical signs

of skull
fracture.

Legend: GCS = Glasgow Coma Scale (GCS), Coma Recovery Scale-revised (CRS-r), Glasgow Outcome Scale-
Extended (GOS-e), Early Rehabilitation Barthel Index (ERBI), CT = Computed Tomography, N.R. = not reported.

3.2. Conventional Statistics versus Machine Learning Methods in Stroke Patients

As shown in Table 3, for patients with stroke six studies have been included in this re-
view because they compare the results of ML algorithms (ANN) with those of conventional
regression analysis. The total number of patients included in these studies was very high
(5346), going from 33 patients up to 2522. There was a wide variety of investigated out-
comes, ranging from a return to work to death. Even wider was the variety of the assessed
independent variables. The accuracy of ANN ranged between 74% and 93.9%, greatly
depending also on the chosen method of analysis. The accuracy of conventional regression
analysis was generally lower, ranging from 40 to 85%. In five out of these six studies, the
ANN resulted in a more accurate prediction than conventional regression [28,36–40]. The
unique exception was the study conducted on a large sample (2522 patients) in which the
accuracy of ANN was slightly inferior (74% vs. 76.6%) [39]. Conversely, wider differences
in favor of ANN were found for the two studies with the smaller sample size having as
an outcome the functional status of patients at discharge [28,36]. When different types of
ANNs were compared the Deep Neural Network [38] and the k-Nearest Neighbors [40],
more accurate performance was detected. The features extracted by models were widely
variable among studies leading to very different results, with some prognostic factors
already well known in the literature such as older age [37,39].
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Table 3. Comparison between Machine Learning and linear regression approaches in stroke patients
to predict outcome at discharge.

Stroke Patients

Authors Algorithms Sample (n◦) Data Type Outcome
Accuracy

Regression vs.
ML Models

Best Features
Extracted

Rafiei et al. [36]

• Enhanced
probabilis-
tic neural
network

• General
Linear
Model

47

• Demographical
data

• Stroke-related
data

• Wolf Motor
Function Test
performance time,
fine motor score,
gross motor score

• Touch sensation
(Semmes-
Weinstein
Monofilament
Test)

• Cognitive
function
(Montreal
Cognitive
Assessment)

• Pretreatment daily
arm use (MAL).

Multidimensional
assessment
(Motor Activity
Log, Wolf
Motor Function
Test, Semmes-
Weinstein
Monofilament
Test of touch
threshold, and
Montreal
Cognitive
Assessment).

40–51%/85–
91%

• Sensation
• Wolf Motor

Function
Test

• Gross
Motor Score

Scrutinio et al. [37]

• Random
Forest

• ADA-Boost
and
gradient
boosting

1207

• Demographical
data

• Stroke-related
data

• Functional
Independence
Measure cognitive
and motor

• Laboratory
findings

Death 75.7%/86.1%

• Age
• Severity
• Time from

stroke
• Functional

Indepen-
dence
Measure

Kim et al. [38]

• Deep
Neural
Network

• Random
Forest

1056

• Age
• Type of stroke
• Medical Research

Council scale
scores

• Modified
Brunnstrom
classification score

• Functional
Ambulation
Category score

• Presence of motor
evoked potentials

Modified
Brunnstrom
classification
and Functional
Ambulation
Category

84.9%/90%
(Deep Neural
Network
90%),87–91%
(Random
Forest)

• Presence of
motor
evoked
potentials

Iosa et al. [39]
• Artificial

Neural
Network

2522

• Demographical
data

• Stroke related
data

• Bamford
Classification

• Clinical
assessment of
deficits

Barthel Index 76.6%/74%

• Global
aphasia

• Age
• Neglect
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Table 3. Cont.

Stroke Patients

Authors Algorithms Sample (n◦) Data Type Outcome
Accuracy

Regression vs.
ML Models

Best Features
Extracted

Iosa et al. [28]
• Artificial

Neural
Network

33

• Spatio-temporal
gait parameters

• Trunk kinematic
parameters during
walking

Return to Work 81.3%/93.9%

• Double
support
phase

• Trunk
rotation
range

Imura et al. [40]

• Support
Vector
Machine

• k-Nearest
Neighbors

• Random
Forest

• Decision
Tree

481

• Demographic data
• Stroke related

data
• Brunnstrom

recovery stage
• Functional

independence
measure scores

Home
discharge

79.9%/84.0%
(k-Nearest
Neighbors),
82.6% (Support
Vector
Machine),
79.9% (Decision
Tree), 79.9%
(Latent
Dirichlet
Allocation),
81.9% (Random
Forest)

N.R.

Legend: GCS = Glasgow Coma Scale (GCS), Coma Recovery Scale-revised (CRS-r), Glasgow Outcome Scale-
Extended (GOS-e), Early Rehabilitation Barthel Index (ERBI), CT = Computed Tomography, N.R. = no reported.

4. Discussion

Since the similarity in performance reported for LR and ML approaches and the large
heterogeneity in best features extracted, the main conclusion of this review is that ML
does not confer substantial advantages with respect to LR methodologies in predicting the
outcome of TBI or stroke patients (Figure 1). Qualitative evaluation of results suggested
a trend towards better performance of ML algorithms in the stroke patients with respect
to LR. However, without a quantitative comparison (i.e., benchmark analysis) a definitive
conclusion cannot be drawn.

Despite using similar means, the boundary between LR (statistical inference) and
ML is subject to debate. The LR had the advantage of identifying relationships between
prognostic factors associating each of them with an odds ratio, while the use of ML is limited
by the difficulty of interpreting the model, often used like a ‘black box’ to obtain the best
performance on a specific test set. The most important advantage of ML algorithms is their
capacity to perform non-linear predictions of the outcome and that do not require statistical
assumptions such as independence of observations and multicollinearity. However, this
common high non-linearity of the classification problem implies that the direction of
effect of each input cannot be easily recognized [41]. An issue poorly investigated is
the repeatability of the results obtained with ML. The two most important psychometric
properties of a test are validity and reliability. The high accuracy found in the above-
reported studies could be seen as proof of the validity of the ML approach. However, most
of these studies identified specific prognostic factors but did not test the reliability of these
findings if the ML was repeatedly applied. A recent study conducted on prognostic factors
related to walking ability in patients with stroke showed that variability in the weight of
each factor among 10 applications of an ANN analysis ranged between 6 up to 37%. On
the other hand, authors reported that the reliability was lower for the factors with reduced
weight, and higher for the most important factors [28]. However, this study highlights the
need to assess not only the accuracy and hence the validity of the ML algorithms, but also
their reliability [28].
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For stroke patients, the accuracy of ML algorithms in predicting the outcome ranged
from 74 to 95%. It is often reported that ANN requires wide samples for achieving good
accuracy, however, the two studies of the six reviewed with the smaller samples showed
higher accuracy of ANN with respect to conventional regression analysis [28,36], probably
suggesting that also (or even more) regression needs wide samples to obtain solid results.
It is important to also cite some other studies not reported in Table 2, for example that
reporting accuracy of ANN of 100% for Wolf Motor Function Test scores in George et al., [41]
were very different from the 30% for the functional independence measures in Sale et al. [42].
However, in the latter study, the outcome score was accurately predicted at 84%. The ANN
is the most common type of ML algorithm used in stroke, conceivably for its higher
simplicity with respect to other types, followed by support vector machines and random
forest algorithms. Some studies compared the performances of different algorithms. It
should be noted that literature also reports some papers about the accuracy of ML not
compared with those of conventional statistical methods. Oczkowski and Barreca reported
an accuracy of 88% on 147 patients with stroke [43]; George et al. reported an accuracy of
100% [41]; and Sale et al. [42] on 55 patients with an accuracy of 84% for predicting the
Barthel Index score and of 30% for Functional Independence Measure; Thakkar et al. [44]
on 239 patients with an accuracy between 81 and 85%; Liu et al. [45] on 56 patients 88–94%;
Billot et al. [46] on 55 patients with an accuracy between 84 and 93%; and the study by
Xie et al. [47] on a wide sample of patients (n = 512) reporting an area under the curve of
the ROC analysis of 0.75. Some other studies also reported results obtained by regression
analysis but without reporting its accuracy in a comparison with that of ML [48,49]. Other
studies included wide samples of patients [37–39] but the accuracy was not lower in
studies including small samples [41,50]. Conversely, the largest study was conducted on
2522 patients, which divided into 1522 patients to train an artificial neural network and
1000 patients to test its predictive capacity; it reported an accuracy of only 74%, lower
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than that obtained on the same samples with conventional statistics (linear regression and
cluster analysis) [39].

In TBI patients a similar status is reported, with accuracy ranging from 78% to 98%
and no evidence of the best ML algorithm. Indeed, either considering works using mixed
or ensemble ML models [30,31,33,34] or that with one single algorithm [32,35], the result is
similar: no evidence for a best ML algorithm and no substantial difference with respect to
LR approach.

5. Conclusions

ML algorithms do not perform better than more traditional regression models in
predicting the outcome in TBI or stroke patients. Although ML has been demonstrated to be
a powerful tool to capture complex nonlinear function dependencies in several neurological
domains [51,52], the state-of-art in TBI and stroke domains do not confirm this advantage.
This could be dependent on the type of predictors employed in several studies, such as
continuous and categorized (operator-dependent) variables (i.e., clinical scales, radiological
metrics). Moreover, ML has demonstrated its value when trained on high-dimensional
and complex data extracted from neuroimaging (structural and fMRI), EEG and genetics.
Future works are needed to better capture changes in prognosis during intensive care
courses extending the current “black-box” or “static” approaches (data extracted from only
admission and discharge)” in a new era of mixed dynamic mathematical models [53].

Author Contributions: Conceptualization, A.C. and M.I.; methodology, G.T., R.B., G.P.; investigation,
I.C.; G.M.; P.T.; resources, P.T.; data curation G.T, R.B., G.P.; writing—original draft preparation, A.C.;
M.I.; R.S.C.; writing—review and editing, A.C.; M.I.; R.S.C.; supervision, I.C.; project administration,
P.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Roberta Bruschetta is enrolled in the National Artificial Intelligence, XXXVII
cycle, course on Health and life sciences, organized by Università Campus Bio-Medico di Roma.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

KNN = k-Nearest Neighbors, SVM = Support Vector Machine, DT = Decision Tree, RF = Random
Forest, DNN = Deep Neural Network, GCS = Glasgow Coma Scale (GCS), Coma Recovery Scale-
revised (CRS-r), Glasgow Outcome Scale-Extended (GOS-e), Early Rehabilitation Barthel Index (ERBI),
CT = Computed Tomography.

References
1. Mostert, C.Q.B.; Singh, R.D.; Gerritsen, M.; Kompanje, E.J.O.; Ribbers, G.M.; Peul, W.C.; van Dijck, J.T.J.M. Long-term outcome

after severe traumatic brain injury: A systematic literature review. Acta Neurochir. 2022, 164, 599–613. [CrossRef] [PubMed]
2. Huang, Z.; Dong, W.; Ji, L.; Duan, H. Outcome Prediction in Clinical Treatment Processes. J. Med. Syst. 2016, 40, 8. [CrossRef]
3. Preston, E.; Ada, L.; Stanton, R.; Mahendran, N.; Dean, C.M. Prediction of Independent Walking in People Who Are Nonambula-

tory Early After Stroke: A Systematic Review. Stroke 2021, 52, 3217–3224. [CrossRef] [PubMed]
4. Morone, G.; Matamala-Gomez, M.; Sanchez-Vives, M.V.; Paolucci, S.; Iosa, M. Watch your step! Who can recover stair climbing

independence after stroke? Eur. J. Phys. Rehabil. Med. 2019, 54, 811–818. [CrossRef]
5. Paolucci, S.; Bragoni, M.; Coiro, P.; De Angelis, D.; Fusco, F.R.; Morelli, D.; Venturiero, V.; Pratesi, L. Quantification of the

Probability of Reaching Mobility Independence at Discharge from a Rehabilitation Hospital in Nonwalking Early Ischemic Stroke
Patients: A Multivariate Study. Cerebrovasc. Dis. 2008, 26, 16–22. [CrossRef] [PubMed]

http://doi.org/10.1007/s00701-021-05086-6
http://www.ncbi.nlm.nih.gov/pubmed/35098352
http://doi.org/10.1007/s10916-015-0380-6
http://doi.org/10.1161/STROKEAHA.120.032345
http://www.ncbi.nlm.nih.gov/pubmed/34238016
http://doi.org/10.23736/S1973-9087.18.04809-8
http://doi.org/10.1159/000135648
http://www.ncbi.nlm.nih.gov/pubmed/18511867


Biomedicines 2022, 10, 2267 14 of 15

6. Smania, N.; Avesani, R.; Roncari, L.; Ianes, P.; Girardi, P.; Varalta, V.; Gambini, M.G.; Fiaschi, A.; Gandolfi, M. Factors Predicting
Functional and Cognitive Recovery Following Severe Traumatic, Anoxic, and Cerebrovascular Brain Damage. J. Head Trauma
Rehabil. 2013, 28, 131–140. [CrossRef]

7. Van Eijck, M.M.; Schoonman, G.G.; Van Der Naalt, J.; De Vries, J.; Roks, G. Diffuse axonal injury after traumatic brain injury is a
prognostic factor for functional outcome: A systematic review and meta-analysis. Brain Inj. 2018, 32, 395–402. [CrossRef]

8. Mushkudiani, N.A.; Engel, D.C.; Steyerberg, E.; Butcher, I.; Lu, J.; Marmarou, A.; Slieker, A.F.J.; McHugh, G.S.; Murray, G.; Maas,
A.I. Prognostic Value of Demographic Characteristics in Traumatic Brain Injury: Results from The IMPACT Study. J. Neurotrauma
2007, 24, 259–269. [CrossRef]

9. Kulesza, B.; Nogalski, A.; Kulesza, T.; Prystupa, A. Prognostic factors in traumatic brain injury and their association with outcome.
J. Pre-Clin. Clin. Res. 2015, 9, 163–166. [CrossRef]

10. Montellano, F.A.; Ungethüm, K.; Ramiro, L.; Nacu, A.; Hellwig, S.; Fluri, F.; Whiteley, W.N.; Bustamante, A.; Montaner, J.;
Heuschmann, P.U. Role of Blood-Based Biomarkers in Ischemic Stroke Prognosis: A Systematic Review. Stroke 2021, 52, 543–551.
[CrossRef]

11. Wang, K.K.; Yang, Z.; Zhu, T.; Shi, Y.; Rubenstein, R.; Tyndall, J.A.; Manley, G.T. An update on diagnostic and prognostic
biomarkers for traumatic brain injury. Expert Rev. Mol. Diagn. 2018, 18, 165–180. [CrossRef] [PubMed]

12. Lucca, L.F.; Lofaro, D.; Pignolo, L.; Leto, E.; Ursino, M.; Cortese, M.D.; Conforti, D.; Tonin, P.; Cerasa, A. Outcome prediction in
disorders of consciousness: The role of coma recovery scale revised. BMC Neurol. 2019, 19, 68. [CrossRef]

13. Lucca, L.F.; Lofaro, D.; Leto, E.; Ursino, M.; Rogano, S.; Pileggi, A.; Vulcano, S.; Conforti, D.; Tonin, P.; Cerasa, A. The Impact
of Medical Complications in Predicting the Rehabilitation Outcome of Patients with Disorders of Consciousness after Severe
Traumatic Brain Injury. Front. Hum. Neurosci. 2020, 14, 406. [CrossRef] [PubMed]
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