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Abstract

Different computational approaches are employed to efficiently identify novel repositioning

possibilities utilizing different sources of information and algorithms. It is critical to propose

high-valued candidate-repositioning possibilities before conducting lengthy in vivo validation

studies that consume significant resources. Here we report a novel multi-methodological

approach to identify opportunities for drug repositioning. We performed analyses of real-world

data (RWD) acquired from the United States Food and Drug Administration’s Adverse Event

Reporting System (FAERS) and the claims database maintained by the Japan Medical Data

Center (JMDC). These analyses were followed by cross-validation through bioinformatics

analyses of gene expression data. Inverse associations revealed using disproportionality anal-

ysis (DPA) and sequence symmetry analysis (SSA) were used to detect potential drug-reposi-

tioning signals. To evaluate the validity of the approach, we conducted a feasibility study to

identify marketed drugs with the potential for treating inflammatory bowel disease (IBD). Pri-

mary analyses of the FAERS and JMDC claims databases identified psycholeptics such as

haloperidol, diazepam, and hydroxyzine as candidates that may improve the treatment of IBD.

To further investigate the mechanistic relevance between hit compounds and disease pathol-

ogy, we conducted bioinformatics analyses of the associations of the gene expression profiles

of these compounds with disease. We identified common biological features among genes dif-

ferentially expressed with or without compound treatment as well as disease-perturbation data

available from open sources, which strengthened the mechanistic rationale of our initial find-

ings. We further identified pathways such as cytokine signaling that are influenced by these

drugs. These pathways are relevant to pathologies and can serve as alternative targets of ther-

apy. Integrative analysis of RWD such as those available from adverse-event databases,

claims databases, and transcriptome analyses represent an effective approach that adds

value to efficiently identifying potential novel therapeutic opportunities.
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Introduction

Real-world data (RWD) is defined as data derived from sources associated with outcomes of a

patient population in real-world settings, which include medical records, claims databases,

prescription databases, and spontaneous adverse drug-event reports databases. RWD has

attracted attention, particularly in pharmacovigilance and epidemiological studies. Various

analytical methods have been developed to translate RWD to a hypothesis or an idea such as

unexpected associations between drugs and adverse events (AEs) [1–5]. Among all methods

for analysis of AEs, sequence symmetry analysis (SSA) and disproportionality analysis (DPA)

are known for their moderate sensitivity and high specificity [6], and these methods have been

used as complementary tool in pharmacovigilance. SSA, which evaluates prescriptions or

claims databases, and DPA, which evaluates spontaneous adverse drug-event reports data-

bases, are frequently used to predict potential risks associated with drugs. SSA and DPA are

computationally fast approaches that employ simple algorithms and therefore serve as useful

tools for efforts to conduct global pharmacovigilance of medicine. In addition, combined use

of DPA and SSA can enhance signal detection, because SSA method detects an additional true

positive signal that were not detected by DPA algorithms alone [6]. We reported studies using

these methodologies and algorithms to detect signals of AEs. Inverse associations generally

detected in using SSA and DPA have no meaning and are thus commonly disregarded. How-

ever, we noted that inverse associations between target drugs and AEs are often present, which

suggest potential alternative therapeutic opportunities [7]. To our knowledge, there are several

reports on evaluation of these inverse associations for their benefits to other methodologies

such as drug-repositioning approaches [8, 9]. This study adds another layer to the approach by

employing the analysis of dysregulated biogroups, which was not done in the other studies.

The value of RWD is also increasingly recognized to uncover alternative use of approved

drugs [10]. It is the trend now to connect the drug candidate and their potential new applica-

tions by data mining of RWD to build the network of pharmacological elements [11]. DPA has

proven useful in finding unknown drug effects [7]. Recently, we reported that integrative

approach using SSA and DPA showed inverse association between sodium channel-blocking

antiepileptic drug use and several cancers [8]. A number of experimental studies suggest that

sodium channel-blocking antiepileptic drugs are potential candidates for anti-cancer agents.

Although SSA and DPA have been originally developed as complementary tool in pharmacov-

igilance, we hypothesized that these methods can be a powerful tool to explore its unknown

clinical effect.

Here we developed a novel multi-methodological approach to assess the value of these

inverse associations and to determine whether they suggest novel pharmacological effects of

approved drugs. These methodologies may serve as an alternative, robust tool for drug reposi-

tioning, because they complement conventional approaches that generate drug-repositioning

possibilities by comparing patterns of drug-associated AEs [2, 3].

The standard methods employed for drug discovery are costly, time-consuming, and bur-

dened by a very low success rate. The pharmaceutical industry is therefore facing major chal-

lenges to its attempts to increase the productivity of research and development (R&D) [12, 13].

To address this issue, major efforts have been made to repurpose approved drugs to reduce the

cost and duration of R&D and to minimize the risk of AEs [14]. A computational approach is

particularly appealing because of the ability to rapidly screen candidates and to reduce the

number of possible repositioning candidates in an unbiased manner [1, 15, 16]. For successful

drug discovery, it is critical to take an approach comprising traditional target-based drug dis-

covery and forward chemical genetics, including phenotype analysis [17]. Further, OMICs

data are considered a valuable source of phenotypic information, and genome-wide
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association studies, transcriptomics, epigenomics, proteomics, and metabolomics data are

publicly available. Transcriptome data constitute the largest collection[18] and are therefore

widely used for drug repositioning [15, 19–22].

The purpose of the present study was to develop and evaluate the validity of a multi-meth-

odological approach for sequentially analyzing RWD for claims and spontaneous adverse

events, followed by gene expression profiling to generate drug-repositioning possibilities. As a

demonstration of the approach, we performed analysis to answer the question whether any

marketed drug can be repositioned for GI diseases. First, we analyzed the drugs for respiratory

disease and antipsychotic drugs. As a result, inverse associations were detected between use of

antipsychotic drugs and GI diseases, but not between use of drugs for respiratory disease and

GI diseases. Therefore, we focused on psycholeptics in current study. Here we report the asso-

ciation between psycholeptic use and decreased diagnosis of inflammatory bowel disease

(IBD) (Crohn’s disease [CD] and ulcerative colitis [UC]) newly identified from integrative

analyses of claims databases and spontaneous AE-reports databases as well as transcriptome

analyses. We also discuss the potential application of our findings related to drug reposition-

ing. In SSA, when significant inverse associations were detected at least three intervals among

6-, 12-, 24-, 36-months intervals, we defined such associations as inverse signal. In DPA, when

the reporting odds ratio (ROR) and information component (IC) met the criteria, we defined

such associations as inverse signal. Additionally, when inverse signals were confirmed by SSA

and DPA, we defined such inverse signals as drug-repositioning signal.

Materials and methods

The workflow of the study is summarized in Fig 1. First, data mining of real-world databases,

including claims and spontaneous AE databases, was performed to identify an inverse

Fig 1. Work flow of the multi-methodological approach. Step 1, sequence symmetry analysis (SSA) of prescriptions

or claims database and disproportionality analysis (DPA) of spontaneous adverse drug-event reports database to detect

inverse signals and drug-repositioning signal. An inverse signal indicates an inverse association between the number of

prescription drugs and the diagnosis of the associated diseases. The drug-repositioning signal indicates the therapeutic

benefit revealed by the inverse signal identified using SSA and DPA; Step 2, bioinformatics analysis of data from open

sources to cross-validate the drug-repositioning signal. Gene expression data for diseases and their related drugs,

extracted from open sources (Gene Expression Omnibus, GEO) as a bioset containing differentially expressed genes

(DEGs). Meta-analysis discovered commonly perturbed biogroups (i.e., pathways) among biosets. Connectivity MAP

(CMAP) analysis identified related compounds with similar gene signatures as extracted biosets; Step 3, literature

mining and curation to generate drug-repositioning possibilities. Common biogroups and associated compounds

identified in step 2 were profiled by literature mining for supportive evidence and the underlying mechanism of action

(MOA) to generate drug-repositioning signals.

https://doi.org/10.1371/journal.pone.0204648.g001
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association between prescription drugs and the diagnosis of IBD (CD and UC). These data

mining methods were developed for detecting safety signals for application to pharmacovigi-

lance. SSA has moderate sensitivity and high specificity for detecting safety signals of drugs

[23]. SSA was also reported as a complementary pharmacovigilance tool for DPA to detect

safety signals [24]. There have been studies using integrative approaches of SSA and DPA to

find safety signals [25, 26]. In addition, DPA has been utilized to find unknown drug effects,

for which several studies on drug repositioning have been reported [7]. In our study, an inte-

grative approach using SSA and DPA was applied to identify repositioning opportunities for

marketed drugs.

Sequence symmetry analysis

Data sources. A large and chronologically organized claims database constructed by

the Japan Medical Data Center Co., Ltd (JMDC, Tokyo, Japan) [27] was used in the pres-

ent study. The JMDC claims database includes prescription data for approximately 3.75

million insured persons (approximately 3.1% of the population) comprising mainly com-

pany employees and their family members. All Japanese citizens are required to be

enrolled in one of three types of health insurances: occupation-based, municipality-based,

or a separate system for elder people over 75 years old. All insured medical and pharma-

ceutical institutions issue medical and pharmacy claims for each patient every month to

ensure reimbursement for the costs of health-related service. Because most beneficiaries

are working adults or their family members, the proportion of elderly patients aged �65

years is low. The JMDC claims database collects monthly claims from medical institutions

and pharmacies and provides information on the beneficiaries, including encrypted per-

sonal identifiers, age, and sex. The JMDC claims database also contains information of

International Classification of Diseases 10th revision (ICD-10) procedure and diagnostic

codes as well as the name, dose, and number of days supplied with the prescribed or dis-

pensed drugs, or both. Drugs were coded according to the Anatomical Therapeutic

Chemical classification of the European Pharmaceutical Market Research Association

(EPHMRA). An encrypted personal identifier was used to link claims data from different

hospitals, clinics, and pharmacies. For the SSA, we utilized cases extracted from the

JMDC claims database that includes psycholeptics prescribed at least once during the

study period, accompanied by a diagnosis of CD or UC.

The Ethics Committee of Kindai University School of Pharmacy approved this study. The

names and identification numbers of the JMDC claims database were replaced by a univocal

numeric code, rendering the database anonymous at the source. Therefore, subjects’ informed

consent was not required.

Definition of psycholeptics, CD, and UC. EPHMRA Anatomical and Therapeutic

Chemical codes N05A, N05B, and N05C were defined as psycholeptics in the present study.

Combination products were not included in the analysis. The ICD-10 codes K50 and K51

were defined as CD and UC, respectively.

Data mining. SSA was performed to evaluate the associations between the use of psycho-

leptics and the diagnoses of CD or UC. The SSA method was originally developed to investi-

gate the associations between the use of certain targeted drugs and potential AEs [28, 29]. In

the present study, the inverse signal obtained from SSA was defined as a drug-repositioning

signal. Briefly, SSA evaluates asymmetry in the distribution of an event before and after the ini-

tiation of a specific treatment. Asymmetry may indicate an association between the specific

treatment of interest and the event. In the present study, we analyzed the inverse association

between psycholeptic use and the diagnosis of CD and UC.

Drug-repositioning approach using real-world and transcriptome data
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The crude sequence ratio (SR) was defined as the ratio of the numbers of patients newly

diagnosed with CD or UC before and after the initiation of psycholeptics, respectively. SR is

sensitive to changes in event (prescribing or diagnosis) trends over time. Event order is

affected by trends in sales of the considered drugs and frequency of the considered diagnoses

over a time-window. If an event occurred with increasing frequency, a non-specific excess of

patients with subsequent secondary events would be expected; therefore, SRs were adjusted for

temporal trends in events (psycholeptic prescribing and diagnosis of inflammatory bowel dis-

ease) using the method proposed by Halls [28]. The probability for a psycholeptic to be pre-

scribed first, in the absence of any causal relationship, can be estimated from a null-effect SR.

The null-effect SR produced by the proposed model may be interpreted as a reference value

for the SR. Thus, the null-effect SR is the expected SR in the absence of any causal association,

accounting for trends in event frequency. By dividing the crude SR by the null-effect SR, an

adjusted sequence ratio (ASR) which is corrected for temporal trends can be obtained [28]. An

ASR<1 indicates an inverse association of psycholeptic use with risks of CD and UC. We

used a slightly modified model to account for the limited time between psycholeptic use and

diagnoses of CD and UC [29].

All incident users of psycholeptics and all newly diagnosed patients with CD or UC were

identified from January 2005 to March 2016. To exclude prevalent users of psycholeptics, the

analysis was restricted to users whose first prescription was administered during July 2005 or

later (after a run-in period of 6 months). Similarly, the analysis was restricted to patients

whose first diagnosis was July 2005 or later. A waiting-time distribution analysis was per-

formed to ensure that our analysis was restricted to incident users of psycholeptics and patients

newly diagnosed with CD or UC [30]. An identical run-in period was applied to patients

enrolled in the cohort after June 2005. We identified incident users by excluding patients who

received their first psycholeptic prescription before July 2005. We identified patients newly

diagnosed with CD or UC by excluding patients whose first diagnosis of CD or UC was earlier

than July 2005. We identified patients who had initiated new treatment with psycholeptics and

whose first diagnosis of CD or UC was within 6-, 12-, 24-, and 36-month periods (intervals) of

the initiation of treatment. SSA had lower sensitivity when the time between events was

restricted to a short period. This low sensitivity is possibly due to small sample size and inade-

quate time window frame particularly for drug effects that may take longer to manifest. When

long interval was used, within subject bias, such as maturation and other potential time-vary-

ing covariates (e.g. change in diet) that could happen in a long study period, it would make it

difficult to determine the causality of exposure and outcome. To date, a definite range of inter-

val has not been established. In our study, when significant inverse associations were detected

at least three intervals among 6-, 12-, 24-, 36-months intervals, we defined such associations as

inverse signal.

Disproportionality analysis

Data source. The FDA’s Adverse Event Reporting System (FAERS) is a computerized

database designed to support the FDA’s after-market safety surveillance program for all

approved drugs and therapeutic biologicals. The raw data from the FAERS database is available

without charge from http://www.fda.gov/Drugs/InformationOnDrugs/ucm135151.htm. The

present study included FAERS data from the first quarter of 2004 through the end of 2015, rep-

resenting 7,561,254 reports. After excluding duplicate reports (common case numbers), we

identified 86,139,835 drug-reaction pairs among 6,153,696 reports. The preferred terms (PTs)

of the Medical Dictionary for Regulatory Activities (MedDRA version 19.0) were used to clas-

sify AEs.

Drug-repositioning approach using real-world and transcriptome data
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Identifying psycholeptics, CD, and UC. An archive of drug names that included the

names of all preparations, generic names, and synonyms of drugs marketed worldwide was

created using the Martindale website (https://www.medicinescomplete.com/mc/login.htm).

We identified the psycholeptics N05A, N05B, and N05C by linking this archive to the FAERS

database. All records that included psycholeptics in the DRUG files were selected, and the rele-

vant reactions from the REACTION files were then identified. AEs in the FAERS database

were coded using MedDRA–PTs, which are grouped according to defined medical conditions

or areas of interest. We used the Standardized MedDRA Queries to identify PTs related to CD

and UC.

Data mining. DPA was originally developed to investigate the associations between the

use of certain targeted drugs and potential AEs. In the present study, the inverse signal

obtained from the DPA was defined as a drug-repositioning signal. The DPA is described in

numerous reports. The reporting odds ratios (RORs) and information components (ICs) were

utilized to detect signals. Signal scores were calculated using a case/noncase method [31, 32].

Those reports including the event of interest were defined as the cases, and the other reports

comprised non-cases. By applying these algorithms and using a two-by-two table of frequency

counts, we calculated signal scores to assess whether a drug was significantly associated with a

diagnosis of CD or UC. In current study, drug-reaction pair-based count was used for analysis.

However, these calculations or algorithms, so-called DPA, differ in that the ROR is frequentist

(non-Bayesian) [33], whereas IC is Bayesian [34]. For the ROR, an inverse association was

defined if the upper limit of the 95% two-sided confidence interval (95% CI) was<1. For the

IC, an inverse association was defined if the upper limit of the 95% CI was <0. In the present

study, two methods were used to detect inverse associations, and the associations between psy-

choleptic use and the diagnosis of CD or UC were listed as an inverse signal when the two indi-

ces met the criteria outlined above.

Data management and statistical analysis

Data management and analysis of RWD were performed using Visual Mining Studio software

version 8.1 (Mathematical Systems, Inc. Tokyo, Japan). The results of the analyses are

expressed as mean ± standard deviation (SD) for quantitative data. The 95% CI of the ASR was

calculated using a method to calculate exact CIs of binomial distributions [35].

Meta-analysis of transcriptome data in NextBio

We searched the NextBio database (Now, BaseSpace Correlation Engine) (Illumina Inc., CA,

USA) for curated gene expression profiles of the compounds and diseases of interest available

from an open source: Gene Expression Omnibus (GEO). Compound names (haloperidol,

diazepam, or hydroxyzine) and disease names (CD, or UC) were used as queries to filter gene

expression datasets for subsequent gene expression profiling. For each query term, we identi-

fied one microarray dataset that met the inclusion criteria of differential mRNA expression

data for humans acquired by analyses of a perturbed condition and unaffected control with a

high signal-to-noise ratio. Details of the identified datasets are described in S12 Table. Gene

expression datasets (i.e., biosets) were extracted from NextBio and subjected to analysis using

the meta-analysis tool of NextBio, uses a normalized ranking approach to compare data from

different studies, platforms, and methods [16]. Using meta-analysis, a correlation score was

calculated for each concept (i.e., query compound or query disease) to indicate relevance to

genes and biogroups. Genes and biogroups with p�0.05 indicated a significant association

with a query compound or disease. A similar approach was used to identify a dysregulated

gene as a potential biomarker for Parkinson Disease [36]. To profile the meta-analysis results

Drug-repositioning approach using real-world and transcriptome data
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from the present study, we performed literature mining and curated genes and biogroups,

which were expressed at significantly higher levels in samples acquired from patients with IBD

vs controls which are human-derived cell lines treated with haloperidol, diazepam, or

hydroxyzine as well as those expressed at significantly lower levels compared with controls.

Connectivity MAP (CMAP) analyses

After we identified the gene expression dataset for meta-analysis, differentially expressed genes

(DEGs) were extracted for haloperidol, diazepam, or hydroxyzine. For diazepam and hydroxy-

zine, DEG probes with p�0.05 and an absolute fold-change�1.5 were included in the CMAP

analyses [19, 37]. For haloperidol, the inclusion criterion was DEG probes with p�0.05

because of a small number of DEG probes if a fold-change cutoff was applied as well. These

sets of probes were then filtered for compatibility with CMAP analysis (Broad Institute) [19].

When the reference signature for a drug matched our gene signature with p�0.05, it was

shortlisted with the connectivity score to indicate its correlation with a query compound.

Results

Sequence symmetry analysis

The characteristics of the study population of SSA are summarized in S1 Table, and the results

of statistical analysis of psycholeptic-associated CD and UC are presented in S2–S7 Tables. In

the analysis of CD, significant inverse associations were detected for haloperidol, estazolam,

rilmazafone, diazepam, hydroxyzine, and cloxazolam at least three interval (S2–S4 Tables). In

the analysis of UC, significant inverse associations were detected for haloperidol, zolpidem,

flunitrazepam, zopiclone, diazepam, and hydroxyzine at least three interval (S5–S7 Tables).

Consequently, haloperidol, estazolam, rilmazafone, diazepam, hydroxyzine, and cloxazolam

were inversely associated with a diagnosis of CD; and haloperidol, zolpidem, flunitrazepam,

zopiclone, diazepam, and hydroxyzine were inversely associated with a diagnosis of UC. A

summary of the signals detected for psycholeptic-associated CD and UC is presented in S8

Table.

Disproportionality analysis

We identified 61,383 and 27,375 drug-reaction pairs associated with CD and UC, respectively.

The statistical data for psycholeptic-associated CD and UC are presented in S9 and S10 Tables,

respectively. In the analysis of CD, significant inverse associations were detected for risperi-

done, aripiprazole, olanzapine, quetiapine, levomepromazine, haloperidol, chlorpromazine,

sulpiride, prochlorperazine, paliperidone, brotizolam, zolpidem, flunitrazepam, triazolam,

zopiclone, eszopiclone, phenobarbital, etizolam, diazepam, bromazepam, and hydroxyzine. In

the analysis of UC, significant inverse associations were detected for risperidone, aripiprazole,

olanzapine, quetiapine, haloperidol, chlorpromazine, promethazine, prochlorperazine, pali-

peridone, zolpidem, eszopiclone, alprazolam, diazepam, lorazepam, and hydroxyzine. A sum-

mary of the FAERS analysis is presented in S11 Table.

Detection of drug-repositioning signals

A summary of the drug-repositioning signals detected for psycholeptic-associated CD and UC

is presented in Table 1. The analyses using three different methodologies indicates that halo-

peridol, diazepam, and hydroxyzine were inversely associated with CD, and haloperidol, zolpi-

dem, diazepam, and hydroxyzine were inversely associated with UC. These inverse signals

were defined as the drug-repositioning signals in the present study. We therefore focused on

Drug-repositioning approach using real-world and transcriptome data
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Table 1. Summary of drug-repositioning signals.

Crohn’s disease Ulcerative colitis

SSA Disproportionality analysis SSA Disproportionality analysis

ASR ROR IC ASR ROR IC

N05A Risperidone - ▼ ▼ - ▼ ▼
Aripiprazole - ▼ ▼ - ▼ ▼
Olanzapine - ▼ ▼ - ▼ ▼
Quetiapine - ▼ ▼ - ▼ ▼
Levomepromazine - ▼ ▼ - - -

Haloperidol ▼ ▼ ▼ ▼ ▼ ▼
Chlorpromazine - ▼ ▼ - ▼ ▼
Blonaserin - - - - - -

Perospirone - - - - - -

Zotepine - - - - - -

Sulpiride - ▼ ▼ - - -

Prochlorperazine - ▼ ▼ - ▼ ▼
Paliperidone - ▼ ▼ - ▼ ▼
Bromperidol - - - - - -

Perphenazine - - - - - -

Propericiazine - - - - - -

Tiapride - - - - - -

N05B Ramelteon - - - - - -

Brotizolam - ▼ ▼ - - -

Zolpidem - ▼ ▼ ▼ ▼ ▼
Flunitrazepam - ▼ ▼ ▼ - -

Triazolam - ▼ ▼ - - -

Nitrazepam - 4 4 - 4 4

Zopiclone - ▼ ▼ ▼ - -

Estazolam ▼ - - - - -

Rilmazafone ▼ - - - - -

Eszopiclone - ▼ ▼ - ▼ ▼
Lormetazepam - - - - - -

Phenobarbital - ▼ ▼ - - -

Quazepam - - - - - -

Triclofos - - - - 4 -

Suvorexant - - - 4 - -

Flurazepam - - - - - -

Bromovalerylurea - - - - - -

Nimetazepam - - - - - -

Amobarbital - - - - - -

Chloral hydrate - - - - - -

Haloxazolam - - - - - -

(Continued)

Drug-repositioning approach using real-world and transcriptome data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204648 October 9, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0204648


haloperidol, diazepam, and hydroxyzine to validate drug-repositioning signals using gene

expression analysis. The results of statistical analysis of haloperidol, diazepam, and hydroxy-

zine are presented in Table 2.

Validation of drug-repositioning signals using gene expression analysis. We utilized

the transcriptome data available from open resources and searched for supportive evidence

acquired from genomic data to further validate drug-repositioning signals extracted from min-

ing RWD. First, we searched curated studies available in the NextBio database (BaseSpace Cor-

relation Engine) of gene expression data for haloperidol, diazepam, hydroxyzine, tiapride, CD,

and UC. Tiapride was not significantly associated with IBD according to the results of SSA and

DPA: 1) there is no risk signal in either SSA or DA analysis. 2) There is also no drug-reposi-

tioning signal in either SSA or DA analysis. Therefore, tiapride served as a negative control for

gene expression analysis, to ensure that the drug-repositioning signals from RWD mining

were true positives (Table 1).

The NextBio database is a commercial tool which converts raw data from open resources to

gene signatures associated with a biological condition and includes data quality control and

statistical analysis. Using datasets extracted through NextBio, one can compare gene expres-

sion data originally acquired from different studies. To minimize background noise and

ensure curated gene expression profiles of the high quality assays, we set the criteria as follows:

1) human mRNA expression data; 2) data obtained through comparison of compound-treat-

ment vs vehicle-control group or affected tissues from patients vs normal controls, or both;

and 3) high signal-to-noise ratios. Five microarray studies met our inclusion criteria described

above (S12 Table). Transcriptome data from these studies were extracted for further analysis

to identify positive correlations among haloperidol, diazepam, and hydroxyzine. More impor-

tant, we aimed to identify negative correlations between psycholeptics and IBD using gene

expression profiling to identify gene signatures up-regulated in patients with IBD but down-

regulated by psycholeptics.

The transcriptome data for query compounds and diseases were extracted as a bioset from

NextBio and then subjected to meta-analysis (Fig 1). First, we compared gene signatures asso-

ciated with drug treatment and IBD to identify common genes and biogroups (i.e., pathways),

which were significantly up-regulated in patients with IBD and down-regulated by

Table 1. (Continued)

Crohn’s disease Ulcerative colitis

SSA Disproportionality analysis SSA Disproportionality analysis

ASR ROR IC ASR ROR IC

N05C Etizolam - ▼ ▼ - - -

Alprazolam - - - - ▼ ▼
Ethyl loflazepate - - - - - -

Diazepam ▼ ▼ ▼ ▼ ▼ ▼
Lorazepam - - - - ▼ ▼
Clotiazepam - - - - - -

Bromazepam - ▼ ▼ - - -

Hydroxyzine ▼ ▼ ▼ ▼ ▼ ▼
Cloxazolam ▼ - - - - -

Dandospirone - - - - - -

Tofisopam - - - - - -

SSA, Sequence symmetry analysis; ASR, Adjusted sequence ratio; ROR, Reporting odds ratio; IC; Information component;4, risk signal; ▼, drug-repositioning signal

https://doi.org/10.1371/journal.pone.0204648.t001
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psycholeptic treatment. The genes identified by the meta-analysis are listed in S13 Table. The

top 10 biogroups identified by meta-analysis are listed in Table 3.

Genes encoding cytokines and chemokines were commonly found in gene signatures of the

psycholeptic-treatment and disease groups, although not in the tiapride-treated group. The

biogroup’s genes involved in cytokine signaling in immune system and cytokine-cytokine

receptor interactions were commonly identified in the compound-treatment and disease

groups. The association of tiapride with the IBD–associated biogroups was generally weak,

according to the overall score of meta-analysis. The results of the meta-analysis of the control

compound tiapride had no significant effect on IBD-associated genes and pathways, strongly

suggesting that the drug-repositioning signal from RWD mining is more likely true positive.

These results are consistent with studies showing that cytokines and chemokines play crucial

roles in the pathologies of CD and UC [38, 39] and increased the confidence levels of the find-

ings acquired using the FAERS and JMDC claim databases.

Connectivity MAP (CMAP, Broad Institute) analyses were conducted using differentially

expressed genes. Drugs with gene-signatures that matched those of a query compound were

short-listed from the CMAP database [19, 21]. Using the cutoff p<0.05, 177, 141, and 118

drug signatures negatively or positively correlated with signatures for haloperidol, diazepam,

and hydroxyzine, respectively (Fig 2). Fourteen compounds were shared among CMAP analy-

ses results for haloperidol, diazepam, and hydroxyzine (Table 4). These compounds are anti-

Table 2. Drug-repositioning signals validated by gene expression analysis.

Crohn’s disease Ulcerative colitis

Symmetry analysis Disproportionality analysis Symmetry analysis Disproportionality analysis

Interval (month) ASR(95%CI) ROR (95%CI) IC (95%CI) Interval (month) ASR (95%CI) ROR (95%CI) IC (95%CI)

Haloperidol 6 0.18 (0.02–

0.80)

0.14 (0.07–

0.25)

−2.73 (−3.6 to −1.86) 6 0.44 (0.15–

1.12)

0.22 (0.1–0.45) −2.05 (−3.07 to

−1.03)

12 0.16 (0.02–

0.71)

12 0.34 (0.13–

0.80)

24 0.20 (0.04–

0.71)

24 0.30 (0.13–

0.66)

36 0.18 (0.03–

0.64)

36 0.29 (0.13–

0.61)

Diazepam 6 0.39 (0.26–

0.58)

0.62 (0.51–

0.73)

−0.69 (−0.94 to

−0.42)

6 0.57 (0.44–

0.73)

0.43 (0.31–

0.59)

−1.19 (−1.64 to

−0.72)

12 0.54 (0.39–

0.74)

12 0.67 (0.54–

0.82)

24 0.68 (0.51–

0.90)

24 0.69 (0.58–

0.83)

36 0.66 (0.51–

0.86)

36 0.70 (0.59–

0.83)

Hydroxyzine 6 0.52 (0.36–

0.75)

0.67 (0.51–

0.85)

−0.58 (−0.93 to

−0.21)

6 0.57 (0.40–

0.80)

0.54 (0.36–

0.81)

−0.85 (−1.43 to

−0.25)

12 0.58 (0.42–

0.80)

12 0.66 (0.50–

0.87)

24 0.59 (0.44–

0.78)

24 0.69 (0.54–

0.88)

36 0.61 (0.47–

0.81)

36 0.67 (0.54–

0.84)

ASR, Adjusted sequence ratio; ROR, Reporting odds ratio; IC; Information component

Haloperidol, diazepam, and hydroxyzine met the criteria for all indices (ASR, ROR, and IC). Drug-repositioning signals detected for haloperidol, diazepam, and

hydroxyzine were validated by gene expression analysis.

https://doi.org/10.1371/journal.pone.0204648.t002
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Table 3. Shared dysregulated biogroups (pathways) in IBD and psycholeptic treatment.

Haloperidol (#) Diazepam (#) Hydroxyzine (#) Tiapride (#) Tiapride (")

Pathways Overall

Score

Pathways Overall

Score

Pathways Overall

Score

Pathways Overall

Score

Pathways Overall

Score

IBD

(")

Genes involved in

Cytokine

Signaling in

Immune system

140.5 Genes involved

in Cytokine

Signaling in

Immune system

151.8 Genes involved in

Cytokine Signaling

in Immune system

141.8 Beta2 integrin cell

surface interactions

51.9 Antigen processing

and presentation

91.7

Leishmania

infection

105.2 Genes involved

in Interferon

Signaling

122.5 Cytokine-cytokine

receptor

interaction

104.6 Validated

transcriptional

targets of AP1

family members

Fra1 and Fra2

46.2 Genes involved in

Interferon alpha/beta

signaling

88.3

Cytokine-

cytokine receptor

interaction

102.7 Leishmania

infection

110.0 Antigen processing

and presentation

94.6 Genes involved in

Cell surface

interactions at the

vascular wall

44.8 Graft-versus-host

disease

81.0

Genes involved in

Innate Immune

System

88.2 Cytokine-

cytokine receptor

interaction

107.0 Genes involved in

Interferon alpha/

beta signaling

88.8 Genes involved in

Synthesis of DNA

37.8 Natural killer cell

mediated cytotoxicity

66.6

Genes involved in

Peptide ligand-

binding receptors

62.8 Genes involved

in Interferon

alpha/beta

signaling

88.4 Chemokine

signaling pathway

83.4 Genes involved in

Metabolism of

carbohydrates

37.4 Genes involved in

Antigen processing-

Cross presentation

66.3

Complement and

coagulation

cascades

62.6 Genes involved

in Chemokine

receptors bind

chemokines

79.2 Genes involved in

Chemokine

receptors bind

chemokines

82.3 Genes involved in

Cell Cycle, Mitotic

32.6 Genes involved in

ER-Phagosome

pathway

65.2

Genes involved in

GPCR ligand

binding

61.3 Genes involved

in Platelet

activation,

signaling and

aggregation

69.1 IL12-mediated

signaling events

66.5 Genes involved in

Cell Cycle

31.3 IL12-mediated

signaling events

65.1

Genes involved in

Response to

elevated platelet

cytosolic Ca2+

56.9 Genes involved

in Peptide

ligand-binding

receptors

67.9 Genes involved in

Peptide ligand-

binding receptors

66.0 Genes involved in

M/G1 Transition

28.0 Genes involved in

Integrin cell surface

interactions

59.1

Genes involved in

Class A/1

(Rhodopsin-like

receptors)

55.1 Natural killer cell

mediated

cytotoxicity

66.2 Genes involved in

GPCR ligand

binding

62.0 Genes involved in

DNA Replication

27.7 CXCR4-mediated

signaling events

57.8

Pathways in

cancer

51.0 Adhesion and

Diapedesis of

Granulocytes

63.0 Genes involved in

Response to

elevated platelet

cytosolic Ca2+

57.1 Genes involved in

Mitotic G1-G1/S

phases

27.4 Leukocyte

transendothelial

migration

56.0

IBD: For each compound, biosets generated from compound treatment together with biosets from CD and UC patient-derived samples were subjected to meta-analysis

to identify biogroups, which were up-regulated in IBD but down-regulated when patients were treated with psycholeptics. The top 10 dysregulated biogroups associated

with each compound are listed here. Controls included biogroups, which were up-regulated in IBD, are listed as up-regulated or down-regulated by tiapride. Biogroups

that appear in the results for all hit compounds or were common between any hit compound and control compound are highlighted. The overall score is an internal

score, calculated using the meta-analysis, serves as a tool indicating a correlation between dysregulation of a biogroup and the analyzed biosets. As described in

’materials and methods’, a correlation score is generated to indicate the strength of association between a biogroup/pathway and a disease or compound treatment. The

proprietary unique algorithm in meta-analysis to calculate the correlation score is not disclosed to user. More specifically, for each pathway, three correlation scores

were generated, which are the correlation scores between a pathway and UC, between a pathway and CD, and between a pathway and haloperidol treatment,

respectively. Overall score is the sum-up of three correlation scores above. Higher overall score for a pathway indicates its stronger association with both IBD and

haloperidol treatment. To be noted, outcomes from meta-analysis must be read comprehensively. Follow-up literation mining, in vitro and in vivo studies are required

to validate and translate the findings.

https://doi.org/10.1371/journal.pone.0204648.t003
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infectious agents, antidepressive/antipsychotic agents, or anti-inflammatory agents, according

to the MESH pharmacological classification. Although these compounds differ in their targets

and mechanisms of action, their gene signatures used for CMAP analysis share features in

common with those of haloperidol, diazepam, and hydroxyzine.

Interestingly, certain hit compounds identified using CMAP were related to IBD, indicated

by direct evidence from clinical and preclinical studies or by indirect evidence for the pertur-

bation of signaling pathways that contribute to the pathogenesis of IBD. For example, lopera-

mide, a common over-the-counter treatment for diarrhea, is used to treat chronic diarrhea

associated with IBD [40]. Thioproperazine, a dopamine D2-receptor antagonist and antipsy-

chotic drug, dramatically improves the health of patients with UC, according to multiple find-

ings [41]. Parthenolide, a potent inhibitor of the NF-κB signaling pathway, clinically and

histologically ameliorates dextran sulfate sodium (DSS)-induced colitis in mice [42]. Further,

parthenolide is the only compound among 14 with a signature associated with the control tia-

pride. Moreover, the results of CMAP analysis indicate that parthenolide negatively correlated

Fig 2. Overlap of related compounds/drugs determined using CMAP analysis. CMAP analysis of gene signatures of

a query compound (e.g., haloperidol), reveals compounds with gene signatures that are negatively or positively

associated with haloperidol at the cutoff of p<0.05. The Venn diagram shows that selected compounds/drugs are

commonly found in the results of CAMP analysis of query compounds.

https://doi.org/10.1371/journal.pone.0204648.g002
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with tiapride, indicating a trend of tiapride to worsen IBD through similar pathways that are

down-regulated by haloperidol, diazepam, and hyrdoxyzine (Table 4). Further, 15-deoxy-delta

12,14-prostaglandin J2 inhibits the NF-κB signaling pathway at multiple steps [43].

Table 4. Overlapping compounds/drugs identified from CMAP analysis.

Compound name Pharmacological Classification

(MeSH)

Indication

(Drugbank)

Monensin Antifungal Agent N/A

Antiprotozoal Agents

Proton Ionophores

Coccidiostats

Sodium Ionophores

15-Delta Prostaglandin J2 Immunologic Factors N/A

Lasalocid Ionophores N/A

Anti-Bacterial Agents

Coccidiostats

Metixene N/A symptomatic treatment of parkinsonism

Thioproperazine N/A Schizophrenia

Manic syndromes

8-Azaguanine Antimetabolites N/A

Antineoplastic

Maprotiline Antidepressive Agents, Second-Generation Anxiety

Adrenergic Uptake Inhibitors Depressive illness

Dysthymic Disorder

Major Depressive Disorder (MDD)

Manic depressive illness

Loperamide Antidiarrheals Chronic Diarrhea

Diarrhea

Intestinal stoma leak

Traveler’s Diarrhea

Benzamil N/A N/A

Hexetidine Anti-Infective Agents, Local N/A

Antifungal Agents

Perphenazine Antipsychotic Agents; Schizophrenia

Dopamine Antagonists Severe Nausea and vomiting

Amitriptyline Antidepressive Agents, Tricyclic Acute Depression

Adrenergic Uptake Inhibitors ADHD

Analgesics, Non-Narcotic Anorexia Nervosa (AN)

Bulimia

Depression

Diabetic Neuropathies

Insomnia

Irritable Bowel Syndrome (IBS)

Migraines

Sleep disorders and disturbances

Oxyphenbutazone Anti-Inflammatory Agents, Non-Steroidal N/A

Parthenolide Anti-Inflammatory Agents, Non-Steroidal N/A

The 14 compounds/drugs overlapped the results of CAMP analysis of gene signatures of haloperidol, diazepam, and hydroxyzine. Compound names, MESH

pharmacological classifications, and indications are summarized. Information for indications was acquired from the DrugBank database (https://www.drugbank.ca/).

https://doi.org/10.1371/journal.pone.0204648.t004
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Cytokine expression and signaling, which are significantly up-regulated in patients with

IBD, are commonly down-regulated upon exposure to haloperidol, diazepam, and hydroxy-

zine. Selected CMAP-hit compounds, which share gene signatures similar to those of haloperi-

dol, diazepam, and hydroxyzine, ameliorate IBD. Moreover, certain CMAP-hit compounds

inhibit the NF-κB signaling pathway, which is implicated in the pathogenesis of IBD [44]. In

addition, because the NF-κB signaling pathway controls the expression of genes in inflamma-

tory responses, including cytokines and chemokines, these findings are also consistent with

the results of meta-analysis of transcriptome data that dysregulated cytokine signaling was

commonly found in gene signatures of psycholetic-treatment and disease groups [44].

Discussion

Computational approaches are widely used to effectively and efficiently identify novel thera-

peutic opportunities [45–48]. The recent common practice is to connect chemical space with

genomic data using CMAP and information on AEs [1, 2, 22]. The major approaches to create

value from information about AEs are as follows: 1) repurpose the drug according to AEs or 2)

repurpose the drug according to the similarities of the patterns of AEs associated with different

drugs [1–3]. Here we introduced a novel third approach to generate repositioning possibilities

by extracting inverse signals available as byproducts of the analysis of spontaneous AE reports

and claims databases.

Our analyses of the FAERS and JMDC claims databases reveal significant inverse signals for

CD and UC associated with the psycholeptics haloperidol, diazepam, and hydroxyzine.

Although there is no definite clinical evidence, we acquired consistent findings from indepen-

dent analyses employing different methodologies, algorithms, and databases, suggesting that

haloperidol, diazepam, and hydroxyzine is inversely associated with the risks for CD and UC.

Therefore, these psycholeptics may serve as candidates for treating CD and UC.

Similar approaches were recently reported to apply these inverse associations, which were

obtained using DPA, for identification of potential novel pharmacological effects of drugs. For

example, Zhao et al. found that the FAERS database helps identify drugs that may be repur-

posed to mitigate serious AEs [49]. Further, Nagashima et al. analyzed the FAERS database

and found that co-administration of vitamin D reduces the risk of quetiapine–induced hyper-

glycemia [7]. These reports support the conclusion that a data-mining approach using the

FAERS database is useful for identifying new therapeutic benefits of marketed drugs. We

therefore aimed to establish a novel, comprehensive, and multi-methodological, unbiased

approach to identify potential new pharmacological effects and generate repositioning possi-

bilities with mechanistic relevance. Meanwhile, similar approach using SSA to identify these

inverse signals was not reported.

To solidify the findings from SSA and DPA by simultaneously identifying potential modes

of action, we conducted gene expression analysis using transcriptome data from an open

source. Our independent analytical approaches indicate that the haloperidol, diazepam, and

hydroxyzine may improve the treatment of CD and UC. Further, we provide compelling evi-

dence supporting the conclusion that such effect may be through modulation of NF-κB and

cytokine-signaling pathways to resolve chronic inflammation and thus restore epithelial

homeostasis in patients with IBD.

To ensure that the outcome of the meta-analysis was positive, we evaluated tiapride because

it is not associated with IBD according to SSA and DPA, which served as control. We found

that tiapride had little effect on pathways associated with IBD or the above-mentioned hit

compounds. These results support the conclusion that the outcome of the meta-analysis was

positive. Together, our analysis of RWD using a multi-methodological approach employing
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SSA and DPA, followed by gene expression analysis, we identified potentially drug-reposition-

ing opportunities for haloperidol, diazepam, and hydroxyzine for treating IBD. Gene expres-

sion profiling identified the potential mechanistic relevance of these compounds for

pathology, consistent with earlier findings.

Future analyses of animal models of CD and UC will likely further validate the opportuni-

ties discovered in the present study. Moreover, to determine if our methodology contributes to

robust therapeutic value, candidate compounds require validation in multiple models (e.g.,

DSS-induced colitis, CD4+ T-cell adoptive transfer colitis, and IL-10 KO) [50]. We note that

each method has potential limitations. For example, SSA and DPA using RWD raise the possi-

bility that the reported event was not caused by the drug because of the limitation of quality

control of the RWD. Thus, not every adverse event or medication error associated with a drug

is reported, and the database may contain missing data and frequent misspellings of drugs.

The diagnoses listed in the claims databases are provided by physicians and may not always be

validated. Numerous studies address differential gene expression associated with chemical per-

turbation or disease progression. Careful quality control and stringent criteria are required to

efficiently capture correlation signals. In current study, we defined drug-repositioning signal

as the inverse association confirmed by two independent methods: SSA and DPA with statisti-

cal significance. In addition, we selected tiapride as a control compound for gene expression

analysis because it is not significantly associated with IBD according to SSA and DPA out-

comes. It is of our future subject to further optimize the criteria for reliable inverse signals and

selection of control for analysis. To mitigate these limitations, sequential, multiple methodo-

logical approaches comprising SSA, DPA, and transcriptome analysis, which were developed

here, rationalize the validity of an inverse signal. It is important therefore to gain a comprehen-

sive understanding of outcomes and to carefully examine the potential conclusions through

mining the literature and curating the data.

In summary, we demonstrate here the potential of a novel approach to identify candidate

alternative therapeutic opportunities for marketed drugs. For this purpose, we conducted an

integrative analysis of the FAERS and JMDC claims databases as well as transcriptome data.

To the best of our knowledge, this is the first report to demonstrate the utility of inverse signals

obtained from SSA and DPA using claims databases and spontaneous adverse event reports

databases to identify drug-repositioning signals and rationalized by transcriptomic analysis of

gene expression data. A significant outcome of our unique analytical methodology was the

identification of an inverse association of haloperidol, diazepam, and hydroxyzine with CD

and UC. It is of our future subject to conduct in vitro and in vivo validation studies of drug-

repositioning and translate the findings to the clinic.
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criteria for datasets in this study were as follows: 1) mRNA expression data of humans; 2) com-

parison of compound treatment vs a vehicle control or affected tissue from patients vs a nor-

mal control; 3) high signal-to-noise ratio. Detailed information of experimental settings for

data acquisition is described.

(DOCX)

S13 Table. Differentially expressed genes (DEGs) shared between IBD and treatment with

psycholeptics. For each compound, the bioset generated from compound treatment together

with biosets from samples acquired from patients with CD or UC were subjected to meta-anal-

ysis to identify for DEGs, which were up-regulated in IBD but down-regulated by psycholeptic

treatment. DEGs, which were up-regulated in IBD listed as either up-regulated or down-regu-

lated by tiapride, served as controls. The overall score is an internal score, calculated using the

meta-analysis tool, indicates a correlation between DEGs and the analyzed biosets. DEGs with

p<0.05 are listed.

(DOCX)
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