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Abstract

In this work, we compare the merits of three temporal data deconvolution methods for use in
the filtered backprojection algorithm for photoacoustic tomography (PAT). We evaluate the
standard Fourier division technique, the Wiener deconvolution filter, and a Tikhonov L-2
norm regularized matrix inversion method. Our experiments were carried out on subjects of
various appearances, namely a pencil lead, two man-made phantoms, an in vivo subcuta-
neous mouse tumor model, and a perfused and excised mouse brain. All subjects were
scanned using an imaging system with a rotatable hemispherical bowl, into which 128 ultra-
sound transducer elements were embedded in a spiral pattern. We characterized the
frequency response of each deconvolution method, compared the final image quality
achieved by each deconvolution technique, and evaluated each method’s robustness to
noise. The frequency response was quantified by measuring the accuracy with which each
filter recovered the ideal flat frequency spectrum of an experimentally measured impulse
response. Image quality under the various scenarios was quantified by computing noise
versus resolution curves for a point source phantom, as well as the full width at half maxi-
mum (FWHM) and contrast-to-noise ratio (CNR) of selected image features such as dots
and linear structures in additional imaging subjects. It was found that the Tikhonov filter
yielded the most accurate balance of lower and higher frequency content (as measured by
comparing the spectra of deconvolved impulse response signals to the ideal flat frequency
spectrum), achieved a competitive image resolution and contrast-to-noise ratio, and yielded
the greatest robustness to noise. While the Wiener filter achieved a similar image resolution,
it tended to underrepresent the lower frequency content of the deconvolved signals, and
hence of the reconstructed images after backprojection. In addition, its robustness to noise
was poorer than that of the Tikhonov filter. The performance of the Fourier filter was found
to be the poorest of all three methods, based on the reconstructed images’ lowest resolution
(blurriest appearance), generally lowest contrast-to-noise ratio, and lowest robustness

to noise. Overall, the Tikhonov filter was deemed to produce the most desirable image
reconstructions.
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Introduction

Photoacoustic tomography (PAT) is a hybrid optical and ultrasound imaging technique that
combines the high spatial resolution of ultrasound with the high optical contrast of diffuse
optical imaging. It is a highly promising modality that has received increasing attention from
the biomedical imaging community due to its ability to image in three dimensions, up to 5 cm
deep into living tissue. PAT is based on the illumination of an object with brief pulses of laser
light. As the light diffuses into the tissue, it is absorbed differentially by the various regions of
the tissue. The light absorption causes brief localized heating and an increase in pressure pro-
portional to the amount of light energy absorbed. This leads to the generation of pressure
waves that travel out of the tissue and can be measured by ultrasonic transducers. The detected
signals are then reconstructed into an image of optical absorption using a computer algorithm.

The field of photoacoustic tomography for biomedical imaging has seen an explosion of
novel system geometries and reconstruction algorithms. Common system geometries include
circular [1-3], semi-cylindrical or curved [3-5], linear [6-8], planar [9-13], hemispherical [14,
15] and spherical [16] measurement apertures, each with various numbers of ultrasound trans-
ducer elements. The system used in this study features a hemispherical bowl with 128 trans-
ducer elements (see Methods section). In parallel, an equally diverse range of reconstruction
methodologies has been proposed. The main paradigms are one-step analytical backprojection
algorithms [17-20], time reversal algorithms [21-25], and iterative model-based reconstruc-
tion methods [3, 26-32]. An overview of photoacoustic reconstruction methods and further
references are given in [24], [33], [34] and [35]. Of these methods, time reversal and iterative
methods generally offer superior image and system modeling capabilities. However, one-step
analytical backprojection methods have been popular because of their speed and relative ease
of implementation.

A key step in most backprojection algorithms is the deconvolution of the recorded pressure
signals by the transducer impulse response, prior to backprojection into the reconstructed vol-
ume. The deconvolution operation is notoriously ill-posed, and differences in its implementa-
tion can have a large impact on the final quality of the reconstructed image, as demonstrated in
this paper. The optimization of this operation is therefore of critical importance, and is the sub-
ject of this study. We compare the performance of three different deconvolution methods prior
to filtered backprojection: division by the impulse response in the Fourier domain, the Wiener
deconvolution filter, and a Tikhonov L-2 norm regularized matrix deconvolution scheme.
These three techniques were chosen because they are widely known and used deconvolution
methods that have proven successful in many signal processing applications. Since they are
well-understood and easily implemented, we believe that the results of this study will be useful
to any research groups looking to optimize the deconvolution step of PAT reconstruction algo-
rithms. While division in the Fourier space [15, 36, 37] and Wiener filtering [5, 38] has been
used in many previous studies, we believe that our study is the first to use Tikhonov L-2 norm
regularized matrix deconvolution to deconvolve the pressure data in a filtered backprojection
algorithm for photoacoustic tomography. To the best of our knowledge, this study is also the
first to provide side-by-side comparisons of these three deconvolution techniques for 3D PAT.

Note that regularized matrix methods have been used previously in iterative reconstruction
algorithms for PAT to achieve image smoothness or to implement compressed sensing. In
those cases, however, regularization has been applied directly to the image domain, rather than
the data domain. A notable exception was the data restoration technique proposed by Wang
etal. [39], which used an L-1 norm penalty to sparsify a curvelet representation of the sinogram
in 2D PAT. However, this method differs considerably from the signal-by-signal Tikhonov L-2
norm regularized matrix deconvolution explored in this paper. Wang et al.’s method is also
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less general in that it assumes that the pressure data can be arranged in a data space where
small features trace out smooth sinusoidal paths. This may not be true for sparse sampling
geometries.

The remainder of this paper is structured as follows. The Methods section explains the
photoacoustic signal model, the three deconvolution methods, filtered backprojection, the
scanner geometry, and the imaging subjects used. We also explain the performance metrics
used to quantify image quality, and mention that we monitored the water temperature to
obtain accurate values for the speed of sound. The Results section optimizes the parameters of
the Wiener and Tikhonov filters, assesses the image quality afforded by each of the three
deconvolution methods, and examines the robustness of each method to changes in noise lev-
els. All photoacoustic data was acquired on the Nexus 128 scanner manufactured by Endra Life
Sciences (Ann Arbor, MI, USA). Lastly, the Conclusions section summarizes the findings of
our work, and the Further Work section gives recommendations for future work.

Methods
Photoacoustic waves and recorded pressure signal model

Photoacoustic pressure wave propagation can be described by the general wave equation
1 & p o
2 —Z ) p(rt) = — == H(F,1).
<v v32 8t2)p(r ’ t) Cp at (1" ’ t) (1)

where #/ represents the coordinates anywhere in 3D space, ¢ is time, C, is the specific heat at
constant pressure, v; is the local speed of sound, 3 is the isobaric volume expansion coefficient,
and H is the heat source function. Using this model, and assuming that v; is constant every-
where, Wang et al. [37] showed that the pressure signal p(r, ) recorded by a point transducer
located at a particular position r is given by

G/ /,_,,st‘(")ds> *Pan(t) 2)

where A(r') is the absorbed optical energy distribution, 7, is the distance between the trans-

ﬁrp
palr,t) = 4nCk

ducer and the point source, and p,(¢) is the pressure recorded by the transducer after
illuminating a point source, with a delay time of —7, v.. As described by Wang et al. [37],
Pao(t) = po(t)* hy(t), where py(t) is the true pressure signal from the point source arriving at
the transducer (again with a delay time of 7, v,), and h,(t) is the impulse response of the
(t)rp
(1)
function, and I'(t) = <I(t). From here on, we refer to the signals () and pao(f) = po(t)*h(t)
as the transducer impulse response and the overall scanner impulse response, respectively.
Finally, note that point detectors are an idealization not achievable in practice. However, the

transducer. The constant k is defined by k = -2, where I(t) is the temporal illumination

assumption of point detectors is commonly made in the literature on photoacoustic tomogra-
phy and has been used with great success, including in the paper by [37].

Deconvolution methods

The absorbed optical energy distribution A(r’) can be reconstructed in two steps. First, we
recover the spherical projections by deconvolving Eq 2. Note that these deconvolutions repre-
sent temporal deconvolutions, i.e. deconvolutions of the recorded pressure signals. Second, we
backproject the projections using a filtered backprojection (FBP) method. In this section, we
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discuss the three deconvolution schemes compared in this paper. The FBP method is explained
in the next section.

Fourier division deconvolution. The simplest method for deconvolving Eq 2 is to divide
out the overall scanner impulse response p 4(t) in the Fourier domain [37]. This operation can
be written as

/[ﬂwmaﬁzhﬁwf%f%%ﬂx@q 5

P

The operators F and F ' represent the Fourier transform and inverse Fourier transform,
respectively. Note that these represent Fourier transforms of temporal signals (recorded pres-
sure signals). The window function W(w) band-limits the recorded pressure signals in order to
prevent unwanted high frequency amplification by the division by F[p4(t)]. We used a stan-
dard sine window, given by W(w) = |sin (n®/2)|, where @ = - € [-1,1].

Wiener deconvolution. The window function W(w) is only a heuristic method for coun-
tering the sensitivity of Fourier division to high frequency noise. Wiener deconvolution repre-
sents a more rigorous approach for improving robustness to noise. It explicitly models the
power densities of the noise and deconvolved signal, and solves for a deconvolved signal that
minimizes the expected mean square error [40]. To simplify our notation, let us rewrite the sig-
nal model as

y(8) = x(t) * H(t) + v(t) (4)

where y(t) is the observed signal, x(t) is the unknown input signal, * denotes convolution, 46
is the impulse response function, and v(t) is some unknown additive noise, independent of

x(t). In our case, y(t) = pa(r, t), i (£) = pao(t), and x(t) = jg’;k (%f ﬁr—r’|:vstA(r/>ds>‘ The Wie-

ner deconvolution method computes the input signal estimator X given by

X() =Y(HG(), (5)

where X (f) and Y(f) are the Fourier transforms of the input signal estimator X (¢) and the
observed signal y(f), respectively, and the filter G(f) is given by

__HOs)
HTS() +N(f)

The superscript * in Eq 6 denotes complex conjugation, |.| denotes the magnitude of a com-
plex number, and H(f) is the Fourier transform of /'(¢). Next, S(f) is a model for the mean
power spectral density (PSD) of the input signal x(f), and N(f) is the mean power spectral den-
sity of the noise v(f). The estimator x(¢) is recovered by computing the inverse Fourier trans-

G(f) (6)

form of X (t). We assume that the scanner impulse response () = p(t) is the same for all
transducers. Next, we estimate N(f) from the average frequency spectrum of the leading parts
of the pressure signals, corresponding to time points before any photoacoustic waves can travel
from the imaged object to the transducer elements.

Lastly, we assume a Gaussian profile for S(f), and set the area under the curve of S(f) = G(f;y, 0)
over the frequency range f = 0 MHz to fyyquise = 10 MHz to be equal to the corresponding area
under the power spectral density of a standard Fourier deconvolution given by Y(f)/H(f),
where Y(f) and H(f) are again the Fourier transforms of the measured signal and the scanner
impulse response ' (f) = pao(t), respectively. We let y = 0. The value of ¢ that optimizes the
reconstructed image quality is determined in the Results section. The rationale for using a
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Gaussian PSD is based on the well-known fact that most of the spectral power in natural
images is concentrated towards the lower spatial frequencies. More precisely, natural images’
power spectra fall as the spatial frequency increases, and are relatively isotropic [41]. In this
paper, we decided to apply the Gaussian model to the representation of the PSD of the decon-
volved signals, which are essentially spherical projections of the reconstructed images, and
hence should have frequency contents similar to the frequency content of the original 3D
image. To support this last claim, consider the following argument. If the projections were pla-
nar and parallel, the 1D Fourier transform of the projections would sample 1D lines through
the original image’s 3D Fourier space perpendicular to the projection planes, as described by
the Fourier Slice Theorem for the classical Radon transform [42]. Since the reconstructed
image volume is small compared to the radius of the imaging bowl, we expect the spherical sur-
faces to be near-parallel within the confines of the reconstruction volume, and the predictions
by the Fourier Slice Theorem to be approximately valid (this approximation is also known as
the ‘far field approximation’ [42]). In other words, if the PSD of the 3D Fourier representation
of the imaging subject can be modeled by a Gaussian distribution, 1D lines through that space
will be adequately modeled by Gaussian distributions as well, which in turn justifies our choice
of a Gaussian profile for the deconvolved signals’ mean power spectral density S(f).

Tikhonov L-2 norm deconvolution. A powerful alternative to Fourier-formulated decon-
volution methods is given by matrix deconvolution methods. Continuing the notation used
above, we represent the measured signal y(f) by a column vector y, and the unknown input sig-
nal x(t) by a column vector x. We then declare a non-circular convolution matrix C that con-
tains increasingly shifted copies of the scanner impulse response po(t) along its columns.
Hence, for each signal, the deconvolution problem takes the form

y = Cx, (7)

which can be solved for the input signal x. To regularize the matrix inversion, we use the stan-
dard Tikhonov technique [43], minimizing a cost function of the form

¢(x) = [|Cx = yII” + [T (8)

where I is a matrix that determines the nature of the regularization. We choose to minimize
the L-2 norm of the solution, primarily because it is the most convenient form of regulariza-
tion. This is done by setting I" = I, where S is a parameter setting the strength of the regulariza-
tion, and I is the identity matrix. The value of 3 that optimizes the reconstructed image quality
is determined in the Results section. Lastly, note that other forms of regularization such as L-1
norm regularization are possible as well, and will be investigated in future work (see Further
Work section). The solution to Eq 8 is given by

x=(CTC+TT) ' CTy (9)

where % represents the regularized estimate of the deconvolved pressure data. In this work, the
size of the non-circular convolution matrix C was 512 x 512. Its rank was 502, confirming the
ill-posedness of the inversion problem. By comparison, the rank of the circular implementation
of C (also of size 512 x 512) was 512. Results for both circular and non-circular implementa-
tions of C are shown in the Image domain section of the Results section. As explained above,
the ill-posedness problem was addressed using the Tikhonov L2 norm regularization. Finally,
Eq 9 was solved analytically using the backslash operator in Matlab.

PLOS ONE | DOI:10.1371/journal.pone.0152597 March 31,2016 5/28



@’PLOS ‘ ONE

Comparison of Deconvolution Filters

Filtered backprojection

After deconvolving the pressure signals, the 3D photoacoustic image can be reconstructed
using a filtered backprojection algorithm. As the name suggests, this method first filters the
data and then backprojects it into the reconstruction volume. To prevent excessive noise ampli-
fication, it is common to use a filter with a high-frequency roll-off, rather than the standard
ramp filter. We used the common sinc filter, given by

Lin (am)‘ (M) (10)

a anw

R(@®) =

where @ = - € [-1, 1], and w is the spatial frequency of the signal to be backprojected. By

changing the value of a, one can tune the filter to obtain various degrees of high frequency roll-
off. We empirically found that a value of a = 0.38 gave desirable results, based on a visual
appreciation of the images. The filter for this value is shown in Fig 1. Further optimization of
this value is deferred to future work. Here we focus on the comparison between the three
deconvolution methods while keeping the sinc filter constant. The backprojection operation
was implemented on a GeForce GTX 590 GPU using the Accelereyes Jacket package in Matlab,
reconstructing a 200 x 200 x 200 volume from 120 views in approximately 60 seconds.

Photoacoustic scanner

The photoacoustic scans for this study were acquired using the Nexus 128 scanner, manufac-
tured by Endra Life Sciences (Ann Arbor, MI, USA). Fig 2 illustrates the system. The detection
geometry consists of 128 unfocused transducers arranged on a hemispherical bowl. The radius
of the bowl is 101.3 mm. A plastic tray is placed on top of the bowl for animal positioning. The
tray is covered by a lid that must be closed while scanning (an interlock prevents scanning
while the lid is open) as a protective measure to rule out the possibility of eye damage from the
laser to the user. A webcam inside the lid allows users to monitor the mouse during a scan. The
bowl is filled with water to provide acoustic coupling. A water heating system maintains the
water temperature at 38°C between scans to enable small animal imaging. The readings of the
water heating system’s thermometer can be accessed in a log file. The water heating pump is

©c o 9
£ O I

Normalized Intensity

o
N

lo

0.5 0 0.5 1

Fig 1. Sinc filter for filtered backprojection algorithm.

doi:10.1371/journal.pone.0152597.g001
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Fig 2. Nexus 128 scanner. (a-c) are reproduced with permission from http://www.endrainc.com. The green
box in (d) delineates the spatial support of a representative reconstructed field of view. The dimensions of this
reconstructed volume are typically set to 2 x 2 x 2 cm, and the isotropic reconstruction resolution typically to
0.2 mm. The blue dots show the locations of the 128 transducers in the bowl.

doi:10.1371/journal.pone.0152597.9002

switched off during scans to eliminate the risk of bubble formation. The blue dots in Fig 2(d)
indicate the transducer positions, and the green box indicates the spatial support of a standard
reconstructed volume (200 x 200 x 200 with an isotropic resolution of 0.1 mm centered on the
focal center of the hemispherical bowl). The maximum field of view supported by the system is
currently a sphere of radius 3.8 cm, again centered on the focal center of the hemispherical
bowl. Each transducer has a circular detection surface with a diameter of 3 mm and records at
a sampling rate of 20 MHz. The center frequency of the transducers is 5 MHz with a bandwidth
of approximately 70%. Note that if the bandwidth were lower, the transducers would detect
fewer sound frequencies in the lower and higher ranges. In the image space, this would trans-
late into fewer low and high spatial frequencies, i.e. lower contrast for larger masses and blur-
rier edges for small details, respectively. The scanner impulse response p(t) was measured by
the scanner’s manufacturer by imaging a hair-like mylar thread, approximately 75 ym in
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Fig 3. (a) Overall scanner impulse response pqo(t) = po(t) * he(t), and (b) its frequency spectrum.

doi:10.1371/journal.pone.0152597.g003

diameter, which was placed directly in the water at the isocenter of the detector bowl. The sig-
nal p(t) was measured without the standard diverging lens of the scanner to obtain a higher
than normal laser power (43 m]J per pulse) and hence to ensure a high signal-to-noise measure-
ment. The scanner impulse response po(t) was assumed equal for all transducers, and is
shown in Fig 3, along with its frequency content. To increase geometric sampling of the detec-
tion surface, the bowl is rotated in steps through multiple positions during a single scan. Usu-
ally, approximately 120 to 180 bowl positions, distributed uniformly over 360 degrees, suffice
to obtain a high quality reconstructed image. Each such bowl position will be referred to as a
‘view” in the remainder of this paper. Due to the small angular steps and light weight of the
bowl, no significant shaking of the transducers nor bubble formation was observed as the step-
per motor rotated the bowl.

The scanner uses a tunable, near-infrared Nd:YAG laser that produces 7 ns pulses at up to
25 m] per pulse. The typical laser power during our scans was 5 m] per pulse. The wavelength
can be tuned within a wavelength range of 680-980 nm. The repetition rate of the laser is 20
Hz. To reduce the effect of laser pulse power variations, and to increase the SNR of the
recorded pressure signals, we average signals over a predetermined number of pulses (typically
100). At the laser repetition rate of 20 Hz, a standard scan using 180 bowl positions therefore
takes 15 minutes per excitation wavelength. Note that the scanner allows faster frame rates and
hence lower total scan times by using fewer laser pulses per bowl position. However, this would
come at the expense of reduced signal averaging to lower signal to noise ratios, and hence
poorer final image qualities.

Dependence of speed of sound on water temperature

The speed of sound was corrected for changes in the water temperature during each scan. The
importance of doing so was demonstrated by [44]. As mentioned, the water heating system of
the scanner is switched off while scanning to minimize the risk of air bubble formation. This
causes the water temperature to drop gradually during each scan, on the order of 1.5°C during
a 15 minute, 180 view scan. To compensate for this effect, we continuously measured and
recorded the temperature of the water coupling medium. To deduce the speed of sound from
these temperature measurements, we used the nine-term Mackenzie equation [45], given by

v=a+bT +cT*+dT° + e(S+ f) + gD + hD* + iT(S + f) 4 jTD’ (11)
where v is the speed of sound in meters per second, T is the water temperature in degrees Cel-

sius, S is the salinity in parts per thousand and D is the depth in meters. The coefficients of Eq
11 can be found in [45] or [44]. The salinity S and depth D were both set to 0.
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Imaging subjects

In this study, the imaging subjects used were an approximately spherical pencil lead point (0.3
mm in diameter), two physical phantoms, an in vivo subcutaneous mouse tumor model and a
perfused and excised mouse brain. All animal work was conducted in accordance with the
guidelines of and approved by the Administrative Panel on Laboratory Animal Care at Stan-
ford University. Tumors were allowed to grow up to 1000 mm?. Animals were euthanized if
they showed hunched posture, unkempt coat, or change in body weight more than 20% of
baseline. No animals died during any point of the scanning procedures. Animals were given
access to standard water and diet ad libitum and housed no more than 5 per cage. Animals
were housed in a negative pressure vivarium with standard 12 hour light/dark cycles. The
phantoms were produced by printing a digital design onto a transparent overhead projector
film using a standard black and white laser printer (Xerox Phaser 3600 PS). The print resolu-
tion was 600 x 600 dpi, and the ink used was from a standard Xerox Phaser 3600 PS black and
white toner cartridge. The thickness and material of the transparency were 0.1 mm and cellu-
lose acetate, respectively. The designs are shown in Fig 4(a) and 4(b), where the white straws
used to lower the phantoms into the water are also shown. The dots were 0.6 mm in diameter.
The maximum width of the vessel phantom was 0.4 mm. The digital design of the vessel phan-
tom was obtained from the k-Wave Toolbox for Matlab [46].

The in vivo subcutaneous mouse tumor model was generated as follows. MDA-435S cells
were acquired from ATCC and grown in DMEM and passaged when they reached 80% conflu-
ence. Female nu/nu mice age 6-16 weeks were used. Prior to imaging, the mice were anesthe-
tized with 2% isofluorane in house oxygen at 2 L/min and confirmed with tail pinch. For
xenograft tumors, we created a cell pellet containing 106 cells in 50% growth factor reduced
matrigel (Becton Dickinson) in media and implanted the pellet subcutaneously on the hind
limb of a nude mouse. The tumors were imaged when they reached approximately 10 mm in
diameter. A picture of the mouse positioned in the plastic tray of the scanner is shown in Fig 4
(d). Note that the tray contains a dimple to immobilize the tumor, and to position it in the cen-
ter of the laser beam. As seen in the Results section, the tumor used in this study was selected
for its particularly tortuous and pervasive vasculature.

Lastly, the mouse brain perfusion and excision was performed as follows. After placing the
mouse under deep anesthesia, the animal’s chest and abdomen were exposed by making a sur-
gical cut along the midline. The frontal rib cage was cut, exposing the pericardium. A large
gauge needle (18 gauge) connected to a syringe by a long PE tube was inserted into the left
ventricle of the heart. The inferior vena cava was severed with scissors to allow the blood,
saline and fixative to leave the body during perfusion. Using a syringe pump, the mouse was
perfused with 20 mL of saline for 5-10 min followed by 20 mL of 10% formalin fixative solu-
tion. After perfusion, a craniotomy was performed and the brain was excised carefully and
stored in 10% formalin. The perfused and excised mouse brain is shown in Fig 4(c). A collec-
tion of representative slices through the mouse brain, obtained after the photoacoustic scan, is
shown in Fig 5.

Simulation of noise in scan data

To assess each deconvolution method’s robustness to noise, we simulated noise onto high qual-
ity scan data. This data was obtained by scanning with a high number of averaging pulses (so
as to achieve a low level of noise in the recorded pressure signals) and a geometric sampling
density high enough to eliminate streak artifacts. These requirements were met by choosing
100 averaging pulses and 180 bowl positions. Higher levels of noise were then simulated by
adding zero-mean Gaussian noise to the recorded pressured data. Gaussian noise was chosen
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(a) dot phantom (b) vessel phantom (¢) Perfused and
excised mouse brain

(d) In vivo subcutaneous
mouse tumor model

Fig 4. Imaging subjects. (a, b) Dot and vessel phantoms printed onto transparent overhead projector film
using a standard black and white laser printer. (c) Perfused and excised mouse brain. Left side: front of the
brain. Right side: rear of the brain (cerebellum). (d) /n vivo subcutaneous mouse tumor model. Notice the
dimple at the bottom of the plastic tray (indicated by the black arrow), which contains a small amount of
coupling fluid (water), and is used to help position the subcutaneous tumor. The diameter of the dimple is 15
mm.

doi:10.1371/journal.pone.0152597.g004

because it adequately describes the noise variations that were observed around averaged signals
in experimental measurements. We decided to simulate noise, rather than experimentally
acquire repeated scans with successively lower pulse numbers, to ensure consistency and com-
parability between the reconstruction results. By simulating, we prevented confounding effects

Fig 5. Representative slices through the perfused and excised mouse brain.

doi:10.1371/journal.pone.0152597.g005
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such as motion artifacts, laser power drift and inter-scan changes in water temperature (i.e.
speed of sound) from biasing our results.

Deconvolution filter parameter optimization

The Wiener and Tikhonov methods require the setting of tunable parameters, namely o and .
To optimize these values, one could simply use trial and error based on a visual assessment of
the reconstructed images. In this work, however, we use a more systematic approach by assess-
ing the effect of changing parameter values in both the pressure data (projection) and image
domains.

For the pressure data domain, we assess the ability of each filter to recover the ideal flat fre-
quency spectrum of a deconvolved impulse signal as a function of the respective parameter
value. Our metric for this assessment is the normalized correlation coefficient (NCC) between
the ideal flat spectrum and the actual recovered spectrum, given by

C:<S(f),1(f)> (12)

INIRIMGI

where S(f) is the spectrum of the deconvolved impulse signal, f denotes frequency, I(f) is the
ideal flat spectrum, and <.,.>> denotes the dot product. The spectra are treated as column vec-
tors, whose norm is denoted by ||.||. In this experiment, impulse signals were measured by
scanning a piece of pencil lead measuring 0.3 mm in diameter. Since we used 128 bowl posi-
tions with 128 transducer positions each, the scan yielded 16,384 signals. To arrive at a single
spectrum S(f) for any parameter value, we computed the mean spectrum of all 16,384 decon-
volved signals. The value of C ranges between —1 and 1; a perfect correlation is indicated by 1.
Hence, we regard the optimal filter setting as the one that corresponds to the highest value of C
(i.e. closest to 1). The results of this optimization experiment are presented in the Projection
domain section of the Results section.

For the image domain, we compute noise versus resolution trade-off curves, as generated by
varying the filters’ parameter values. This is achieved by plotting the full width at half maxi-
mum (FWHM) of a 1D Gaussian fit to the reconstructed pencil point versus the sum of
squared differences between neighboring pixels in a background patch, normalized by the sum
of the squares of the intensities in that patch. FWHM is a common metric for quantifying
image resolution. The sum of squared differences between neighboring pixels is commonly
used in the computed tomography literature as a metric for describing image noise, where it is
usually exploited to regularize against such noise (i.e. to reduce it) [47]. The results of the noise
versus resolution trade-off analysis are shown in the Image domain section of the Results sec-
tion. We also combine the results from the Projection domain and Image domain sections, and
identify the optimal parameter values.

Image quality metrics

After tuning the parameters of the deconvolution filters, we reconstructed each of the remain-
ing imaging subjects presented in the Imaging Subjects section using each deconvolution
method, and compared the resulting image qualities both visually and quantitatively. The
quantitative metrics used were the full width at half maximum (FWHM), as well as the con-
trast-to-noise ratio (CNR) of selected point and linear image features. Similar to before, the
FWHM and CNR were computed by fitting Gaussian functions to 1D intensity profiles
through selected point and line features. The FWHM was given by the width of the Gaussian at
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half maximum, and the CNR was given by

A
CNR = = (13)
0y

where A is the amplitude of the fitted Gaussian, and oy, is the standard deviation of the intensi-
ties in a selected background region. For the line profiles, of which several examples are shown
in the Results section, this background region was chosen to be the part of the line profile more
than three standard deviations away from the mean of the fitted Gaussian. An example Gauss-
ian fit is shown in Fig 6. For the mouse brain reconstruction shown in the Results section, the
examined linear feature was not as spatially isolated as the dots and linear features in the other
imaging subjects. Hence we estimated the CNR of this feature by dividing its average peak-to-
trough difference by the standard deviation of the area outside of the brain slice.

For the robustness to noise experiments, we used a global CNR metric, computed over the
entire image. This was done because the Gaussian fitting to 1D line profiles became unstable at
high noise levels. The metric used was the overall contrast-to-noise ratio (CNR,), defined by

F-B

Op

CNR, = (14)

where

N
21 5k,
N
2 R

F= (15)
and where x; is the j™ voxel of the reconstructed image, containing a total of N voxels, and
where R; is the j™ voxel of a normalized reference image. In this work, the normalized reference
image R is the highest quality reconstruction of each object (i.e. with no added noise), whose
intensities were scaled to the 0 to 1 range. In other words, R acts as a soft mask for the overall
CNR computation. The variable F, then, represents a weighted average of the reconstructed

image, estimating the average of the images’ foreground. To compute the average background
value, we similarly define

= I-Lx(l _R')
B = ] J J (16)
Zjlil(]‘ _Rj)

where the weights (1 — R;) weight in favor of the background regions. Lastly, we use the
weighted standard deviation

G, = ZjN:1<1N_ Rj)<xj - B)Z (17)

Ej:l (1 - Rj)

Note that Eqs 15, 16 and 17 are simply weighted extensions of the standard definitions for

the mean (x = ;Vzl x;) and standard deviation (¢ = /3 ;Vzl (x, — %)%). For purely binary

(hard’) masks R, where the intensity values are either 0 or 1, the definitions revert to their stan-
dard forms [48]. Lastly, for the sake of consistency, we used the same mask for all reconstruc-
tions of a particular object, regardless of noise level or deconvolution method. This mask was
obtained for each subject by computing the mean of the normalized reference images obtained
by using each of the deconvolution methods.
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Fig 6. Example Gaussian fit to a 1D intensity profile in order to estimate the FWHM and CNR of point-
like or linear features.

doi:10.1371/journal.pone.0152597.g006

Results

In the following sections, we optimize the Wiener and Tikhonov filters’ parameters and com-
pare the performance of all three deconvolution methods. At this point, we note that the
computational expense was comparable for each of the three deconvolution methods. The
times to deconvolve pressure data from 180 views were 1.6, 3.2 and 1.9 seconds for the Fourier
division, Wiener and Tikhonov approaches, respectively. The longer computation time for the
Wiener filter stems from the fact that it uses a preliminary Fourier division deconvolution to
estimate the total power in the signal power density function S(f).

Filter parameter optimization

In this section, we characterize the performance of the deconvolution filters under changing
parameter values in both the projection domain and the image domain. In the former, we char-
acterize the frequency response of the deconvolution of recorded ultrasound data; in the latter,
we perform an analysis of noise versus resolution in the image domain after backprojection.

Projection domain.

Fourier filter. For the sake of comparison with the Wiener and Tikhonov filters, we began
by examining the Fourier filter’s performance when deconvolving pressure signals from a pen-
cil point source. Note though that our Fourier filter design in Eq 3 did not contain any scalable
parameters. Fig 7(a) and 7(b) shows the average frequency spectrum of the Fourier decon-
volved pencil point signals, as well as a maximum intensity projection of the reconstructed
pencil lead. The normalized correlation coefficient obtained for the Fourier deconvolution filter
was C = 0.6620.

Wiener: optimization of the parameter o. Fig 7(c)-7(e) show the results of the normalized
correlation coefficient analysis for the Wiener filter, namely example frequency spectra, the
normalized correlation coefficient (NCC) curve as a function of o (where o is as defined in the
Methods section), and a maximum intensity projection of the pencil lead reconstruction at
0 =10,000 MHz. In Fig 7(c), we observe that the curves expand from left to right as ¢ increases,
and that the curves converge around o = 20MHz and above. The values of ¢ in Fig 7(c) were
chosen to illustrate this trend with roughly equally spaced curves. All curves for o = 20MHz or
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Fig 7. Frequency spectra of deconvolved pencil point signals, filter parameter optimization, and
maximum intensity projections (MIP). (a-b) Average Fourier spectrum of the deconvolved pencil point
signals, and MIP, using Fourier filter. The normalized correlation coefficient (NCC) C is equal to 0.6620. (c-e)
Wiener filter example spectra and normalized correlation coefficients. ‘Orig’ stands for the average frequency
spectrum before deconvolution. The maximum NCC value was achieved as o tended to infinity (uniform
distribution), with C tending to 0.733. Note that convergence was already reached for values of o ~ 20MHz
and above. (f-h) Tikhonov filter example spectra and normalized correlation coefficients. Maximum NCC
achieved at 8= 125 and C = 0.7914. The image intensities of the reconstructions are normalized (black: 0,
white: 1), and the dimensions of the MIP images are 10 x 10 mm.

doi:10.1371/journal.pone.0152597.g007

above converged onto the cyan curve shown in the plot. As shown in Fig 7(d), the NCC curve
converges to an optimal value of C = 0.733 for ¢’s greater than ~20 MHz. We decided to use a
value of 10,000 MHz in all of our further reconstructions, but note that we could have also
used any other value above the convergence point of the NCC curve, such as 100MHz as

1,000 MHz; the image quality was insensitive to the value of o as soon as it surpassed 20MHz.
Figure A in S1 File (supporting information to this paper) confirms that this optimal value
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holds for the other imaging subjects as well, by showing image reconstructions as a function of
0. Note that as ¢ tends to infinity, S(f) tends towards a uniform distribution. As explained in
the Methods section, the area under the Gaussian curve between the frequency range f= 0
MHz and fyyquise = 10 MHz is scaled to one before further scaling by the total expected power.
This prevents the area under the Gaussian curve between f= 0 MHz and fy,quis = 10 MHz
from tending to zero as o tends to infinity.

Tikhonov: optimization of the parameter . Mirroring the section above, Fig 7(f)-7(h)
show example spectra as well as the resulting normalized correlation coefficients for the Tikho-
nov filter as a function of §. The optimal value was determined to occur at f = 125, yielding
C =0.7914. Figure B in S1 File confirms that this optimal value holds for the other imaging sub-
jects as well, by showing image reconstructions as a function of §.

Image domain. Next, we computed noise versus resolution curves by analyzing recon-
structions of the pencil point phantom when using the various filters and parameter values.
The curves are shown in Fig 8. Note that Fig 8 also shows results for the Tikhonov filter with a
circular convolution matrix (i.e. the scanner impulse response po(t) is assumed to wrap
around the edges of the recorded signals). This allows us to assess whether the differences
between the Tikhonov (matrix) approach and Fourier/Wiener approaches are mainly due to
the different regularization of the deconvolved signals, or simply due to the difference between
the non-periodic (non-circular) and periodic (circular) boundary conditions of the matrix and
Fourier/Wiener methods. The noise was measured by computing the sum of squared differ-
ences between neighboring pixels in a background patch, normalized by the sum of the squares
of the intensities in that patch. The background patch was defined as any image region at least
2 mm away from the center of the pencil point. As explained in the Deconvolution filter
parameter optimization section, the resolution was measured by fitting 1D Gaussians to line
profiles through the reconstructed pencil point, and determining the full width at half maxi-
mum (FWHM).

The curves reveal the expected trade-off between noise and resolution: the more smoothing
is applied by a deconvolution method, the lower the noise in the reconstructed image, but also
the lower the image resolution. The Wiener and Tikhonov methods achieve similar resolutions
(FWHMs), but the Tikhonov methods display superior noise suppression. Hence we can con-
sider the Tikhonov methods (with both circular and non-circular convolution models) to out-
perform the Wiener filter. The Fourier filter produces the poorest FWHM and therefore the
blurriest image reconstructions, albeit with the benefit of achieving the lowest image noise lev-
els. In summary, the Tikhonov filter gave the best performance, followed by the Wiener filter
and then the Fourier filter. As for the importance of the circular versus non-circular convolu-
tion model in the Tikhonov filter, its choice does not appear to substantially impact the filters’
performance. Hence, the difference between the Tikhonov versus Fourier and Wiener filters
appears to be the result of the difference in regularization, rather than the difference in their
circular versus non-circular convolution models. Finally, note that both the Wiener and Tikho-
nov curves converge onto a single point as o and f increase to infinity, hence limiting their best
case FWHM and worst case noise amplification.

Parameter optimization summary. The Tikhonov method was found to achieve the most
faithful balance of lower and higher frequencies of all three methods, as measured by the high-
est normalized correlation coefficient of C = 0.7914 at 8 = 125 (see Projection domain section).
It also achieved a desirable noise versus resolution performance in the image domain (see Fig
8). Following these results, we decided to use § = 125 for all Tikhonov image reconstructions
shown below. For the Wiener filter, the most faithful balance of lower and higher frequencies
was achieved for ¢’s greater than 100 MHz. Combining the results of the Projection domain
section and Fig 8, we decided to use o = 10,000 MHz for all reconstructions shown below. This
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Fig 8. Noise (measured by NSSD) versus resolution (measured by FWHM) curves for various filter
choices and parameter settings. The parameter o is expressed in MHz; the parameter S is unitless.

doi:10.1371/journal.pone.0152597.g008

value yielded a desirable NCC metric of C = 0.733 and an image resolution close to the highest
observed. This choice does compromise on noise amplification, but this was found not to be
problematic in any of our Wiener image reconstructions under standard scanning conditions.
In other words, the optimal frequency balance and high image resolution was prioritized over
noise suppression. Lastly, the Fourier filter performed poorest in both the projection and
image domains.

Comparison of image reconstructions

In this section, we compare the image quality obtained by each deconvolution method for each
of the four imaging subjects, using the optimal parameter values selected above. All imaging
subjects were scanned using 180 views and 100 pulses per view. These settings provided a desir-
able trade-off between (a) reduced streak artifacts (due to higher geometric sampling density)
as well as better signal to noise ratios (due to greater signal averaging) and (b) longer scan
times, where more views and pulses per view require longer scan times given the fixed rate at
which the laser fires its pulses (20 times per second). At 180 views and 100 pulses per view,
scan times were approximately 15 minutes. For most of our imaging subjects, increasing the
settings beyond 180 views and 100 pulses did not yield noticeable improvements in image qual-
ity. The one exception was the mouse brain scan, which was performed with 400 pulses per
view. This was done to maintain a high signal to noise ratio despite the fact that the brain’s
photoacoustic signal was relatively weak due to the absence of blood.

All reconstructions are shown in Fig 9. The first and second rows show maximum intensity
projections (MIP) of the dot and vessel phantoms. The third row shows MIP images of the
reconstructed mouse tumor. The highly vascularized nature of the subcutaneous tumor, as well
as the tortuous nature of the blood vessels, is clearly discernable. The drop-off in intensity near
the edges of the dot phantom, vessel phantom and tumor vasculature is due to the non-uni-
form illumination by the laser light, and the absence of light fluence compensation in the
backprojection algorithm. Next, the fourth row shows a slice through the mouse brain as
reconstructed with each deconvolution method. We opted to show slices rather than MIP
images for this particular scan because the slices better visualized the fine structures present in
the brain. The right-most column of Fig 9 shows intensity profiles through selected features in
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Fig 9. Reconstructions by each deconvolution method. First row: dot phantom. Second row: vessel
phantom. Third row: subcutaneous mouse tumor. Fourth row: mouse brain. First column: Fourier filter.
Second column: Wiener filter. Third column: Tikhonov method. Fourth column: illustrative line profiles. The
image intensities of the reconstructions are normalized (black: 0, white: 1), and the dimensions of the MIP
images are 20 x 20 mm.

doi:10.1371/journal.pone.0152597.g009

each of the reconstructions. The locations of the intensity profiles are indicated by red lines
in the images. The intensity profiles were used to estimate the full width at half maximum
(FWHM) and contrast-to-noise ratio (CNR) of the features. For the brain, we computed the
FWM and CNR for the third linear structure from the left that crosses the intensity profile.
This structure is indicated by red arrows in the Wiener reconstructed image as well as the
brain’s intensity profile plot, and was located approximately 2.5 mm below the surface of the
brain.

Qualitatively, the image reconstructions by the Fourier method appear slightly blurrier than
those by the Wiener and Tikhonov methods. This can be appreciated in the images as well as
the intensity profiles, and is confirmed by the FWHM estimates in Fig 10(a). The blurrier
appearance of the Fourier reconstructions is due to the underrepresentation of low frequencies
in the scanner impulse response po(t) (due to the band-pass nature of the transducer and
hence underrepresentation of low frequencies in the transducer impulse response h,(t)—see
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Fig 3). As a result, the Fourier division technique disproportionately boosts lower frequencies
in the data space, and consequently in the image space after backprojection. Stated differently,
any small and poorly measured magnitudes in the low frequencies of the transducer response
end up magnifying the equally poorly measured low frequencies in the recorded signal. As a
result, the amplified lower frequencies lead to blurrier image appearances. Note that the higher
frequencies in the deconvolved signals tend to be overly amplified as well, due to a similar
underrepresentation of higher frequencies in the scanner impulse response po(t). However,
this effect is mitigated by the standard practice of applying a high-frequency suppressing filter
(see Methods section) after the Fourier division. While a similar regularization could be applied
at lower frequencies, such measures would lead us further away from applying a standard Fou-
rier division deconvolution. Qur purpose is to compare the performance of the standard Fou-
rier division deconvolution to alternative methods, namely the Wiener and Tikhonov
deconvolution methods. Next, we observe that the difference between the three deconvolution
methods is most pronounced for the mouse brain. This is likely due to the fact that the spheri-
cal projections of the brain possess more lower frequency content than those of the other imag-
ing subjects. This enables a more obvious demonstration of the difference in the frequency
balancing by the various methods. Note in particular that the Tikhonov filter appears to
achieve a superior balance between high and low spatial frequencies compared to the Fourier
and (admittedly similar) Wiener filters. This observation agrees with the prediction made in
the “Tikhonov: optimization of the parameter 5 section.

For a more quantitative assessment of the reconstructions, we computed the FWHM and
CNR of the features shown in the intensity profiles in the right column of Fig 9. Fig 10(a) and
10(b) show the FWHM and CNR values, respectively. For the FWHM results, we observe that
the Wiener filter consistently gave the lowest FWHM, which were also closest to the ground
truth when known. This indicates that the Wiener filter yielded the highest image resolution,
which agrees with our results from the Image domain section and choice of ¢ in the Parameter
optimization summary section. It also agrees with the qualitative impression in Fig 9 that the
Wiener filter emphasizes the higher frequency content more than the other two methods (in
particular, the Wiener filter’s brain reconstruction arguably appears like a high-pass filtered
version of the other two reconstructions). The second lowest FWHM values were produced by
the Tikhonov filter. This was again to be expected from our choice of 3, which trades off a faith-
ful balance of frequencies with a slight loss in resolution (see Parameter optimization summary
section). The Fourier filter produced the largest estimates, again agreeing with our previous
observation that the Fourier filter yields blurrier reconstructions.
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Fig 10. FHWM and CNR of various linear features by the three deconvolution methods. The ground
truth FWHM is known only for the artificial phantoms.

doi:10.1371/journal.pone.0152597.9g010
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Next, the observed trends in the CNR values were not as consistent as those for the FWHM
values. The Fourier filter gave the highest CNR for the dot phantom, yet the lowest for the
other imaging subjects. However, the Fourier filter’s large CNR value for the dot phantom was
caused by a much lower standard deviation of the background, not by a significantly higher
contrast (peak-to-trough) value. Since the low standard deviation was due to the blurring effect
of the Fourier method, the higher CNR by the Fourier filter did not necessarily correspond to a
more desirable image. As for the performance of the other methods on the dot phantom, the
Wiener method gave the lowest CNR due to some residual reconstruction artifacts between the
dots. Given its high CNR and competitive FWHM, the Tikhonov reconstruction was judged to
perform the best for this phantom. For the vessel phantom, the Tikhonov method provided the
highest CNR, followed by the Wiener and then Fourier method. For the mouse tumor, the Fou-
rier method’s CNR was again lowest, and the Tikhonov and Wiener method produced a nearly
identical CNR. The combination of these results again favors the general use of the Tikhonov
filter. Lastly, for the mouse brain reconstructions, the highest CNR was achieved by the Wiener
filter, followed by the Tikhonov filter as a close second, and then the Fourier filter. The Wiener
filter’s higher CNR was a direct result of a greater feature amplitude in the intensity profile.
However, this was due solely to the choice of o in the Wiener filter, favoring higher image reso-
lutions (see Parameter optimization summary section). Hence the Tikhonov filter may still be
preferable for its more accurate balancing of lower frequency contrast and higher frequency
detail (higher NCC value in the “Tikhonov: optimization of the parameter 5~ section), despite
its slightly lower CNR for this particular linear feature.

In summary, while the Wiener method produced slightly sharper images than the Tikhonov
method, it did so at the cost of a poorer balance between lower and higher frequency content.
In particular, it appeared to underrepresent the lower frequency content of the signals, and by
consequence of the reconstructed images. In other words, the Tikhonov filter was deemed to
give a better trade-off between image resolution and balancing of low and high frequency con-
tent. Note also that the frequency balancing by the Wiener filter could be improved by post-
reconstruction low frequency boosting filtering (where frequency filtering is an acceptable and
commonly used post-processing technique to improve the interpretability of images). How-
ever, we contend that the Tikhonov filter is preferable due to its more faithful frequency bal-
ancing before any post-processing steps.

Sensitivity to noise

In this section, we measure the robustness to noise of each method by adding increasing levels
of zero-mean Gaussian noise to the pressure signals. The standard deviation of the noise is
expressed as a percentage of the maximum signal amplitude of the original pressure data. Figs
11, 12, 13 and 14 show reconstructions obtained with the three deconvolution methods for dif-
ferent levels of noise. The most obvious effect of the increasing noise levels is to gradually
erode the fainter structures in the image; only the brightest features remain visible at the high-
est noise levels. Figs 11, 12, 13 and 14 also show that the overall CNR of the reconstructions
degrades with increasing noise levels. Qualitatively, it can be appreciated that the Tikhonov
filter appears to be most robust to the increasing noise levels for all objects. In particular, it
visually performs similarly to the Wiener filter for the dot and vessel phantoms, clearly outper-
forms the Fourier and Wiener filters for the subcutaneous tumor, and arguably performs best
for the mouse brain. The performance of the Wiener and Fourier filters, on the other hand, is
more variable: the Wiener filter is more robust than the Fourier filter for the dot and vessel
phantoms, but the Fourier filter is more robust than the Wiener filter for the subcutaneous
tumor and mouse brain scans.

PLOS ONE | DOI:10.1371/journal.pone.0152597 March 31,2016 19/28



el e
@ ) PLOS ‘ ONE Comparison of Deconvolution Filters

z _

§ g

235 E

& % X

g2 .

Icc> 25 . . 1
e 2 g\

I . 3

§15 R

§ 1" -&-Fourier N
= 0.5, Wiener B %
@ Y- " ~ “,
N = Tikhonov| T
3 o 1 2 4 8 %

Noise standard deviation (%)

(a) overall CNR

= —Fourier
El ! Wiener
s08 | -+ Tikhonov
z !
§ o.e‘r
=
Boa
i
5
'g 0.2 [
‘ et \q.
% 2 4 6
Distance (mm)
o = 0%, Fourier (c) o = 0%, Wiener o= 0%, (e) Line profiles
lehonov
e —Fourier
El Wiener
Koihe -+ Tikhonov,
2
20,
H
=
b=
&
s
E
o
=z N
ol
2 4 6
Distance (mm)
o = 4%, Fourier (g) o = 4%, Wiener (h) o = 4%, (i) Line profiles
Tikhonov
1
s ‘ —Fourier
El Wiener
308 -+ Tikhonov,
z
é 0.6/ i
£ F/
To4; i 1
£ i
g
50.2] N’\/ f A s
S N Y ol 10 YN
‘ \ " "\.f"‘.‘f'L\ﬂ' i
% 6
Dlsﬁznce (mm)
j) o = 8%, Fourier o = 8%, Wiener (1) o = 8%, Tikhonov (m) Line profiles

—Fourier
Wiener
-+ Tikhonov,

o o
N S e W

Normalized intensity (a.u.)
)
=

o
N

2 4
Distance (mm)

(n) o = 20%, Fourier (o) o = 20%, Wiener (p) o = 20%, (q) Line profiles
Tikhonov
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doi:10.1371/journal.pone.0152597.9011

PLOS ONE | DOI:10.1371/journal.pone.0152597 March 31,2016 20/28



el e
@ ) PLOS ‘ ONE Comparison of Deconvolution Filters

3
z
e
pel
=
© \
[ AN
@ \
o
T % N

s \
2 oo\
A LA
7] DAY
o KR
5 NN
§ -B&-Fourier %
o= 0.5« Wiener is]
5 -+ Tikhonov e
S T s B
o 0

1 2 4 8
Noise standard deviation (%)

(a) overall CNR

Y

}

—Fourier
1 Wiener
-+ Tikhonov/|

=) o
o ®
-

Normalized intensity (a.u.)
o o
[N FS < c

!

e

% 1 2 4
Distance (mm)
(b) o = 0%, Fourier (c) o = 0%, Wiener (d) o = 0%, (e) Line profiles
Tikhonov
1
” —Fourier
3 it Wiener
s08 ./ ! -+ Tikhonov
s = FA
Y éo.e A
E :
Bo4 :
N
©
E
o
z

02 : 1
%
SN Vol
0 1 2 4
Distance (mm)
(f) 0 = 4%, Fourier (g) o = 4%, Wiener (h) o = 4%, (i) Line profiles
Tikhonov
08 :
1 —Fourier
3 Wiener
So6 -+ Tikhonov
H
Zo4
g
2 j N ey
% 2 3 4
Distance (mm)
(j) o0 = 8%, Fourier (k) o = 8%, Wiener (1) o = 8%, Tikhonov (m) Line profiles
1
—Fourier
i Wiener
0§ [ -+ Tikhonov

Normalized intensity (a.u.)
o o
S =)

o

1
H

O0 1 2 3 4
Distance (mm)

(n) o = 20%, Fourier (o) o = 20%, Wiener (p) o =20%, (q) Line profiles
Tikhonov

Fig 12. Robustness to noise of each deconvolution filter, as illustrated for the vessel phantom. o
denotes the standard deviation of the zero-mean Gaussian noise added to the pressure signals, expressed
as a percentage of the maximum pressure signal value. Each filter is used at its optimal setting, as
determined in the Filter parameter optimization section. The image intensities of the reconstructions are
normalized (black: 0, white: 1), and the dimensions of the MIP images are 20 x 20 mm.

doi:10.1371/journal.pone.0152597.g012

PLOS ONE | DOI:10.1371/journal.pone.0152597 March 31,2016 21/28



el e
@ ) PLOS ‘ ONE Comparison of Deconvolution Filters

3

z v e e ) ~—

3 .2 E3 ] -5

2 1.6 Y

® '3"\‘

o 1.5 by

5] >

T 1.4 W
L2 e
] v
» 1.3 \
g b
§ 1.2 .m-Fourier 1
511 Wiener

$ | =+ Tikhonov

& o 20

1 2 4 8
Noise standard deviation (%)

(a) overall CNR

07,
—Fourier
;:0.6 I8 Wiener
s I\ - Tikhonov
.05 A
n
§04 \
< /
203 /
N
goz
2 0.1I
% os 1
Distance
(b) o = 0%, Fourier (c) o = 0%, Wiener (d) o = 0%, (e) Line profiles
Tikhonov
07,
—Fourier
Wiener
-+ Tikhonov
; !
y 4
X Y
O os 15 2 25
Distance (mm)
(f) 0 = 4%, Fourier (g) o = 4%, Wiener (h) o = 4%, (i) Line profiles
Tikhonov
—Fourier
Wiener

-+ Tikhonov

(j) o0 = 8%, Fourier (k) o = 8%, Wiener (1) o = 8%, Tikhonov (m) Line profiles

—Fourier
Wiener
g -+ Tikhonov

1 15 2 25
Distance (mm)

(n) o = 20%, Fourier (o) o = 20%, Wiener (p) o =20%, (q) Line profiles
Tikhonov

Fig 13. Robustness to noise of each deconvolution filter, as illustrated for the vascularized
subcutaneous mouse tumor. o denotes the standard deviation of the zero-mean Gaussian noise added to
the pressure signals, expressed as a percentage of the maximum pressure signal value. Each filter is used at
its optimal setting, as determined in the Filter parameter optimization section. The image intensities of the
reconstructions are normalized (black: 0, white: 1), and the dimensions of the MIP images are 20 x 20 mm.

doi:10.1371/journal.pone.0152597.g013

PLOS ONE | DOI:10.1371/journal.pone.0152597 March 31,2016 22/28



D)
@ ’ PLOS | ONE Comparison of Deconvolution Filters

045 e
0.4
0.35
0.3
0.25
0.2!|-8-Fourier

~=-Wiener
0.15 -~ Tikhonov
0

Overall contrast-to—noise ratio (CNR)

1 2 4 8 20
Noise standard deviation (%)

(a) overall CNR

Normalized intensity (a.u.)

25 3

05 1 15 2
Distance (mm)
(b) o = 0%, Fourier (c) o = 0%, Wiener (d) o = 0%, (e) Line profiles
Tikhonov
1 ¢ i .
—Fourier
3 ——Wiener
80.8 -+ Tikhonov
>
E
06
£
3
o4
@
E
o
202

0.5

115 2 25 3

Distance (mm)

(f) 0 = 4%, Fourier (g) o = 4%, Wiener (h) o = 4%, (i) Line profiles
Tikhonov

i —Fourier
——Wiener
-+ Tikhonov-

Normalized intensity (a.u.)

1 1.5 2 25 3
Distance (mm)

(m) Line profiles

o =3 o
IS o o .

Normalized intensity (a.u.)

o
N

. 25 3

. . Y » e g 3 > 1Distar1\éi (mmz)
(n) o = 20%, Fourier (o) o = 20%, Wiener (p) o =20%, (q) Line profiles
Tikhonov

Fig 14. Robustness to noise of each deconvolution filter, as illustrated for the perfused and excised
mouse brain. o denotes the standard deviation of the zero-mean Gaussian noise added to the pressure
signals, expressed as a percentage of the maximum pressure signal value. Each filter is used at its optimal
setting, as determined in the Filter parameter optimization section. The image intensities of the
reconstructions are normalized (black: 0, white: 1), and the dimensions of the MIP images are 20 x 20 mm.
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To obtain a more quantitative assessment of performance, we also estimated the overall
CNR of the reconstructed images. As explained in the Simulation of noise in scan data section,
we opted for a global CNR metric as it proved more robust than one computed from narrow
intensity profiles at higher noise levels. Incidentally, note that the line profiles shown in Figs
11, 12, 13 and 14 are shown merely to enable qualitative assessment—they were not used as the
basis for the CNR curves shown in panel (a) of each of the respective figures. As expected, the
CNR degraded with increasing noise levels for all objects and all methods. For the dot phan-
tom, the CNR by the Wiener filter was marginally higher than that by the Tikhonov filter at
lower noise levels. However, the Tikhonov filter proved slightly more robust, showing a slower
degradation in CNR as the noise level increased. The Tikhonov method also succeeded in ren-
dering more dots than the Wiener method, as can be seen particularly in the bottom row of
dots in the 8% noise reconstruction. The Fourier method clearly performed poorest at all noise
levels, both visually and in terms of its CNR curve. For the vessel phantom, the Tikhonov and
Wiener methods performed similarly, although the Tikhonov method’s CNR curve showed a
slight advantage at lower noise levels. The Fourier method again showed the poorest robustness
to the added noise. For the vascularized subcutaneous tumor, the Tikhonov filter was most
robust in terms of both overall CNR and the qualitative image appearances, followed by the
Fourier method in second place, and the Wiener filter in third.

Lastly, for the mouse brain, the soft mask approach for the overall CNR determination was
arguably less meaningful than for the other subjects, since the distinction between foreground
and background was less clear. Nonetheless, the trends seen in the CNR curves appear to agree
with a qualitative assessment of the reconstructed images. The Tikhonov filter yielded the high-
est CNR at low noise levels, doing so to a noise level of about 6%, after which the Fourier filter
took over. However, the higher CNR of the Fourier reconstructions was the result of noise sup-
pression by excessive blurring. Hence the Tikhonov reconstructions were arguably preferable
across the entire range of noise intensities. The Wiener filter clearly displayed the poorest noise
amplification of the three methods.

In summary, the Tikhonov L-2 norm filter yielded the highest overall robustness to noise in
the recorded pressure signals, as determined by both qualitative assessment of the images and
the computed CNR curves.

Conclusions and Further Work
Conclusions

In this study, we compared the merits of three methods for deconvolving the pressure data
prior to filtered backprojection in photoacoustic tomography. The methods were the classic
Fourier division technique, the Wiener filter, and a Tikhonov L-2 norm regularized matrix
inversion technique. We compared the final image quality achieved by each deconvolution
technique, and evaluated each method’s robustness to noise. Using both qualitative and quanti-
tative assessments, it was found that the Tikhonov filter achieved the most accurate balance of
frequencies, a competitive image resolution and contrast-to-noise ratio, as well as the greatest
robustness to noise. While the Wiener filter achieved a similar resolution, it tended to underre-
present the lower frequency content of the deconvolved signals. It was also less robust to noise
in the recorded pressure signals. The performance of the Fourier filter was deemed to be the
poorest, based on the reconstructed images’ lowest resolution (blurriest appearance), generally
lowest contrast-to-noise ratio, as well as lowest robustness to noise. These trends were observed
across imaging subjects of various appearances. Overall, the Tikhonov filter was deemed to
produce the most desirable image reconstructions. Lastly, the results presented in this work
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demonstrate that the final photoacoustic image quality is highly dependent on the particular
method used for signal deconvolution, as well as its proper optimization.

Further work

In future work, we aim to examine whether post-reconstruction boosting of lower frequency
content could optimize the lower frequency content versus image resolution trade-off of the
Wiener deconvolution filter. We also aim to investigate additional deconvolution methods
such as Kalman filters, L-1 norm regularized deconvolution, and non-negativity constrained
matrix deconvolution. We also note that the deconvolution operation is an integral part of
reconstruction algorithms other than filtered backprojection as well, for example iterative
reconstruction methods. Hence, we aim to examine the effect of different deconvolution
schemes (such as the Fourier, Tikhonov, Wiener, and Kalman filters) on the performance of
such alternative reconstruction algorithms as well.

Supporting Information

S1 File. Filter parameter optimization. Figure A, Image reconstructions with Wiener
deconvolution for different values of 6. Note that the brain slice appears shrunken without
signal deconvolution. This is because the deconvolution also corrects for a slight time delay
between the true arrival of the pressure waves at the detector surface and the actual pressure
signal recorded by the scanner. This delay was present in all scans equally, including the scan
in which the scanner impulse response function p4(t) was measured. Without the deconvolu-
tion’s correction for this time delay, the backprojected signals are slightly shifted and mis-
aligned in space. This misalignment in turn results in the shrunken appearance of the
reconstructed brain slice. The spatial location of the brain slice within the reconstructed vol-
ume is identical for all reconstructions shown. The image intensities of the reconstructions are
normalized (black: 0, white: 1), and the dimensions of the MIP images are 20 x 20 mm.
Figure B, Image reconstructions with Tikhonov deconvolution for different values of 8.
Note that the brain slice appears shrunken without signal deconvolution. This is because the
deconvolution also corrects for a slight time delay between the true arrival of the pressure
waves at the detector surface and the actual pressure signal recorded by the scanner. This delay
was present in all scans equally, including the scan in which the scanner impulse response
function p4(t) was measured. Without the deconvolution’s correction for this time delay, the
backprojected signals are slightly shifted and misaligned in space. This misalignment in turn
results in the shrunken appearance of the reconstructed brain slice. The spatial location of the
brain slice within the reconstructed volume is identical for all reconstructions shown. The
image intensities of the reconstructions are normalized (black: 0, white: 1), and the dimensions
of the MIP images are 20 x 20 mm.

(PDF)
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