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Abstract

The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome.
Correct and complete annotation in addition to the underlying genomic sequence is particularly important when
interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned
to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system
can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system
under study. Until recently, the genome-wide annotation of 39 untranslated regions received less attention than coding
regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A.
thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which
locates 39 polyadenylation sites to within +/2 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are
illustrated where this combination of data allowed: (1) gene and 39 UTR re-annotation (including extension of one 39 UTR by
5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4)
identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and
their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes
and those seeking to interpret existing publically available annotations in the context of their own experimental data.
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Introduction

There are two key features to a genome: the underlying

sequence made up of the four nucleic acids (A, C, G, T), and its

annotation. The majority of applications of a genome sequence

rely on the gene structures and associated features provided by the

reference genome annotation. Methods to annotate a newly

sequenced genome are well developed and exploit both data-

driven and ab initio feature prediction [1,2], but annotation is

always derived from a snapshot of knowledge at the time it is

carried out. As new data become available, the annotation must be

revised if it is to remain relevant and useful (e.g. [3–6]). Annotation

projects for the most complete and well described metazoan

genomes: human[7]; mouse[8] and zebrafish[9], combine auto-

matic methods with manual curation to provide an authoritative

annotation that is regularly updated by incorporating new

experimental data (e.g. [10]). The reference annotations for most

other genomes rely more heavily on fully automatic annotation

with limited manual curation. Since the structure of the gene

transcript can vary according to cell type, treatment and other

stimuli, the annotation that is most relevant may need to be re-

defined for each set of experimental conditions. Advances in short-

read, high-throughput transcript sequencing (RNA-seq) and its use

in differential expression analysis have highlighted the importance

of accurate gene models and prompted the development of

methods to carry out experiment-specific predictions of gene

structure (e.g. see [2,11–14]). However, conventional RNA-seq

experiments often do not define the ends of genes with high

precision. Incorrect assignment of the 59 and 39 UTRs may cause

reads in an RNA-seq experiment to be assigned to intergenic

regions and so give erroneous estimates of gene expression.

Furthermore, the short read length may not provide evidence for
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an unambiguous gene structure where there are overlapping

genes, while RNAseq data that are not strand-specific are complex

to apply in areas where genes overlap.

Recently, techniques have been developed that allow sites of

cleavage and polyadenylation at the 39-end of transcripts to be

identified in a high-throughput manner. These include 3P-Seq

which has been applied to the characterisation of 39UTRs in

C.elegans [15] and zebrafish [16] and Helicos Bioscience’s single-

molecule direct RNA sequencing (DRS) [17] which has been

applied to large-scale 39UTR studies in human [18] A. thaliana

[19], and yeasts [20,21]. DRS [17] captures RNA by the poly(A)

tail and sequences the RNA immediately adjacent, so giving a very

clear read-out of the transcript’s 39-end. DRS is strand-specific,

has no amplification step, is less susceptible to internal priming

than other methods and since it sequences RNA not DNA, does

not require reverse transcription and the artefacts that can

generate.

DRS has already been used in an automatic protocol to re-

annotate the 39-ends of over 10,000 protein coding genes in A.

thaliana of which more than 3,400 were extended by at least 10 nt.

[19]. Prior to the introduction of high-throughput sequencing

technologies, expressed sequence tag (EST) libraries were com-

monly used to inform and validate gene models. Large libraries

were produced since each tag only gave information about parts of

a gene. Despite their size, EST libraries were often incomplete and

error-prone due to PCR and reverse transcriptase artefacts. In

contrast, RNA-seq datasets cover the vast majority of the

transcriptome, but are based on shot-gun sequencing which

requires reconstruction of the short reads. Typically, RNA-seq

data does not retain strand information of the parent mRNA

molecule.

In this study the potential of combining DRS with conventional

RNA-seq, small RNA-seq (sRNA-seq) and archival expressed

sequence tag (EST) data for genome annotation in human,

chicken and A. thaliana is explored. Combining DRS, RNA-seq,

EST and sRNA-seq data promises to mitigate the limitations of

each individual technology; providing multiple, orthogonal,

sources of evidence for gene intron/exon structure, 39 UTR

regions and mature small RNAs and microRNAs, even in complex

genomic regions.

Materials and Methods

In this paper, data from the authors’ own laboratories were

combined with data from public archives. The findings in this

study are based on data produced from multiple collaborations

and the choice of species reflects the data available rather than a

specific design. The source of all data presented here is described

below.

Gallus gallus (chicken) DRS Data
Sample Dissection. Pre Neural Tube (hereafter PNT)

explants were dissected from Hamburger and Hamilton stage

10, 10 to 12 somite chick embryos ([22]). The explant was taken

from a region rostral to the node and at a two presumptive somite

distance from the last somite formed (somite I). The notochord was

removed by controlled trypsin digestion aiming to keep the neural

ventral midline. Dissections were carried out in L15 medium at

4uC and explants were taken for RNA extraction and DRS

sequencing from three individual embryos (biological replicates).

RNA Extraction & Quality Testing. All surfaces and

dissecting tools were treated with RNAZap (Ambion) and rinsed

with DEPC-treated water. RNA was extracted from the three

PNT explants in Trizol reagent (Invitrogen) by phase separation

with chloroform, followed by precipitation with isopropanol and

linear acrylamide. The RNA was washed in 70% ethanol, air-

dried, re-suspended in DEPC-water and frozen in liquid nitrogen.

Total RNA was quantified and quality tested using the Agilent

RNA assay (Agilent Bioanalyser pico RNA chip) by Helicos

Biosciences. Samples with a RIN number above 8.0 were selected,

and were then sequenced by DRS ([17]), producing 7.2–16.4

million raw reads per sample.

DRS Data Processing. Raw DRS reads from each sample

were mapped to v2.1 of the chicken genome (Galgal3) with Helicos

Biosciences’ open-source mapping pipeline Helisphere (v2.0.022410)

with the default parameters. The mapped reads were then filtered

with four additional selection criteria to remove as much noise

from the data as possible. Only reads with unique, high-quality,

mappings to the genome (both locally and globally) were accepted.

DRS sequencing technology is prone to producing reads that

require a large number of insertions or deletions (in-dels) to align

to the genome ([17,23]). Accordingly, to minimise ambiguity, only

reads whose best-match alignments contained fewer than four

indels, and whose read length was greater than 25 bases were

accepted. Finally, all reads that map to any positions in the

genome with fewer than 3 reads coverage per replicate were

discarded. This threshold was chosen chose to require at least

three reads at a given genomic position in each of three replicates,

ensuring that the retained peaks were reproducible across the

three replicates and that they had a total signal-to-noise ratio

(based on Poisson counting statistics) of , = 3.

Based on the existing chicken genome annotations from

Ensembl, this resulted in a total of ,5,178 Ensembl genes with

measured expression in all three PNT DRS replicate datasets.

Data are available from www.compbio.dundee.ac.uk/polyadb and

will be deposited at the European Nucleotide Archive.

Gallus gallus Illumina RNA-seq Data
The publicly available chicken Illumina RNA-seq data

discussed here forms part of a study that examined gene expression

in mammalian organs (Short Read Archive study: SRP007412

GSE30352 - [24]). This study used the Illumina Genome Analyser

IIx platform to generate 76 bp reads for six tissues (brain - cerebral

cortex or whole brain without cerebellum, cerebellum, heart,

kidney, liver and testis) from one male and one female per somatic

tissue (two males for testis). Data for the chicken were generated

for this mammalian-focussed study as an evolutionary outgroup.

The data were downloaded from the Short Read Archive,

converted to fastq format with the SRA toolkit (v2.1.10, http://

www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view = software). The

reads in each dataset were then aligned to v2.1 of the chicken

genome (Galgal3) with the splice-aware alignment software TopHat

(v2.0.0, http://tophat.cbcb.umd.edu/ - [14]) in conjunction with

Bowtie (v2.0.0 beta5, http://bowtie-bio.sourceforge.net/index.

shtml - [13]), with the —coverage-search, —microexon-search and —

b2-very-sensitive options in addition to the TopHat defaults.

Combined, the twelve samples total ,251 M reads, 64%

(,161 M reads) of which map to the genome using these settings.

Remapping to Galgal4 raised the total proportion of mapped

reads to 69% but did not significantly affect the annotation

examples shown in this paper.

Homo sapiens skin DRS data
Sample Dissection. A clinically normal human skin sample

was obtained by 4 mm punch biopsy of skin tissue removed during

plastic surgical procedures from the abdomen of an adult female,

with approval from the local Research Ethics Committee, under

the governance of Tayside Tissue Bank. The biopsy sample was
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snap frozen in liquid nitrogen and stored at -80uC. The specimen

was disrupted and homogenised using a TissueLyser (Qiagen

TissueLyser LT, Qiagen, UK) at 50 oscillations per second for 5

minutes at 4uC. Total RNA (.200 nt in length) was extracted

using the Qiagen RNeasy Mini Kit according to manufacturer’s

protocol and stored at 280uC prior to RNA sequencing.

Sequencing was performed as previously described ([17]).

DRS Data Processing. The raw sequence data was aligned

to the GRCh37 release of the human genome with the open

source HeliSphere package (version 1.1.030309). Specifically

indexDPgenomic was run with the following parameters set: —

best_only —min_norm_score 4.0 —strands both —alignment_type GL the

remainder were kept to their defaults. Aligned data were filtered

with filterAlign in order to return only unique alignments from

reads at least 25 bp in length (,7 M reads remaining). Further

filtering was applied with in-house scripts to remove reads with

indels larger than four bases and singleton positions where only

one read was found, leaving 4,974,304 DRS reads for further

analysis. The data are available from www.compbio.dundee.ac.

uk/polyadb and will be deposited in the European Nucleotide

Archive.

Homo sapiens Illumina RNA-seq Data
A publicly available dataset was downloaded from the Short

Read Archive (Accession: SRX084679). As no skin sample data

was available, these data were from normal human epidermal

keratinocyte (NHEK) whole cells. The polyA+ purified RNA was

sequenced as 76 bp paired-end reads resulting in 46.4 M read

pairs in sample SRR315327.

All the reads were then aligned to the GRCh37 release of the

human genome with TopHat (v2.0.0) with the —coverage-search, —

microexon-search and —b2-very-sensitive options set in addition to the

TopHat defaults. Of the 46.4 M read pairs, 93.3% (43.3 M pairs)

aligned to the genome using these settings.

Homo sapiens sRNA-seq Data
Publically available data from a normal skin biopsy sample was

downloaded from the Short Read Archive (Accession:

SRX091761 [25]. The accession contains one sample (SRR) of

,21 M 36 bp single-end reads prepared via the Illumina small

RNA-seq protocol. The raw reads were quality clipped, had their

adapter sequences removed and any remaining reads shorter than

16 bp were discarded as previously described [26]. The remaining

18,722,725 reads were collated as 788,334 unique sequences for

alignment to the genome. The sequences were aligned to the

GRCh37 release of the human genome with bowtie v0.12.3

(parameters: -a —best —strata -v 1). Bowtie was chosen, rather than

bowtie2, as it is more suitable for small RNA-seq where gaps are of

less relevance and reads are ,50 bp in length.

Arabidopsis thaliana DRS data
RNA Extraction. A. thaliana WT Col-0 seeds were sown in

MS10 plates, stratified for 2 days at 4uC and grown at a constant

temperature of 24uC under 16 h light/8 h dark conditions. 14

days old seedlings were harvested. Total RNA was purified using

an RNeasy kit (Qiagen). No subsequent poly(A) of the RNA was

performed and further procedures in preparation or sequencing

were carried out as described in [17].

Raw DRS sequences were aligned by the open-source

HeliSphere package (version 1.1.498.63), to the TAIR10 release

of the A. thaliana genome. The indexDPgenomic aligner was run

with seed_size = 18, num_errors = 1, weight = 16, best_only = 1,

max_hit_duplication = 25, percent_error = 0.2; read_step = 4,

min_norm_score = 4.2, and strands = both options. Globally

non-unique alignment hits were discarded and one hit selected

at rand if there were several non-unique local hits found in a

genetic region. Reads with more than four indels were discarded

and read alignments refined by an iterative multiple alignment

procedure while DRS reads containing low complexity genomic

regions, as identified by DustMasker from the Blast+ 2.2.24

package, were discarded, as previously described [19]. These
additional filters reduced the fraction of potentially
incorrect alignments The data have been deposited European

Nucleotide Archive (ENA): Study, PRJEB3993; accession no,

ERP003245.

Arabidopsis thaliana RNA-seq data
RNA-seq reads available in the accession SRR394082 were

taken from the European Nucleotide Archive. These reads were

generated from total RNA extracted from 10 day-old seedlings of

A. thaliana (Columbia-0 ecotype) and sequenced by Illumina HiSeq

2000. All details of material preparation are described in [27]. The

51.8 M raw reads length of 50 bp were aligned with the splice-

aware alignment software TopHat v2.0.0 (this version of TopHat

uses Bowtie v2.0.0 beta5) with the —b2-very-sensitive option in

addition to the TopHat default options against the TAIR10 release

of the A.thaliana genome. The total number of uniquely aligned

reads was 48.8 M (94.2% of the raw reads).

Arabidopsis thaliana small RNA-seq data
Publicly available small RNA-seq data were taken from the

European Nucleotide Archive (accession number is SRR167709).

Total RNA for these data was extracted from immature flowers of

wild-type A. thaliana (Columbia-0 ecotype), processed with Illumina

Small RNA Sample Prep Kit and sequenced with HiSeq 2000

(Illimuna). The RNA extraction and sequencing procedures are

described in detail in [28]. The accession consists of 34.2 M of

36 bp non-aligned reads. The raw reads were quality-clipped, had

their adapter sequences removed and remaining reads shorter

than 16 bp were discarded as previously described [26]. The

remaining 12.7 M reads were collated as 6 M unique sequences

for alignment to the genome. The sequences were aligned to the

TAIR10 release of the A. thaliana genome with bowtie v0.12.3

(parameters: -a —best —strata -v 1).

Arabidopsis thaliana EST data
The A. thaliana EST data available in IGB were taken from the

PlantGDB resource which aggregates the EST sequences from

GenBank’s nucleotide database and splits them by species. The

sequences used here are from GenBank version 187. They can be

downloaded in fasta format from ftp://ftp.plantgdb.org/

download/FASTA_187/EST/Arabidopsis_thaliana.mRNA.EST.

fasta

Results

In this work, the definitions of ‘gene’ and ‘gene-associated

regions’ (GARs) as suggested by Gerstein and colleagues [29] are

followed. The results are divided into four sections where the

major strengths of combining DRS data with other high-

throughput transcriptomics data are highlighted by nine examples

of feature re-annotation of genes and their GARs. Section 1

focusses on how the broad-coverage of RNA-seq and EST data

help to bridge the gap between existing annotations and the DRS

read data, enabling improved annotation of transcribed, polyad-

enylated regions. Section 2 illustrates how the positional specificity

and native stranded-ness of DRS data enable re-annotation of

complex genomic regions, without which the RNA-seq data could
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not be used effectively either for re-annotation or further

downstream analysis. Section 3 examines the synergy between

standard RNA-seq, DRS and sRNA-seq data in providing a more

complete picture of non-coding RNA expression than any of these

datasets can provide individually. Section 4 briefly considers the

potential for combined data to enable the discovery of new genes.

Section 1: Gene and 39 UTR re-annotation by combining
DRS and RNA-seq data

A simple example: Chicken BMPR1A. The chicken

genome sequence and gene models based on EST data were first

released in 2004 (International Chicken Polymorphism Map[28])

with a second, more complete revision (v2.1) released 2006. A

draft update to v2.1 was released in 2012, but this is yet to be

annotated fully. Accordingly, most current research relies on v2.1

and its annotations and does not take account of evidence from

DRS experiments.

Figure 1 shows the genomic context and information sources

around BMPR1A, a gene important in development

(F1P3H0_CHICK, ENSGALG00000002003; [30–32]). The anno-

tation of this gene and its GARs differ between Ensembl and

RefSeq. Ensembl presents a single gene model and two short novel

protein coding models. The canonical transcript (EN-

SGALT00000003119, see Table 1) covers 39,530 bp with twelve

exons of 100298 bp, and an associated 228 bp 39 UTR. In

contrast, the RefSeq annotation covers 39,340 bp, including a

21 bp longer first exon and a 17 bp shorter 39 UTR. Although the

basic gene intron/exon structure and the 59 UTR are annotated in

Ensembl/RefSeq, no 39 UTR is present in the RefSeq annotation

and the 39UTR is short in the Ensembl annotation. There is no

peak in the DRS data at the end of either the RefSeq or Ensembl

39 UTR, but there are four peaks ,1.45, 1.9, 2.4 & 4.2 kb

downstream of the existing Ensembl annotation (Figure 1, Track

A, 1–4, respectively). These peaks all have canonical AATAAA

poly(A) motifs (#1 mismatch) located 15–22 bp upstream

suggesting they are genuine poly(A) sites, however the DRS data

alone do not reveal which, if any, of these sites should be

associated with BMPR1A.

EST and RNA-seq data can provide a bridge between the

Ensembl/RefSeq annotations and the DRS data. Despite their low

depth, the G. gallus EST data show almost continuous coverage

between the end of the 39 UTR annotated in Ensembl and the

most 39 DRS peak. However, the EST data are not conclusive;

there is a 400 bp gap in the EST coverage and the implied exon

structure is inconsistent with the existing annotations. The

addition of publically available RNA-seq data ([24]) strengthens

the confidence that the DRS peaks correspond to the 39-end of

BMPR1A. The RNA-seq data cover the proposed 39 UTR and

finish 1 bp beyond the fourth DRS peak. The RNA-seq data also

confirm the exon/intron structure of the existing gene annotations.

Although the RNA-seq data are non-uniformly distributed,

there are only three places in the proposed 39 UTR where the read

depth drops to zero. In all three examples, there is good

supporting evidence from overlapping ESTs that these gaps are

unlikely to represent the end of the gene. The combination of

DRS, EST and RNA-seq suggests the BMPR1A gene in G. gallus

should be re-annotated as shown in Table 1. The new annotation

indicates four alternative poly(A) sites exist in the developing

chicken embryo, but there is no evidence to support the two short

novel protein coding models Ensembl also provide as annotations

for this gene.

Complex, ambiguous, feature re-annotations: Chicken HOXA7.

The re-annotation of BMPR1 was comparatively straightforward

because the different datasets reinforce each other. A more

complex and ambiguous re-annotation is illustrated in Figure 2 for

the HOXA7 gene (ENSGALG00000011061, [33]). The Ensembl

annotation has a single transcript that covers 1,702 bp and

includes two exons (280 and 285 bp) and a short (36 bp) 39 UTR.

In contrast, the RefSeq annotation covers 1,837 bp, includes three

exons (278, 283 & 41 bp respectively) and has no defined 39 UTR.

The intron/exon structure of HOXA7 shown in Figure 2

appears to be simpler than BMPR1A. However, the DRS, EST

and RNA-seq datasets suggest this gene may have a more complex

structure than defined in Ensembl/RefSeq. Multiple peaks are

evident in the observed DRS dataset (Figure 2, Track K, 1–6) that

mark potential poly(A) sites associated with HOXA7. The first peak

(1) lies within the intron separating the two primary exons of the

gene. The second peak (2) is composed of three smaller peaks that

all lie within 30 bp of the end of the existing Ensembl annotation.

On the surface, these appear to support the existing 39 UTR

annotation, but the presence of a large peak in the DRS data

1.5 kb downstream (6), if genuinely associated with HOXA7,

suggests an alternative annotation that would not only extend the

39 UTR, but would also be the dominant transcript in the DRS

dataset for this gene. Peak 6 shows a canonical AATAAA poly(A)

motif 19 bp upstream, consistent with a genuine poly(A) site. Peaks

2–5 show long runs of adenosine bases immediately downstream of

each peak, suggesting that they might be the result of internal

priming while peak 1 shows neither of these features and it remains

unclear whether it is a true site of alternative polyadenylation.

In a similar fashion to the example shown in Figure 1 (Section

1.1), both the EST and RNA-seq data bridge the gap between

DRS peak 6 and the existing reference annotations. Together,

these data support the proposed 39 UTR re-annotation, despite

the EST data including a 500 bp region where the coverage is low

(#2 ESTs) and from an inferred exon structure that is inconsistent

with the existing annotation.

While the RNA-seq data support the proposed 39 UTR re-

annotation, they do not match the short initial exon present in the

RefSeq annotation and the EST data. The genomic sequence in

the 31 bp intron between the first and second exons in the RefSeq

annotation is marked as ‘N’s in the genomic sequence, making it

difficult to draw robust conclusions on the structure of the gene in

this region. Although this exon annotation is broadly supported by

the EST dataset, these data extend beyond the RefSeq annotation

suggesting a potential re-annotation of the 59 UTR.

This example shows considerable non-uniformity in the RNA-

seq data that map to the suggested 39 UTR, with several

significant (.50 bp) gaps in the RNA-seq coverage. The EST

coverage and the lack of known polyadenylation motifs in the

genomic sequence surrounding these gaps suggest that these are

artefacts intrinsic to the Illumina RNA-seq protocol and do not

represent the end of the 39 UTR associated with HOXA7.

Accordingly, a re-annotation of the HOXA7 gene in G. gallus

(Table 2) based on the combination of DRS, EST and RNA-seq

data is proposed. The annotation broadly supports the existing

intron/exon structure of the RefSeq annotation, but extends the 39

UTR by 1.5 Kb and suggests an alternative polyadenylation site.

The presence of the first intron is not strongly supported by the

RNA-seq data and may well be spurious or an extension of the

larger second exon, or specific to a particular tissue type or

biological condition not sampled by the RNA-seq experiment.

Since completion of this study, the Galgal3 genome has been

superseded by Galgal4 (released in Nov 2011) and its correspond-

ing annotations (ensembl v71 and later, Apr 2013). Despite the

undoubted improvements this new version has made to the

genome as a whole, the gene models for both BMPR1A and

HOXA7 have not changed significantly and our proposed
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reannotations for these genes remain pertinent for the latest

Galgal4 annotations (ensembl v74).

Gene and 39 UTR re-annotation for Homo sapiens

SLFN5. Although the human genome is actively curated, gene

models can still be revised with new data. For example, SLFN5 in

H. sapiens until recently had a significantly truncated 39 UTR.

Prior to v69 (Oct 2012), the SLFN5 Ensembl annotation was

composed of two alternative gene models; one covering 4,625 bp

spanning 4 exons, and the other covering 2,540 bp spanning 3

exons. The RefSeq annotation contained a single gene model

covering 4,654 bp spanning 4 exons. All these annotations

included a short 59 UTR encompassing a long intron and a

well-defined 1.8 kb 39 UTR. In the v69 Ensembl release, the

annotations for SLFN5 changed considerably. The 39 UTR for the

primary transcript was extended by ,6 kb and a third, shorter

gene model was added. To date (Feb 2013), there has been no

Figure 1. The genomic context around BMPR1A in G. gallus. Figures 1–8 are divided into three regions comprising information located on the
forward strand (pink), reverse strand (grey) and un-stranded information (yellow). Each region is subdivided into tracks showing a selection of the
different annotations/datasets described below. For clarity, tracks are omitted where the track contains no data in the region shown. Tracks A & K:
Histograms for forward (A) and reverse (K) strands computed by summing the number of uniquely aligned DRS reads that end at a position and
presented in units of read-counts/base. Tracks B & J: Filled rectangles show forward (B) and reverse (J) strand individual EST alignments for a
selection of the total EST coverage. Individual EST alignments that span across an implied exon splice junction are illustrated by a split bar
representing the sequenced EST joined by a thin line that spans the implied intron. Tracks C & I: Additional annotation information for forward (C)
and reverse (I) strands. This track shows annotation information that doesn’t originate from a primary reference database for the species. Details of
the specific annotations shown for each figure are given in the figure caption. Tracks D & H: Primary database annotations labelled with the
database primary identifier for forward (D) and reverse (H) strands. Multiple gene models are shown where appropriate. Exons are shown as thick
bars, UTRs as thinner bars and introns as thin lines. For A. thaliana this track shows the TAIR (v10) annotations. For the other examples in this paper,
this track shows Ensembl (v69, red) and RefSeq (v191, green) annotations. Track E: Unstranded RNA-seq read depth histogram, computed by
summing the number of uniquely aligned reads that cover at any given position and expressed in read counts/base. Track F: RNA-seq individual
read alignments, for a selection of the total read depth, shown as filled rectangles. Individual read alignments that span across an implied exon splice
junction are represented by a split bar representing the sequenced read joined by a thin line showing the implied intron. Track G: Unstranded sRNA-
seq read depth histogram, computed by summing the number of uniquely aligned sRNA-seq reads that cover at any given position and expressed in
units of read-counts/base. Figure 1 shows a ,57 kb region of G. gallus, chromosome 6, including BMPR1A (ENSGALT00000003119) and illustrates a
straight-forward gene re-annotation, where the RNA-Seq and DRS data combined are sufficient to define the extent, structure, and alternative
polyadenylation positions for a gene. Tracks C & I show confirmed complete coding sequence mRNA data for the region (GenBank v191 - orange) and
the locations of the Affymetrix chicken GeneChip microarray probe-sets (black markers), and the cDNA against which the Affymetrix probe-sets were
designed (light blue). See the Materials and Methods section for more details on the generation and processing of the G. gallus RNA-seq and DRS
data-sets. The EST data (B & J) are from [47]. The DRS track for the reverse strand (Track H) contains no data in the region shown and has been
removed for clarity.
doi:10.1371/journal.pone.0094270.g001
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Table 1. Comparison of annotations for BMPR1A.

Primary annotation Chr Begin (bp) End (bp) Strand Coverage (bp)

RefSeq: BMPR1A 6 3,546,262 3,585,602 + 39,340

ensembl: ENSGALT00000003119 6 3,546,283 3,585,813 + 39,530

Proposed re-annotation

EST/RNA-seq: 59 UTR 6 3,546,262 3,564,179 + 17,917

EST/RNA-seq: BMPR1A 6 3,564,180 3,585,585 + 21,405

DRS/EST/RNA-seq: 39 UTR 6 3,585,586 3,590,064 + 4,478

Summary 6 3,546,262 3,590,064 + 43,800

doi:10.1371/journal.pone.0094270.t001

Figure 2. The genomic context around HOXA7 in G. gallus. The individual tracks and layout of this figure are as described in Figure 1. Figure 2
shows a ,6 kb region of G. gallus, chromosome 2 that encompasses HOXA7 gene. The RNA-seq (Tracks E & F), Helicos BioSciences’ DRS (Tracks A & K)
and publically available EST (Tracks B & J) datasets for this region are ambiguous, but combined, the data clearly define the extent, and structure for
this gene. Tracks C & I show the same additional annotation tracks as shown in Figure 1. See the Materials and Methods section for more details on
the generation and processing of the G. gallus RNA-Seq and DRS data-sets. EST data were taken from [47].
doi:10.1371/journal.pone.0094270.g002
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change in the RefSeq annotation for this gene. Figure 3 shows the

genomic context around SLFN5 with the most recent annotations

from Ensembl and RefSeq. Both the DRS and RNA-seq data

show evidence for transcription continuing up to ,6 kb further

downstream than the current RefSeq annotation, and in

agreement with the current Ensembl annotation. However, the

DRS data reveals two alternative polyadenylation sites ,5 kb and

,8.5 kb (Figure 3, Track A, 1–2, respectively) from the first stop

codon in SLFN5, both of which have the canonical AATAAA

cleavage and polyadenylation signal upstream (19 & 24 bases,

respectively) of the DRS peak. One of these sites is coincident with

the Ensembl gene model, but the second site suggests a fourth

alternative gene model. The combination of the DRS and RNA-

Table 2. Comparison of annotations for HOXA7.

Primary annotation Chr Start (bp) Stop (bp) Strand Coverage (bp)

RefSeq: HOXA7 2 32,570,322 32,572,159 - 1,837

ensembl: ENSGALT00000018013 2 32,570,285 32,571,987 - 1,702

Proposed re-annotation

EST/RNA-seq: 59 UTR 2 32,572,160 32,572,292 - 132

EST/RNA-seq: HOX7A 2 32,570,322 32,572,159 - 1,837

DRS/EST/RNA-seq: 39 UTR 2 32,568,768 32,570,321 - 1,553

Summary 2 32,572,160 32,570,321 - 3,522

doi:10.1371/journal.pone.0094270.t002

Figure 3. The genomic context around SLFN5 in H. sapiens. This figure shows a ,6 kb region of H. sapiens, chromosome 17, that encompasses
the recently re-annotated SLFN5 gene. Two peaks in the DRS data for this region (Track A) reveal that even our most up-to-date annotations in heavily
curated genomes are often incomplete. The difference between the annotations provided by RefSeq and Ensembl (Track D) also highlights that
existing primary database annotations often disagree significantly, making downstream analysis results dependent of the reference database used for
individual studies. For full details of the individual tracks and layout of this figure, see the legend to Figure 1. See the Materials and Methods
section for more details on the generation and processing of the H. sapiens RNA-seq and DRS data-sets.
doi:10.1371/journal.pone.0094270.g003
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seq data suggests the SLFN5 gene in H. sapiens should be re-

annotated as described in Table 3.

Extension of 39 UTR for A. thaliana: AT4G02715. The

genome of A. thaliana has been extensively studied since it was

sequenced and released in 2000 ([34]). However, examination of

the first DRS data for A. thaliana [19] enabled the 39-ends of ,65%

of its genes to be re-annotated automatically by considering reads

within 300 bp of the TAIR10 annotated 39-end. Sherstnev et al

[19] only considered DRS data and this approach missed further

re-annotation possibilities. For example, Figure 4 summarises the

region around AT4G02715. The TAIR 10 annotation for this gene

consists of a 0.6 kb 59-UTR containing a single intron followed by

a single 0.6 kb exon. No significant DRS peaks are found within

the 300 bp window downstream of the 39 end of the current

annotation and so the algorithm described in [19] did not re-

annotate the 39 end of this gene. A cluster of DRS signals is

observed ,0.6 kb downstream (Figure 4, Track K, 2) followed by

a set of peaks ,0.65 kb further downstream (Figure 4, Track K, 3)

and another cluster of peaks ,0.25 kb still further downstream

(Figure 4, Track K). The RNA-seq data covers the full extent of

the downstream region up to DRS peak 3. Like many poly(A) sites

in Arabidopsis, peak 3 is composed of at least four peaks of varying

strength, several of which are broader than the 62 bp positional

accuracy of the DRS data [19]. The RNA-seq data also identify an

intron ,1 kb upstream of the end of the current annotation. The

protein coded by AT4G02715 has yet to be characterized and the

current annotation represents the longest ORF in this genomic

region, suggesting that the proposed extension reflects the 39 UTR

of this gene. The RNA-seq data show weak expression extending

out to within a few bases of peak 4, but the unmatched nature of

the DRS and RNA-seq samples makes it difficult to draw strong

conclusions about the nature of this region. It is possible this region

is an alternative transcript for AT4G02715 that is not expressed in

the archival RNA-seq dataset.

Table 4 shows the proposed re-annotation of AT4G02715 in A.

thaliana based on the RNA-seq and DRS data. In the new

annotation, the DRS data describes the primary gene transcript

and tentatively suggests the presence of alternative transcripts.

A. thaliana: AT1G68945 – annotation and data

inconsistent. Figure 5 shows AT1G68945 which has been

confirmed as protein coding from cDNA and EST data, although

the protein product has yet to be characterized. It has only one

annotated gene model, comprising a long 59 UTR, a single coding

exon, and a short 39 UTR. No significant DRS peaks are found

associated with this gene model or within the 300 bp window

downstream of the 39 end of the current annotation and so the

algorithm described in [19] does not re-annotate this gene and

leads to the conclusion that it is not expressed. Curiously however,

a strong signal is seen in the DRS data on the opposite strand, at

the start of the 59 UTR annotation. This peak is broad, covering

,20 bp, suggesting multiple possible poly(A) sites. Reads from the

un-stranded RNA-seq data align precisely to the gene position

confirming its location but not which strand it is on. One possible

interpretation of this region is that there is a gene on the reverse

strand that is not annotated in TAIR10 (as suggested in Table 5)

this is also supported by single-stranded RNA-Seq data from the

Ecker Lab [35]. However, the reverse strand in this region of the

current genome build contains multiple stop codons suggesting it is

unlikely to represent a single protein coding gene.

Section 2: Disentangling gene expression in complex
genomic regions

Homo sapiens: Mettl12. Figure 6 illustrates the genomic

region around the gene Mettl12 which is located on the forward

strand of chromosome 11. This region shows the challenges of

annotation and expression quantification in complex regions and

how combining different datasets, in particular strand-specific data

that defines 39-ends, can help alleviate some of these difficulties.

Ensembl v69 provides several different gene annotation models

for Mettl12, while RefSeq reports a single gene model that is

significantly different to the Ensembl annotations. All these models

agree on a 59 UTR that includes an intron, within which resides a

copy of the snoRNA, snorna57 (this is one of four copies of this

snoRNA that occur in the human genome). The Mettl12 locus is

additionally complicated by the presence of a large protein-coding

ORF, C11orf48, on the antisense strand that overlaps Mettl12

completely. Ensembl provides a total of thirteen different gene

models for C11orf48, while RefSeq lists a single gene model. In

addition, the annotated 59 UTRs of several C11orf48 gene models

overlap with the 59 UTR of the forward strand ORF C11orf83,

Table 3. Comparison of annotations for SLFN5 gene locus.

Primary annotation Chr Start (bp) End (bp) Strand Coverage (bp)

RefSeq: SLFN5 (NM_144975) 17 33,570,086 33,594,768 + 24,682

ensembl: ENST00000299977 17 33,570,055 33,600,674 + 30,619

ensembl: ENST00000542451 17 33,570,090 33,593,379 + 23,289

ensembl: ENST00000299977 17 33,570,108 33,586,839 + 16,731

Proposed re-annotation 1

RNA-seq: 59 UTR 17 33,570,055 33,585,708 + 15,653

RNA-seq: SLFN5 17 33,585,709 33,592,121 + 6,412

RNA-seq/DRS: 39 UTR 17 33,592,121 33,597,113 + 4,992

Summary 17 33,570,055 33,597,113 + 27,057

Proposed re-annotation 2

RNA-seq: 59 UTR 17 33,570,055 33,585,708 + 15,653

RNA-seq: SLFN5 17 33,585,709 33,592,121 + 6,412

RNA-seq/DRS: 39 UTR 17 33,592,121 33,600,669 + 8,548

Summary 17 33,570,055 33,600,669 + 30,613

doi:10.1371/journal.pone.0094270.t003
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which itself has two separate gene models. The details of all these

annotations are provided in Table 6.

As one might anticipate for such a complex region, the un-

stranded Illumina RNA-seq data for this region are ambiguous, so

quantifying gene expression from these data is problematic. The

terminal four exons of C11orf48 are strongly-expressed (read depth

,150–300) suggesting that the gene model ENST00000524958 is

the predominant expressed form of C11orf48 in these data. This is

reinforced by reads that map across the intron/exon boundaries

for this gene model. Importantly, there are no reads mapping

across any splice junctions immediately prior to the start of this

annotation, clearly delineating this model from the others for

C11orf48. Similarly, two exons of C11orf83 are also strongly-

expressed and show a consistent splicing pattern, but the

expression appears to be truncated at a position that is inconsistent

with all the current 39 UTR annotations for C11orf83, suggesting a

possible new gene model for this gene. The picture in the

intervening region, which covers Mettl12, snora57 and another gene

model for C11orf48, is far less clear. The low-level expression in

this region shows little in the way of distinct exon/intron

boundaries that would help to identify the origin for this

expression, but marginal evidence for some other transcripts of

C11orf48 and for expression from Mettl12 can be identified from

individual reads that map across appropriate exon/intron

boundaries.

In contrast, the DRS data are more straightforward to interpret

and quantify, since they reliably identify the sequenced strand.

Hence, they can be used to help inform the gene annotations and

quantify the gene expression in human skin within this genomic

region. The DRS data have four distinct sites of expression; three

on the forward strand (Figure 6, Track A, 1–3) and one on the

reverse strand (Figure 6, Track K). On the forward strand, peaks 1

& 2 coincide with the Mettl12 annotations. Peak 1 is located in the

59 UTR of the annotations but downstream of snorna57 suggesting

that this peak represents expression of the snoRNA precursor

rather than the gene. Peak 2 is located in the annotated 39 UTR of

Mettl12, however it is only 13 bp downstream of the stop codon.

The sequence in this region does not show any strong candidates

for internal priming and the upstream sequence contains a slight

variation on the canonical poly(A) motif (ATTAAA) 17 bp

upstream. Although this signal hints at a new gene model for

Mettl12, with a short 39 UTR, the low-level of the expression

Figure 4. The genomic context around AT4G02715 in A. thaliana. A ,3 kb region of A. thaliana on chromosome 4 is shown, which
encompasses AT4G02715. In this case the extensive 39 UTR extension suggested by the DRS data (Track K) shows how this re-annotation was missed
even by the automated re-annotation algorithm applied in [19]. For full details of the individual tracks and layout of this figure, see Legend to
Figure 1. See the Materials and Methods section for more details on the A. thaliana RNA-seq, EST and DRS data-sets, and their processing.
doi:10.1371/journal.pone.0094270.g004
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Table 4. Comparison of annotations for AT4G02715 gene locus.

Primary annotation Chr Start (bp) End (bp) Strand Coverage (bp)

TAIR10: AT4G02715 4 1,203,279 1,202,169 - 1,110

Proposed re-annotation 1

RNA-seq/EST: 59 UTR 4 1,203,279 1,202,998 - 281

RNA-seq/EST: AT4G02715 4 1,202,998 1,202,169 - 829

RNA-seq/DRS/EST: 39 UTR 4 1,202,169 1,200,886–1,200,975 - 1194–1,279

Summary 4 1,203,279 1,200,886–1,200,975 - 2,304–2,389

Proposed re-annotation 2

RNA-seq/EST: 59 UTR 4 1,203,279 1,202,998 - 281

RNA-seq/EST: AT4G02715 4 1,202,998 1,202,169 - 829

RNA-seq/DRS/EST: 39 UTR 4 1,202,169 1,200,688 - 1,481

Summary 4 1,203,279 1,200,688 - 2,591

Proposed re-annotation 3

RNA-seq/EST: 59 UTR 4 1,203,279 1,202,998 - 281

RNA-seq/EST: AT4G02715 4 1,202,998 1,202,169 - 829

RNA-seq/DRS/EST: 39 UTR 4 1,202,169 1,200,666 - 1,503

Summary 4 1,203,279 1,200,666 - 2,613

doi:10.1371/journal.pone.0094270.t004

Figure 5. The genomic context around AT1G68945 in A. thaliana. This figure shows a ,600 bp region of A. thaliana, chromosome 1, around
the existing annotation of the gene AT1G68945. In this case, the DRS data for this region (Track K) reveal that the existing annotation is on the
incorrect strand. This kind of situation is difficult for automated re-annotation pipelines to deal with, particularly if they focus on using natively un-
stranded data, such as Illumina RNA-Seq, to inform the annotation. This highlights necessity of natively stranded data, such as DRS data, for correctly
defining feature annotations. For full details of the individual tracks and layout of this figure, see Figure 1 (caption). See the Materials and Methods
section for more details on the A. thaliana RNA-Seq, EST and DRS datasets, and their processing.
doi:10.1371/journal.pone.0094270.g005
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makes this inconclusive. Further downstream on the forward

strand, C11orf83 is strongly expressed in the DRS data (peak 3),

again with an apparently shorter 39 UTR than annotated. The

details of all these novel transcript annotations are provided in

Table 6. The data are not as clear for the reverse strand. Assuming

the current annotations are correct, the exquisite positional

precision of the DRS data and the lack of any DRS peaks at

other locations on the reverse strand, suggest four strong gene-

model candidates. Of these, model ENST00000524958 is consis-

tent with the DRS data and the RNAseq data, supporting the

conclusion that this is the predominantly expressed form of

C11orf48, at least in these samples. The other potential models

may be correct, just not expressed in these samples.

Homo sapiens: RPL31. Figure 7 illustrates another example

of a complex genomic region with ambiguous expression for

convergent genes on opposite strands. On the forward strand,

RPL31 has eleven gene models annotated in Ensembl, and three

annotated in RefSeq. Across these models, the 59 UTR is

annotated with seven different start positions and the 39 UTR is

annotated with twelve alternative end positions. On the reverse

strand, TBC1D8 is similarly complex, with ten Ensembl gene

models and one RefSeq, four of which overlap with the five longest

forms of RPL31.

Again, as one might expect for such a complex region, the

RNA-seq data are ambiguous. The RNA-seq data include five

strong peaks that echo the exon and UTR structure of five of the

RPL31 gene models, however the considerable low-level expres-

sion covering much of the region makes it hard to draw firm

conclusions from RNA-seq data alone. This ambiguity is

dramatically reduced with the addition of the DRS data. In the

DRS data, a strong signal is observed coincident with the

downstream edge of the fifth RNA-seq peak (Figure 7, Track A,

Table 5. Comparison of annotations for AT1G68945 gene locus.

Primary annotation Chr Start (bp) End (bp) Strand Coverage (bp)

TAIR10: AT1G68945 1 25,926,962 25,927,330 + 368

Proposed re-annotation

RNA-seq/EST: 59 UTR 1 25,927,329 25,927,314 - 15

RNA-seq/EST: AT1G68945 1 25,927,313 25,927,167 - 146

RNA-seq/DRS/EST: 39 UTR 1 25,927,166 25,926,947–25,926,967 - 199–219

Summary 1 25,927,329 25,926,947–25,926,967 - 360–380

doi:10.1371/journal.pone.0094270.t005

Table 6. Comparison of annotations for Mettl12 gene locus.

Primary annotation Chr Start (bp) End (bp) Strand Coverage (bp)

RefSeq: Mettl12 11 62,432,779 62,434,923 + 2,145

ensembl: ENST00000532971 11 62,432,781 62,435,580 + 2,800

ensembl: ENST00000398922 11 62,432,781 62,434,869 + 2,089

ensembl: ENST00000529868 11 62,432,785 62,435,968 + 3,184

Proposed re-annotation

RNA-seq: 59 UTR 11 62,432,794 62,433,350 + 557

RNA-seq: Mettl12 11 62,433,351 62,434,522 + 1,172

RNA-seq/DRS: 39 UTR 1 11 62,433,867 62,434,535 + 4,992

Primary annotation

RefSeq: snoRNA57 11 62,432,893 62,433,041 + 148

Ensembl: ENST00000206597 11 62,432,893 62,433,041 + 149

Additional annotation 11

snoRNA57 precursor 11 62,432,794 62,433,179 + 385

Primary annotation

RefSeq: C11orf83 11 62,439,125 62,441,161 + 2,036

ensembl: ENST00000531323 11 62,437,745 62,441,049 + 3,304

ensembl: ENST00000377953 11 62,439,126 62,441,159 + 2,033

Proposed re-annotation

RNA-seq: 59 UTR 11 62,439,125 62,439,216 + 91

RNA-seq: C11orf83 11 62,439,217 62,439,584 + 367

RNA-seq/DRS: 39 UTR 1 11 62,439,585 62,439,844 + 259

Summary 11 62,439,125 62,439,844 + 719

doi:10.1371/journal.pone.0094270.t006
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peak 1). This broad peak covers ,20 bp and encompasses the 39

UTR ends of seven of the annotated models. The sequence

immediately upstream of the peak is strongly AT rich, suggesting

that the location of the poly(A) site in RPL31 may not be very

precisely controlled. Instead, a range of possible poly(A) positions

occur with different likelihoods within this window.

Interestingly, two small peaks also occur in the DRS data

further downstream (Figure 7, Track A, peaks 2 & 3), close to three

of the longer RPL31 gene models. The first of these extends the

nearest gene model by 56 bp, the second lies within 5 bp of the

end of the longest annotated model. Both of these peaks have the

AATAAG variant of the canonical polyadenylation signal ,19

bases upstream of the peak. This weak but distinct signal clearly

demonstrates that the shorter RPL31 gene models are not the only

form of transcripts made from this gene in these data. On the

reverse strand, the DRS data shows a strongly expressed peak

Figure 6. The genomic context around Mettl12 in H. sapiens. This figure shows a complex region of the human genome that is difficult to
annotate either automatically or manually. The combination of DRS and RNA-Seq data for this ,13 kb region of H. sapiens, chromosome 11, brings
greater clarity to the feature annotation in this region, that either dataset individually is incapable of providing. In particular, the DRS data on the
forward strand (Track A) clearly identifies the expression of snoRNA57, in the first intron of Mettl12, and several new transcripts for both Mettl12 and
C11orf83. The combination of the exon structure seen in the RNA-seq data (Tracks E & F) and the DRS data on the reverse strand (Track K) clearly
identify the dominant form of C11orf48 observed in these data. For full details of the individual tracks and layout of this figure, see Figure 1 (caption).
See the Materials and Methods section for more details on the H. sapiens RNA-Seq and DRS datasets, and their processing.
doi:10.1371/journal.pone.0094270.g006
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(Peak 5) that is coincident with the end of the 39 UTR annotated in

the RefSeq TBC1D8 gene model. However, a second peak

,1.2 kb further downstream (Peak 4), identifies a new putative

polyadenylation site for this gene. Both of these peaks show the

polyadenylation motif AATAAG ,20 bp upstream. Accordingly,

a new gene model is proposed for RPL31 that results in a

transcript that overlaps with all the RPL31 gene models. The

details are highlighted in Table 7.

Section 3: A clearer picture of small RNA expression
It is currently not possible to quantify the expression of long and

short RNAs in a single RNA-Seq experiment. In order to identify

expression of mature miRNAs, in particular, a protocol is used

that specifically selects very short (,30 bp) RNA species and so

excludes the ,200 bp fragments commonly selected by RNA-seq

protocols. Mature intergenic miRNAs are ,21 bp single stranded

RNA molecules processed out of pre-miRNA hairpin loops found

in pri-miRNA transcripts and are transcribed by RNA polymerase

II ([36]). The pri-miRNAs have been shown to be polyadenylated

Figure 7. The genomic context around RPL31 in H. sapiens. This ,25 kb region of H. sapiens, chromosome 2, again highlights the difficulties in
interpreting unstranded data in complex genomes. This region encompasses the gene RPL31 on the forward strand and TBC1D8 on the reverse
strand. Many of the existing annotations for these two genes overlap (Tracks D & H) making unstranded data difficult to interpret with certainty. The
natively stranded DRS data (Tracks A & K) clearly delineate the ends of the transcripts observed from both these genes, including a new annotation
for TBC1D8. For full details of the individual tracks and layout of this figure, see Figure 1 (caption). See the Materials and Methods section for more
details on the H. sapiens RNA-seq and DRS datasets, and their processing.
doi:10.1371/journal.pone.0094270.g007

Combining Data for Genome Annotation

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e94270



via a variety of methods including PCR primers ([36–38]),

sequence analysis ([39]) and sequencing ([40]). The miRNA*,

which is not loaded in the RISC complex is not normally retained,

but can often be observed in high-throughput sequencing.

miR-200c and miR-141 illustrate the advantages of combining

DRS and RNA-seq data with small RNA-seq (sRNA-seq) data for

a better characterisation of intergenic pri-miRNAs. Figure 8 shows

the genomic region around miR-200c and miR141. This region is

flanked by genes that are expressed in the DRS and RNA-seq

data; PTPN6 on the forward strand (Figure 8, Track D) and PHB2

on the reverse strand (Figure 8, Track H). Aligning directly with

the miRNA annotations are two pairs of peaks in the sRNA-seq

data (Figure 8, Track G, 1 & 2) that correspond to the mature

miRNAs miR-200c-5p/3p and miR-141-5p/3p sequences. In

each case, the 3p sequences are the dominant expressed form, as

shown by the relative heights of the sRNA-seq peaks within each

pair.

The structure and extent of the pri-miRNA is clearly delineated

by the RNA-seq data (Figure 8, Track E) in the regions flanking

the two mature miRNA loci. No reads are detected within the

intronic region that covers the pre- or mature miRNA regions

suggesting that the pre-miRNAs processing and cleavage occurs

rapidly, leaving the 59 and (polyadenlyated) 39 end fragments to be

slowly degraded. The DRS data support this picture showing a

cluster of expression ,200 bp downstream of miR-141-3p on the

forward strand (Figure 8, Track A, 3) that has the tandem

polyadenylation site motif AATAAATAAA 26 bp upstream.

Table 7. Transcript annotations for RPL31 gene locus.

Primary annotation Chr Start (bp) End (bp) Strand Coverage (bp)

RefSeq: RPL31 NM_001098577.2 2 101,618,690 101,636,154 + 17,464

RefSeq: RPL31 NM_001099693.1 2 101,618,690 101,622,884 + 4,194

RefSeq: RPL31 NM_000993.4 2 101,618,690 101,622,884 + 4,194

ensembl: ENST00000264258 2 101,618,177 101,623,729 + 5,612

ensembl: ENST00000409320 2 101,618,755 101,622,880 + 4,125

ensembl: ENST00000409711 2 101,619,153 101,622,829 + 3,676

ensembl: ENST00000456292 2 101,619,153 101,622,533 + 3,380

ensembl: ENST00000409000 2 101,618,691 101,621,066 + 2,375

ensembl: ENST00000409028 2 101,618,745 101,636,078 + 17,333

ensembl: ENST00000409650 2 101,618,755 101,634,751 + 15,996

ensembl: ENST00000409038 2 101,618,755 101,634,768 + 16,013

ensembl: ENST00000409733 2 101,618,755 101,622,881 + 4,126

ensembl: ENST00000441435 2 101,619,201 101,640,494 + 21,293

ensembl: ENST00000419276 2 101,618,773 101,622,885 + 4,152

Proposed re-annotation 1

RNA-seq: 59 UTR 2 101,618,690 101,619,162 + 472

RNA-seq: RPL31 2 101,619,163 101,622,842 + 3,679

RNA-seq/DRS: 39 UTR 1 2 101,622,843 101,622,865–101,622,887 + 22–44

Summary 2 101,618,690 101,622,865–101,622,887 + 4,175–4,197

Proposed re-annotation 2

RNA-seq: 59 UTR 2 101,618,690 101,619,162 + 472

RNA-seq: RPL31 2 101,619,163 101,635,499 + 3,679

RNA-seq/DRS: 39 UTR 1 2 101,635,500 101,636,201 + 22–44

Summary 2 101,618,690 101,636,201 + 4,175–4,197

Proposed re-annotation 3

RNA-seq: 59 UTR - - - -

RNA-seq: RPL31 2 101,619,201 101,640,097 20,896

RNA-seq/DRS: 39 UTR 1 2 101,640,098 101,640,488 390

Summary 2 101,619,201 101,640,488 21,287

Primary annotation

RefSeq: TBC1D8 2 101,623,690 101,767,846 - 4,163

Ensembl: ENST00000409318 2 101,624,079 101,767,846 - 3,803

Proposed re-annotation

RNA-seq: 39 UTR 2 101,622,395 101,624,281 - 1,886

RNA-seq: TBC1D8 2 101,624,282 101,767,714 - 143,432

RNA-seq/DRS: 59 UTR 2 101,767,715 101,767,730 - 15

doi:10.1371/journal.pone.0094270.t007
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Section 4: Novel gene discovery
In addition to improving existing annotations, the combination

of DRS, RNA-seq and other datasets also identifies and

characterises genomic regions containing new feature candidates.

The discovery of potential new snoRNAs in the downstream

region of the gene AT4G10810 in A. thaliana, shown in Figure 9, is

an example. The RNA-seq data downstream of AT4G10810 shows

significant low-level expression over a ,600 bp region, with no

strong evidence for intron/exon structure (Figure 9, Track E, 1).

The DRS data in this region are complex, showing a considerable

number of small peaks that suggest multiple possible alternative

polyadenylation sites (Figure 9, Track K, 2). Combined, these

imply a cluster of short, currently un-annotated, features. This

picture is reinforced by the large peak in expression seen in the

sRNA-seq data in this region (Figure 9, Track G, 3). This peak

does not show the two-peak structure characteristic of mature

miRNA sequences (see Section 4), leaving us to speculate on the

nature of this short feature. The SnoSeeker (v1.1, [41]) snoRNA

prediction algorithm predicts a snoRNA coincident with this

Figure 8. The genomic context around hsa-mir-200c,141 in H. sapiens. It is currently not possible to quantify the expression of both long
and short RNAs in a single RNA-seq experiment making it difficult to get a complete picture of miRNA transcription. In this example, the combination
of DRS (Track A), RNA-seq (Tracks E & F) and sRNA-seq (Track G) datasets shows the extent of the pri-miRNA that codes for miR-200c and miR-141. The
lack of reads detected in the intronic region of the pri-mRNA in the RNA-seq data also suggests that the pri- and pre-miRNA processing stages occur
rapidly. See the Materials and Methods section for more details on the H. sapiens RNA-seq, DRS and sRNA-seq datasets, and their processing.
doi:10.1371/journal.pone.0094270.g008
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position suggesting that this is a previously undiscovered snoRNA

gene. The details for the novel gene structure are in Table 8.

Discussion

Detailed, complete, genomic feature annotations are a corner-

stone of modern biology. Their importance, particularly for

experiments that rely on high-throughput transcriptomics, cannot

be overstated. However, defining these annotations is not a trivial

task and is made more difficult by the fact that there may be

multiple ‘correct’ annotations for a gene. While the importance of

accurate annotations is widely recognised, the impact that

alternative individual annotation, or an alternative set of

annotations, has on the subsequent downstream analysis (e.g.,

Figure 9. The genomic context around AT4G10810 in A. thaliana. This figure shows a ,2 kb region of A. thaliana, chromosome 4, including
AT4G10810 that demonstrates the capability of combined DRS, RNA-seq and sRNA-seq to identify novel genes. This also highlights some of the
limitations of automated re-annotation algorithms that are based on arbitrarily chosen parameter values. In this case, [19] (2012), provide a re-
annotation of the 39 UTR of AT4G10810 by focussing on the DRS data within a region 300 bp downstream of the end of the primary database
annotations (Track K). For most A. thaliana genes, this proves to be an effective strategy, but occasionally it results in incorrect re-annotations. Here,
the region downstream of AT4G10810 encompasses multiple relatively weak DRS peaks (Track K, 2) and Sherstnev et al mistakenly re-annotate the
gene to include many of these peaks (Track I). In fact, the RNA-seq data (Tracks E & F, 1) clearly identify the spatial separation between AT4G10810 and
the significant low-level downstream expression, suggesting a novel gene, or cluster of genes. Interestingly, a strong peak in the sRNA-seq data in
this region (Track G, 3), coupled with a coincident prediction from SnoSeeker (Track I), strongly suggests the presence of a novel snoRNA in this
region. See the Materials and Methods section for more details on the generation and processing of the A. thaliana RNA-seq, sRNA-seq, EST and
DRS datasets.
doi:10.1371/journal.pone.0094270.g009
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differential gene expression) and biological understanding is less

well appreciated. Two distinct classes of problem occur commonly

for genome annotations; an incomplete set of feature annotations

and/or an unreliable individual feature annotation.

The known set of human genes is an example of an incomplete

set of feature annotations, i.e. a set of individual annotations (each

of which may also be incomplete), that is missing discrete members

of the set. Over the past decade considerable effort has been

expended in manually curating the annotations for the human

genome. As a consequence, the annotations for known genes is

precise given the available data but the set as a whole is still likely

to be missing as-yet undiscovered genes and alternatively

processed mRNA isoforms ([29]). For human and other heavily

curated genomes, even though the full set of information is not

known, the information that exists for the individual annotations is

often reliable. Providing the set is not too incomplete, this will have

relatively little impact on downstream analyses that rely on these

annotations. One important exception is where features that are

not annotated overlap completely with known features. For

example, the observed fold change for such a region could be

completely misleading and would not reflect the underlying

biology if expression of the overlapping genes is very different.

Unreliable individual annotations present a different challenge.

Here, members of a set of feature annotations (that may be

partially complete) are based on a limited or significantly imprecise

set of information. The impact this has on any downstream data

analyses depends on the properties of the data being used and the

specific analyses. For example, differential gene expression

between two experimental conditions based on RNA-seq data is

not dramatically sensitive to having marginally inaccurate

annotation of gene structure unless the gene structure changes

between conditions. Since the conditions being compared both use

the same annotations, and given that the annotations are covered

by a significant majority of the reads, the calculated fold change

will be similar to the actual fold change that would be calculated

using a more accurate set of annotations. Techniques that focus on

one region of the gene such as DRS are far more sensitive to

inaccurate or incomplete annotation information. If the locus that

has been sequenced is not included within the annotated GARs of

the gene then no (or very little) expression will be attributed to this

gene in either condition, regardless of the true change in

expression in the data.

For most published genomes, the available annotation is the

result of an automated prediction-based annotation pipelines (see,

for example, [42], [43]). Automated gene prediction is a difficult

challenge (see [44]) and these first-pass annotations often contain

considerable inaccuracies. Re-annotation using automatic meth-

ods typically involves discarding the current set of annotations and

building the annotations again from scratch as the genome

sequence is improved. In some cases, re-annotation has been

attempted by supplementing the current annotations guided by

high-throughput transcriptomics sequencing data ([19]). Automat-

ed, but data-driven, re-annotations can provide a considerable

increase in the quality of feature annotations however they still

have several drawbacks. Typically automatic methods depend on

several arbitrarily set parameters such as the size of the window

probed for new feature endpoints and the minimum number of

reads required to extend an annotation (this is also true of

automated annotation pipelines). As a result, many individual

feature annotations will remain inaccurate and/or the annotation

set remain incomplete. The A. thaliana re-annotation provided by

[19] considerably extends and improves on an already compre-

hensive and detailed genome annotation in a well-studied model

species (TAIR version 10 - [45]). However, the automated

annotation method is unable successfully to re-annotate genes

requiring a 39 extension longer than the 300 bp downstream

window, nor can it distinguish between a genuine new 39 end

annotation or the 39 end of a new short gene located immediately

downstream of an existing annotation (see, for example, Section 5

and Figure 9). Even after re-annotation dozens of intergenic DRS

peaks (many comprised of .50 raw reads) remain un-accounted

for, indicating the need for a more careful data-driven re-

annotation.

The majority of high-throughput transcriptomics sequencing

datasets are not generated with the primary intention of re-

annotating genomic features, yet these datasets provide a wealth of

information that can do exactly that. Individual sequencing

technologies often show characteristics that make it difficult to

base strong conclusions about feature re-annotation solely on the

data they generate (Table 9). The experience gained in the present

study suggest that genome annotation efforts that focus on using a

single data type (for example, [46]) are likely to have difficulty

producing a high-quality, high-completeness set of feature

annotations for eukaryotic genomes. Combining the strengths of

RNA-seq data, short RNA-seq, archival EST/mRNA data and

strand-specific sequencing that defines the 39-end is particularly

effective at overcoming the weaknesses inherent to data generated

from any one of these technologies individually (Table 5). These

data can be used to identify and characterise gene intron/exon

structure, and characterise GARs associated with these genes. The

Table 8. Transcript annotations for AT4G10810 gene locus.

Primary annotation Chr Start (bp) End (bp) Strand Coverage (bp)

TAIR10: AT4G10810 4 6,646,335 6,645,715 - 620

[19] 4 6,646,335 6,645,421 - 914

Proposed re-annotation 1

RNA-seq/EST: 59 UTR 4 6,646,335 6,646,229 - 106

RNA-seq/EST: AT1G68945 4 6,646,230 6,645,984 - 246

RNA-seq/DRS/EST: 39 UTR 4 6,645,985 6,645,715–6,645,864 - 121–270

Summary 4 6,646,335 6,645,715–6,645,864 - 471–620

Proposed re-annotation 2

Novel snoRNA 4 6,645,422 6,645,529 - 107

snoSeeker Predicted snoRNA 4 6,645,420 6,645,538 - 118

doi:10.1371/journal.pone.0094270.t008
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examples of gene re-annotation described here are the result of

manual interpretation and integration of these different data. The

steps in this manual process are not hard-and-fast rules, but rather

flexible, somewhat fuzzy, interpretive decisions. A simplified flow

diagram capturing the core steps of this process is shown in

Figure 10 and highlights those aspects of this decision-making

process that require qualitative judgement. While this flow

diagram has proved difficult to automate in software, the

framework may form the basis for the development of a logic-

based system for re-annotation, or a rule-based ‘‘expert system’’ to

help a skilled genome annotator. The DRS data is particularly

important in this process, both by providing precise information

about the termination point of 39 UTRs and by unambiguously

identifying the strand for the gene expression data. Accurately

constraining 39 UTRs associated with genes is particularly

important for alternative polyadenylation studies, microRNA

and other regulatory element binding site identification. It is also

important for downstream differential gene expression analysis

and functional pathway analysis, because a significant fraction of

RNA-seq reads, and all DRS reads, associated with a gene lie

within their associated 39UTR.

Careful re-annotation of genome features from data such as

these holds great potential for novel discoveries in addition to

improving the quality and reliability of every scientific result which

builds on the re-annotated features. The examples presented here

are entirely data-driven, removing the need to rely on computa-

tional predictions. However, this re-annotation process is not

always straightforward even with complementary data sets and it

has proven to be difficult to automate effectively (particularly

compared to standard gene prediction routines). It is clear that

Figure 10. Reannotation flow diagram. This flow diagram represents a distillation of the key aspects of the manual re-annotation process used
for the examples presented here. Starting with loading the data into a genome browser (grey box, rounded corners), the process is a complex
decision tree with several key stages that require judgement, experience and familiarity with the data in addition to quantitative information (blue
boxes). This dependence on qualitative judgements makes this process extreme difficult to capture computationally (in addition to the fact that the
process would necessarily change if used with different datasets, species, etc), underscoring the importance of manual annotation. Paths through the
decision tree end in one of eight possible end-points; three ‘positive’ re-annotation endpoints (green boxes, rounded corners), three ‘tentative’ re-
annotation endpoints (orange boxes, rounded corners) and two ‘negative’ no re-annotation endpoints. Here we briefly look at the path through the
decision tree for two of the simpler examples presented earlier in this work: Example Path 1: BMPR1A (Section 1, Figure 1) Starting with loading
the data for BMPR1A (1), the EST, cDNA and RNA-seq support the existing annotation intron/exon structure (2), DRS peaks exist downstream (3), RNA-
seq and EST data extend beyond the existing annotation (4), the EST and RNA-seq data terminate almost exactly coincident with the strongest
downstream DRS peak (5), taken together the RNA-seq and EST data have continuous coverage over the proposed extension (6), there are no clear
sequence features (stop codon or internal priming signatures that strongly suggest the re-annotation would be incorrect (7), we propose a clear re-
annotation of the gene (8). Example path 2: AT1G68945 (Section 1, Figure 5) Starting with loading the data for AT1G68945 (1), the EST, cDNA
and RNA-seq support the existing annotation intron/exon structure (2), DRS peaks do not exist downstream (3), DRS peaks do exist on the opposite
strand but within the existing annotation (9) the EST data are stranded, however they strand association is unreliable (10), there are sequence features
(in this case, numerous stop codons in multiple frames (11), the data, sequence features and existing annotation are inconsistent. We cannot re-
annotate the gene without more evidence.(12). In this case, further evidence in the form of strand-specific RNA-seq data from the Ecker Lab [35]
would, if included, allow us to follow the path 1,2,3,9,10,13,14,15 resulting in a tentative re-annotation to the opposite strand, despite the apparent
presence of stop codons.
doi:10.1371/journal.pone.0094270.g010
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automatic annotation pipelines will improve with the inclusion of

strand-specific RNA-seq data and data that delineates the 59 and

39 ends precisely. Indeed, major projects such as Ensembl are now

incorporating these data into their annotation pipelines (S. Searle

per. Comm.). However, the examples presented in this paper

suggest that for complete and precise annotation there is currently

no substitute for annotation curated by experienced and knowl-

edgeable scientists from a combination of DRS, RNA-seq, sRNA-

seq, EST and other informative data.
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