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Abstract: Independent component analysis (ICA) is one of the most effective approaches in extracting
independent signals from a global navigation satellite system (GNSS) regional station network. How-
ever, ICA requires the involved time series to be complete, thereby the missing data of incomplete
time series should be interpolated beforehand. In this contribution, a modified ICA is proposed, by
which the missing data are first recovered based on the reversible property between the original time
series and decomposed principal components, then the complete time series are further processed
with FastICA. To evaluate the performance of the modified ICA for extracting independent compo-
nents, 24 regional GNSS network stations located in North China from 2011 to 2019 were selected.
After the trend, annual and semiannual terms were removed from the GNSS time series, the first two
independent components captured 17.42, 18.44 and 17.38% of the total energy for the North, East and
Up coordinate components, more than those derived by the iterative ICA that accounted for 16.21%,
17.72% and 16.93%, respectively. Therefore, modified ICA can extract more independent signals than
iterative ICA. Subsequently, selecting the 7 stations with less missing data from the network, we
repeatedly process the time series after randomly deleting parts of the data and compute the root
mean square error (RMSE) from the differences of reconstructed signals before and after deleting
data. All RMSEs of modified ICA are smaller than those of iterative ICA, indicating that modified
ICA can extract more exact signals than iterative ICA.

Keywords: GNSS regional networks; ICA; independent component; data missing; signal reconstruc-
tion

1. Introduction

In past decades, high-accuracy coordinate time series of global navigation satellite
system (GNSS) stations have been widely used for monitoring seismic, coseismic displace-
ments [1,2], and regional tectonic deformation [3]. The deformation signals, such as trend,
annual and semiannual signals, as well as transit signals, can be detected from the GNSS
time series, which contain abundant information from different sources, including tectonic
and non-tectonic processes, such as the mass loading variations of snow, atmosphere and
soil moisture [4–7]. The trend, annual and semiannual signals are usually estimated by the
least-squares fitting. The other spatiotemporal signals are more effectively extracted and
analyzed with some classic signal analysis methods, such as wavelet analysis (WA) [8–10],
Kalman filter (KF) [11,12], empirical orthogonal function (EOF) [13], singular spectrum
analysis (SSA) [14,15], and principal component analysis (PCA) [16–19]. Among these
methods, PCA is one of the data-driven multivariate approaches based on second-order
statistics (variance and covariance) and isolates the underlying sources without any prior
knowledge [7], which implicitly assumes that a GNSS time series is polluted only by mul-
tivariate Gaussian noise. Nevertheless, previous studies demonstrated that a GNSS time
series usually contains colored noise too [20,21]. Since PCA decomposition is based on the
maximization of the variance of decomposed components, thus PCA works efficiently if
only a single source exists in the GNSS time series. When multiple competing sources exist,
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however, the dominant components determined by PCA are probably the mixture from
different physical sources [7,22].

In theory, GNSS coordinate time series can be regarded as a linear mixture of several
independent signals from different physical sources, due to the unknown independent
sources and mixing modes, the signal extraction is actually a blind source separation
task [19]. Independent component analysis (ICA) approaches are the efficient statistical
techniques for dealing with this kind of problem [23,24], which can separate the mixed
signals into multiple statistically independent source signals based on high order statis-
tics [25–27]. Recently, ICA has been successfully applied to analyze the geodetic data,
especially the GNSS coordinate time series [5,6,22]. As in the PCA approach, ICA requires
the processed time series to be complete. Data missing, however, inevitably occurs in GNSS
coordinate time series, indicating that the interpolation should be implemented to fill the
data gaps beforehand. Several commonly used interpolation methods in ICA, such as cubic
spline interpolation [28], regularized EM interpolation [22], or iterative interpolation [29],
may introduce false information and cause deviations in the extracted signals especially
for the case of a large amount of missing data.

There are some theories for estimating the covariance matrix of incomplete data
directly [30,31]. In addition, some improved PCA approaches have been developed, which
need not fill the data gaps beforehand in dealing with incomplete time series [19,32]. In
particular, the PCA approach was modified by Shen et al. [33] based on the principle that a
time series can be reproduced with its principal components, this principle was further
used to improve the singular spectrum analysis [34] and multi-channel singular spectrum
analysis [35]. In this paper, the ICA is modified with two steps: first, the missing data
are reconstructed using the improved PCA approach of Shen et al. [33], the independent
components are then derived from the complete time series by using fast independent
component analysis (FastICA) algorithm. In the following sections, the details of modified
ICA theory is presented in Section 2, the preprocessing of experimental data is shown in
Section 3, then the performance of modified ICA in extracting independent signals (except
trend, annual and semiannual terms) is demonstrated in Section 4, and the conclusions are
drawn in Section 5.

2. Methodology
2.1. Concept of Principal Component Analysis (PCA) and Independent Component Analysis (ICA)

If there are n stations of demeaned coordinate time series that span m epochs {x(t, j) : t
= 1, 2, · · · , m; j = 1, 2, · · · , n} (m ≥ n), these time series are stacked into an m× n matrix
X = [x(t, 1), x(t, 2), · · · , x(t, n)], where the column vector x(t, j) denotes the time series of
the jth station. In the PCA approach [16], the matrix X is decomposed as:

X = PVT, (1)

where, P is an m× n column orthogonal matrix and each column of P denotes a principal
component (PC), the n× n eigenmatrix V is derived from the covariance matrix B = XTX
with:

B = VΛVT, (2)

where, Λ is an n× n diagonal matrix whose elements are sorted in descending order. Since
V is an orthogonal matrix, the PC matrix can be derived as follows:

P = XV (3)

In detail, each row vector of P is derived from the corresponding row vector of X.
If the observation data are complete, Equations (2) and (3) can be directly used to solve
the PC matrix. On the contrary, the above equations cannot be used for the incomplete
observation data unless missing data are interpolated in advance. To avoid the limitation,
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according to Schoellhamer [36] and Shen et al. [33], when the missing data exist in the time
series, the elements B(k, k) and B(k, j) of covariance matrix B are computed with:

B(k, k) = 1
mk−1 ∑

t∈Mk

x(t, k)x(t, k)

B(k, j) = 1
mkj−1 ∑

t∈Mk∩Mj

x(t, k)x(t, j) , (4)

in which, Mk and Mj denote the data sets of station k and j, respectively. mk and mj denote
the number of available epochs at station k and j, respectively. mkj denotes the number of
epochs of the intersect set Mk ∩Mj. When there exist missing data at the ith row vector
of X, the correspondent row vector of the PC matrix P also cannot be directly computed
with Equation (3). However, once the PC matrix P is available, the missing elements can be
reproduced with Equation (1). Hence, when the missing data in Equation (3) are substituted
with those from Equation (1), we can derive a rank-deficient system of equations to solve
the row vectors of P. Furthermore, to solve a rank-deficient equation, a minimum norm
criterion should be introduced, for the details, one can be referred to Shen et al. [33]. The
results demonstrated that this minimum norm solution outperforms the solutions with the
interpolated missing data or the iterative solutions [33]. Once the matrix P is derived, the
complete time series can be reconstructed with Equation (2).

Any pair of the derived PCs, i.e., the column vectors of matrix P, are not mutu-
ally independent. To derive independent components, an n × n unitary matrix W =
[w1, w2, · · · , wn] is introduced to rotate the PC matrix so that the column vectors after
rotation are as independent as possible. Then Equation (1) is rewritten as:

X = PΛ −1/2WWTΛ1/2VT = YA, (5)

where, Y = PΛ−1/2W, the column of Y represents the estimates of the independent com-
ponents, A = WTΛ1/2VT called the mixing matrix. After Λ−1/2 is introduced, the matrix
Z = PΛ−1/2 becomes a unitary orthogonal matrix, its column vectors are called normalized
principal components. Once an appropriate W is given, the independent components are
uniquely determined as Y = ZW. On contrary, the matrix W can be determined based
on the condition that the column vectors of Y are as independent as possible. There are
several methods to compute the matrix W, including the FastICA [24–27], joint approxi-
mate diagonalization of eigenmatrices algorithm [29,37,38], kernel independent component
analysis [39,40], etc. In this work, the FastICA algorithm, which shows obvious advantages
in computation, robustness and convergence rate [24], is used to estimate the rotation
matrix W. It uses a fixed-point optimization scheme based on Newton iteration and an
objective function related to negentropy, and the iterative solution wk is determined as
follows [26,27]: {

wk(l + 1) = E
[
ZTg(Zwk(l))

]
− E[g′(Zwk(l))]wk(l)

wk(l + 1) = wk(l + 1)/‖wk(l + 1)‖ , (6)

where l is the index of iteration, E is the operator of expectation, g(·) is the derivative of a
kind of non-quadratic function, the second derivative g′(·) is continuous and differentiable.

2.2. Modified ICA

PCA can be considered as a very useful strategy of decorrelation, which makes the
separation procedure simpler and better conditioned [41]. As the modified ICA includes
two processes, the first is to derive the minimum norm solution of PCs from the incomplete
time series data and then calculate the complete unitary orthogonal matrix Z, the second is
to solve the rotation matrix W with the unitary orthogonal matrix Z by the FastICA
algorithm. The independent component matrix is finally obtained as Y = ZW. We
summarize the detailed algorithm flow in Algorithm 1.
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In comparison, the main difference between modified ICA and ICA is that the way of
solving the PC matrix P with the incomplete GNSS time series, in which the modified ICA
can directly calculate the PCs, while ICA needs to be interpolated beforehand or iteratively
computed. When there are no missing data, the two methods are equivalent. If the PC
matrix is iteratively computed by Equations (1)–(3), where the missing data are filled with
zero at the first step, then FastICA is used to determine the independent components, this
approach is called iterative ICA in this paper.

Algorithm 1 Modified ICA

INPUT: GNSS coordinate time series with missing data.
OUTPUT: Independent components.

1: Creating a matrix X, which is consisted of n GNSS time series with missing data.
2: Constructing covariance matrix B with all available observations.
3: Deriving the principal component matrix P same as Shen et al. [33]
4: Calculating the unitary orthogonal matrix Z with Z = PΛ−1/2.
5: for each rotation vector wk do
6: Initialize wk(0).
7: Set iteration counter l = 0
8: wk(l + 1) = E

[
ZTg(Zwk(l))

]
− E[g′(Zwk(l))]wk(l)

9: wk(l + 1) = wk(l + 1)/‖wk(l + 1)‖
10: while ‖wk(l + 1)−wk(l)‖ > ε do
11: Increase counter l → l + 1 .
12: Updating wk.
13: end while
14: Getting an independent component yk = Zwk.
15: Implementing the decorrelation for wk+1 to avoid the same convergence direction

16: wk+1 = wk+1 −
k
∑

j=1
wT

k+1wjwj

17: end for
18: return all independent components Y.
%% ε is the pre-set threshold.

2.3. Significant Signal Extraction

The signal Sk can be reconstructed with the corresponding independent component
yk as follows,

Sk = ykak, (7)

where Sk is an m× n matrix, yk is the kth independent component, ak is the kth row vector
of the mixing matrix. yk and ak are respectively called the temporal response (TR) and
spatial response (SR), which represent the common temporal varying function among
different stations [6,22]. Then we compute the contribution ratio of kth independent signal
with:

rk =
‖Sk‖

n
∑

k=1
‖ykak‖

× 100 %, (8)

where ‖ · ‖ denotes the Frobenius norm, rk is the contribution ratio of the signal Sk. We
rearrange all independent components in descending order according to their contribution
ratios, thus the most significant signals of the time series can be represented by the first
several distinctive independent components, which are expressed as:

S =
d

∑
k=1

ykak (9)
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3. Real Data Analysis
3.1. Preprocessing of Experimental Data

The coordinate time series of 24 GNSS stations in North China are collected from
the Crustal Movement Observation Network of China (CMONOC) with a period from
January 2011 to December 2019 (Figure 1) (available at http://www.cgps.ac.cn/ (accessed
on 22 February 2020)). First, some unknown-type offsets are identified and corrected, and
abnormal solutions with the formal errors larger than 50, 50 and 100 mm respectively for the
North (N), East (E) and Up (U) coordinate components are detected and removed [16,22,28].
Then, a constant offset, trend, annual and semiannual terms are estimated and removed by
the least-squares fitting from the original coordinate time series to derive the residual time
series [4,42]. Moreover, when the absolute values of residuals exceed the pre-set thresholds
of 10, 10 and 20 mm for the N, E and U coordinate components, they are also treated as
outliers and removed further [22]. All the deleted outliers are regarded as a part of the
original missing data. We show an incomplete time series at station BJFS in Figure 2 as
an example. The missing data percentages of 24 stations are shown in Figure 3, and the
means are 6.83, 6.82 and 7.13% for the N, E and U coordinate components, respectively. The
correlation among the residual time series is first evaluated with the Kaiser–Meyer–Olkin
(KMO) test [43,44], and the KMO values are 0.9186, 0.9461, 0.9603 for the N, E and U
coordinate components, respectively. Therefore, strong correlations exist in the residual
time series, which is suitable for the analysis of ICA.
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3.2. Non-Gaussianity Assessment

We tentatively explore the non-Gaussianity variations from normalized principal
components to independent components. Following Forootan and Kusche [38], the non-
Gaussianity of a component can be determined based on its kurtosis, which is used to
measure whether data are peaked or flat relative to a normal distribution. Statistically
speaking, kurtosis is more commonly defined as the fourth moment divided by the square
of the second moment, i.e.,

kurtosis
(
µj
)
= E

[
µ4(t, j)

]
/
{

E
[
µ2(t, j)

]}2
− 3, (10)

where E(·) is the expectation operator, µj represent the jth normalized principal component
or jth independent component. If kurtosis = 0, the data have a Gaussian distribution, if
kurtosis < 0, the data have a sub-Gaussian distribution, and if kurtosis > 0, the data have a
super-Gaussian distribution. The kurtosises of 24 normalized principal components and
24 independent components derived from modified ICA are shown in Figure 4. It can be
seen that the non-Gaussianities of the independent components are significantly stronger
than those of the normalized principal components. According to the central limit theorem,
the Gaussianity becomes stronger when more signals are mixed in a component. In other
words, the stronger non-Gaussianity indicates that fewer signals are mixed. Therefore, it is
proved that fewer signals are mixed in an independent component than the corresponding
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normalized principal component. The average absolute kurtosises of the independent
components are 1.53, 1.35 and 1.43 for the N, E and U coordinate components, respectively.
Therefore, the independent components possess a non-Gaussian distribution with high-
order statistical properties.
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3.3. Spatiotemporal Characteristics of the Independent Components

The modified ICA-derived independent components (MICs) and the iterative ICA-
derived independent components (ICs) are reordered according to their contribution ratios,
and the histograms of the contribution ratios for the first six MICs and ICs are shown
in Figure 5. The first MICs are larger than the first ICs for both N and E coordinate
components, but slightly smaller for U coordinate component. The first two MICs account
for the contribution ratios of 17.42%, 18.44% and 17.38% respectively for the N, E and U
coordinate components, better than the first two ICs with the contribution ratios of 16.21%,
17.72% and 16.93%.
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The SR and TR are usually used to demonstrate the spatiotemporal characteristics.
Similar to Dong et al. [16], Each SR is normalized by dividing its maximum (absolute value)
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element, and corresponding TR is scaled by multiplying the normalization factor. All SR
values, hence, are always in the range from −100% to 100%. The normalized SRs and
corresponding scaled TRs of the first two MICs (MIC1 and MIC2) and ICs (IC1 and IC2) are
shown in Figures 6 and 7, in which the upward and downward arrows represent positive
and negative SRs, respectively. The scaled TRs and normalized SRs derived from modified
ICA are similar to those from iterative ICA for all three coordinate components, the mean
values of the first two SRs (SR1 and SR2) derived from modified ICA are 49% and −31%,
−54% and 34%, 45% and 37% for the N, E and U coordinate components respectively,
while those from iterative ICA are 42% and −30%, −51% and 31%, 56% and 39% for the
corresponding coordinate components. The SR1 values show a ladder-like distribution in
the whole region, increasing gradually from south to north, and several large SR1 values
are concentrated in the northeast of the studying area. By contrast, the notably different
spatial patterns of SR2 can be seen, whose values show a more uniform pattern over the
whole region. However, some stations show the opposite signs, e.g., TJBH in MIC1, IC1
and IC2 of N coordinate component, TJWQ in MIC2 and IC2 of E coordinate component.
Moreover, some stations present significant difference compared to other stations, such
as the TJWQ in IC2 of E coordinate component (in rectangle area of Figure 7), whose sign
is negative and magnitude is much larger than any other station, which would bias the
results to some extent [16], and thus we infer that the time series of TJWQ is polluted by
the local effect [16,22].
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Using the first two independent components to reconstruct the significant signals with
Equation (9), and the Signal Power (SP) is then computed with the following expression,

SP =

√√√√ 1
n

1
mj

n

∑
j=1

∑
t∈Mj

S2(t, j), (11)

where Mj and mj denote the data set of station j and its number of available data points
respectively, and n is the number of stations. Table 1 presents the SP values and overall
time-consuming from modified ICA and iterative ICA, respectively. The SP values of
modified ICA are 0.8177, 1.0254 and 2.7658 mm, respectively, for the N, E and U coordinate
components, which are larger than 0.7904, 0.9583 and 2.6155 mm of iterative ICA for the
corresponding coordinate components. The overall time-consumption of iterative ICA is
longer than that of modified ICA, especially for the E coordinate component, which is due
to the procedure of iterative interpolation which will affect the global efficiency to a certain
extent.
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Table 1. Signal power (SP) and time-consumption of modified ICA and iterative ICA.

Components
Modified ICA Iterative ICA

SPs (mm) Time (s) SPs (mm) Time (s)

North 0.8177 7.6 0.7904 7.8
East 1.0254 6.5 0.9583 15.6
Up 2.7658 6.2 2.6155 7.0

4. Repeated Experiments Analysis

To compare the performances of modified ICA and iterative ICA in extracting inde-
pendent components in the cases of different percentages of missing data, the following
repeated data-deleting experiments were carried out. The seven stations with the least
missing data, including BJGB, BJSH, BJYQ, HECC, JIXN, HEYY and HECD, were chosen
for experiments. We used the first two MICs and ICs that were extracted from all available
data of 7 stations to derive the reference signals for modified ICA and iterative ICA. The
deleting percentages were from 5% to 30% with an increase of 5% each time, and the deleted
data were randomly selected from the available data points of the 7 stations. After deleting
different percentages of data, the first two independent components of the remaining data
were used to reconstruct the signals. We repeated the experiments 200 times, the root mean
squared error (RMSE) was adopted to evaluate the quality by examining the differences
between reference signals and reconstructed signals.

RMSEM =
1
N

N

∑
k=1

√√√√ 1
n

1
mj

n

∑
j=1

∑
t∈Mj

(
sM

k (t, j)− sM
0 (t, j)

)2 , (12)

RMSEF =
1
N

N

∑
k=1

√√√√ 1
n

1
mj

n

∑
j=1

∑
t∈Mj

(
sF

k (t, j)− sF
0(t, j)

)2 , (13)

where, the superscripts, ‘M’ and ‘F’, represent the values of the modified ICA and iterative
ICA approaches, respectively. sM

k and sF
k are the reconstructed signals of modified ICA and

iterative ICA respectively after deleting data, sM
0 and sF

0 are the reference signals. Mj and
mj denote the data set of station j and its number of data points involved in the experiment
respectively. n is the number of stations and N is the number of repeated experiments. We
further examined the RMSEs of the reconstructed signals at the deleting and non-deleting
data points, and what should be noted is that in such a case, Mj and mj denote the data set
and its number of deleting or non-deleting data points at station j, respectively.

The RMSEs of reconstructed signals derived from modified ICA and iterative ICA at
all available data points are presented in Figure 8, from which we can see that the RMSEs
for both modified ICA and iterative ICA become larger when more data are deleted. All
RMSEs of the reconstructed signals by our modified ICA are smaller than those by iterative
ICA for the same experiment scenarios, especially for the U coordinate component. In the
case of deleting 30% data, the improvements of modified ICA relative to iterative ICA are
up to 14.96%, 14.75% and 15.67% for the N, E and U coordinate components, respectively.
In Figures 9 and 10, we demonstrate the RMSEs of reconstructed signals at non-deleting
data points and deleting data points, respectively. Figure 9 shows that the RMSEs at the
non-deleting data points vary similarly to the result of Figure 8. By deleting 30% of the
data points, the RMSEs of modified ICA at non-deleting data points are 0.3882, 0.4583
and 0.8201 mm for the N, E and U coordinate components, while iterative ICA are 0.4415,
0.5487 and 0.9568 mm. Figure 10 shows that the RMSEs of reconstructed signals at the
deleting data points are much larger than those at the non-deleting data points. When the
data are deleted up to 30%, the RMSEs of modified ICA are 0.4819, 0.6507 and 1.0092 mm
for the N, E and U coordinate components, respectively, which are smaller than the RMSEs
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of iterative ICA, i.e., 0.5636, 0.7442 and 1.2657 mm. Therefore, the proposed modified ICA
extracts signal more exact residual time series compare to iterative ICA.
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Another repeated experiment was processed to further demonstrate the robustness
and accuracy of the modified ICA method in extracting independent components under
different noise levels. Similar to the above data-deleting experiments, the first two MICs
and ICs that were extracted from the original time series of 7 stations were used to derive
the complete time series of reference signals respectively for modified ICA and iterative
ICA. Then, white noise and flicker noise were created according to the signal-to-noise ratio
(SNR) values from 0.25 to 1.25 dB with an increment of 0.25 dB [22,28]. The new time series
data were generated by adding the white and flicker noise to the reference signals and
deleting the same epochs as the original time series. The experiments were also repeated
200 times. Since the reference signals were available for the new time series, the RMSEs of
the reconstructed signals and reference signals were used to evaluate the quality of the two
approaches. For the N coordinate component, the RMSEs of modified ICA and iterative
ICA in each noise level are plotted in Figure 11, in which the results are very robust in
200 experiments. On the whole, the RMSE increases as the SNR value decreases for both
modified ICA and iterative ICA, especially when the SNR value decreases from 0.5 to 0.25
dB. Figure 12 presents the mean RMSEs of modified ICA and iterative ICA for different
SNR values. All the mean RMSEs of modified ICA are smaller than those of iterative ICA
for the same SNR, which indicates that modified ICA can extract more exact signals than
iterative ICA, especially when SNR is lower.
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signal-to-noise ratio (SNR) value (N coordinate component).
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5. Conclusions

This paper developed a modified ICA approach for processing the incomplete time
series of a regional GNSS network by using the reversible principle between the original
time series and decomposed principal components. Twenty four GNSS residual time series
of CMONOC in North China over the period 2011–2019 were processed to demonstrate the
performance in extracting independent components with modified ICA and iterative ICA,
respectively. The results showed that the contributions of the first two MICs accounted
for 17.42%, 18.44% and 17.38%, respectively, for the N, E and U coordinate components,
larger than the first two ICs that caught 16.21%, 17.72% and 16.93% of the total energy.
The variations of TR1 and TR2 in the studying area were not significant, while the SR1
and SR2 showed different spatial patterns over the network. Subsequently, the first two
MICs and ICs were used to reconstruct the significant signals, respectively, and the SP
values of modified ICA were 0.8177, 1.0254 and 2.7658 mm for the N, E and U coordinate
components, respectively, and 0.7904, 0.9583 and 2.6155 mm for iterative ICA, which
indicated that modified ICA outperformed iterative ICA in extracting independent signals.
Moreover, two repeated experiments were designed. The results of the first experiment
with randomly deleting different percentages of total data showed that all RMSEs of
modified ICA were smaller than those of iterative ICA. When the missing data accounted
for 30%, the improvements of modified ICA with respect to iterative ICA were up to
14.96%, 14.75% and 15.67% for the N, E and U coordinate components, respectively. The
second experiment by adding different noise indicated that modified ICA outperformed
iterative ICA. Therefore, it is reasonable to conclude that modified ICA can indeed achieve
independent components with higher accuracy than iterative ICA from the incomplete
time series.
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