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Abstract

Spontaneous synaptic transmission is regulated by the protein complexin (Cpx). Cpx binds the SNARE com-
plex, a coil-coiled four-helical bundle that mediates the attachment of a synaptic vesicle (SV) to the presynap-
tic membrane (PM). Cpx is thought to clamp spontaneous fusion events by stabilizing a partially unraveled state of
the SNARE bundle; however, the molecular detail of this mechanism is still debated. We combined electrophysiology,
molecular modeling, and site-directed mutagenesis in Drosophila to develop and validate the atomic model of the
Cpx-mediated clamped state of the SNARE complex. We took advantage of botulinum neurotoxins (BoNTs) B and
G, which cleave the SNARE protein synaptobrevin (Syb) at different sites. Monitoring synaptic depression on BoNT
loading revealed that the clamped state of the SNARE complex has two or three unraveled helical turns of Syb. Site-
directed mutagenesis showed that the Cpx clamping function is predominantly maintained by its accessory helix
(AH), while molecular modeling suggested that the Cpx AH interacts with the unraveled C terminus of Syb and the
SV lipid bilayer. The developed molecular model was employed to design new Cpx poor-clamp and super-clamp
mutations and to tested the predictions in silico employing molecular dynamics simulations. Subsequently, we gener-
ated Drosophila lines harboring these mutations and confirmed the poor-clamp and super-clamp phenotypes in vivo.
Altogether, these results validate the atomic model of the Cpx-mediated fusion clamp, wherein the Cpx AH inserts
between the SNARE bundle and the SV lipid bilayer, simultaneously binding the unraveled C terminus of Syb and
preventing full SNARE assembly.
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Significance Statement

Spontaneous release of neuronal transmitters is an important component of synaptic transmission, which
controls neuronal development, homeostasis, and synaptic plasticity. The synaptic protein complexin (Cpx)
regulates synaptic transmission by clamping spontaneous release. We developed and validated an atomic
model of the Cpx-mediated clamping mechanism, which can be employed as a tool for generating predic-
tions for site-directed mutagenesis and selectively manipulating spontaneous synaptic transmission.

Introduction
Neuronal transmitters are packed in synaptic vesicles

(SVs) and released by fusion of SVs with the presynaptic
membrane (PM). The attachment of an SV to the PM is

mediated by the SNARE complex (Südhof and Rothman,
2009; Südhof, 2013), a coil-coiled four-stranded helical
bundle, which consists of an SV protein synaptobrevin
(Syb) or v-SNARE, and PM-associated proteins, syntaxin
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(Syx) and SNAP25 or t-SNARE. The assembly of the
SNARE bundle enables overcoming the electrostatic and
hydration repulsion between the SV and PM lipid bilayers
(Rizo and Xu, 2015). The rapid synchronous fusion of SVs
with the PM is evoked by an influx of Ca21 ions into the
nerve terminal, and a protein Synaptotagmin 1 acts as a
Ca21 sensor (Chapman, 2008).
Fusion events can also occur in the absence of action

potentials, in a spontaneous mode. Genetic, biochemical,
and physiological studies have identified a cytosolic pro-
tein complexin (Cpx) as a molecular player that inhibits
spontaneous fusion but promotes the evoked Ca21-de-
pendent release (Mohrmann et al., 2015; Trimbuch and
Rosenmund, 2016). Cpx attaches to the SNARE complex
forming a five-helical bundle (Chen et al., 2002). Cpx dele-
tion produces a drastic increase in spontaneous fusion
events (Huntwork and Littleton, 2007), suggesting that the
energetic barrier for SV fusion is reduced (Giraudo et al.,
2006). This function of Cpx as a fusion clamp is well es-
tablished in invertebrates (Hobson et al., 2011; Martin et
al., 2011; Jorquera et al., 2012; Wragg et al., 2013), but is
more controversial in mammalian synapses (Trimbuch and
Rosenmund, 2016). However, it was demonstrated that Cpx
inhibits spontaneous activity at cortical neuronal cultures
(Yang et al., 2013), at mammalian calyx of Held (Chang et
al., 2015), and at ribbon synapses (Vaithianathan et al.,
2013, 2015). Furthermore, promoting Cpx action by ei-
ther genetic overexpression or supplementation inhib-
ited exocytosis in neurosecretory cells (Itakura et al.,
1999; Abderrahmani et al., 2004; Liu et al., 2007).
Altogether a large body of literature shows that Cpx
clamps spontaneous fusion both in vitro and in vivo
(Mohrmann et al., 2015), although this Cpx function in
vivo appears to be synapse specific and is more promi-
nent in invertebrates.
Several important features of the clamping mechanism

have been established: (1) different domains of Cpx con-
trol evoked and spontaneous transmission, and these two
Cpx functions are not correlated (Xue et al., 2007; Cho et
al., 2014); (2) Cpx clamping function is regulated by its ac-
cessory helix (AH; Kaeser-Woo et al., 2012; Cho et al.,
2014; Vasin et al., 2016) and by its C-terminal domain
(Kaeser-Woo et al., 2012); (3) lipid binding is important for
the Cpx clamping function (Wragg et al., 2013); (4) single
point mutations in the Cpx AH selectively alter the sponta-
neous release component (Cho et al., 2014; Vasin et al.,
2016); and (5) replacing the Cpx AH by a non-native helix
restores the clamping function (Radoff et al., 2014).
Notably, the latter two findings appear to contradict each

other, raising the question of the mechanism by which the
Cpx AH controls spontaneous transmission.
Although multiple studies suggest that Cpx interferes

with zippering of v-SNARE onto t-SNARE (Giraudo et al.,
2006, 2009; Krishnakumar et al., 2011, 2015; Kümmel et
al., 2011; Li et al., 2011; Bykhovskaia et al., 2013; Vasin et
al., 2016; Zdanowicz et al., 2017), the exact structure of
the partially unraveled SNARE bundle in its clamped state
is still debated. It was initially proposed that v-SNARE is
unraveled radically, up to the middle of the four-helical
bundle (Giraudo et al., 2009; Krishnakumar et al., 2011;
Kümmel et al., 2011; Li et al., 2011). However, it was also
shown that the electrostatic repulsion between the PM and
an SV decays rapidly with distancing (Bykhovskaia et al.,
2013; Fortoul et al., 2015) and therefore it is unlikely to drive
the separation between the bilayers required for such radical
SNARE unzippering. Other studies (Bykhovskaia et al.,
2013; Fortoul et al., 2015, 2018; Vasin et al., 2016) sug-
gested that a more likely scenario is that only two or three
membrane-proximal helical turns (layers 7–9) of v-SNARE
are separated from t-SNARE. Botulinum neurotoxins
(BoNTs) represent an advantageous tool to discriminate
between these different scenarios, since BoNTs cleave
the SNARE proteins at distinct peptide bonds, and the
cleavage depends on the BoNT serotype (Montecucco
and Schiavo, 1993; Link et al., 1994). Here, we com-
bined BoNT loading, molecular modeling of protein-
lipid complexes, and Cpx mutagenesis to build and vali-
date a model of the Cpx-mediated fusion clamp.

Materials and Methods
Drosophila stocks and genetics
All Drosophila melanogaster fly stocks were cultured on

standard medium at a temperature of 22°C. The following
stocks were used: cpx null mutant cpx�/� [cpxSH1; Huntwork
and Littleton (2007); obtained from the lab of J. T. Littleton];
wild-type (WT) Canton-S and C155 elev-Gal4 (Bloomington
Drosophila Stock Center, Indiana University). Epoch Life
Science was used for site directed mutagenesis of Cpx
(Isoform Cpx 7A; Buhl et al., 2013). The PCR products were
subcloned into a pValum construct, which enabled the use of
the Gal4/UAS system for gene expression (Brand and
Perrimon, 1993). The constructs were injected by BestGene
for a targeted third chromosome insertion into yv;;attp2 site.
Homozygote third chromosome UAS lines were recombined
into the cpx�/� null background (cpxSH1; Huntwork and
Littleton, 2007). The C155 elav-Gal4 driver was used to pan-
neuronally express themutated transgenes.

Electrophysiology
The third instar larvae were dissected in HL3 solution

composed of the following: 70 mM NaCl, 5 mM KCl, 20 mM

MgCl2, 10 mM NaHCO3, 5 mM trehalose, 115 mM sucrose,
2.5 mM HEPES-HCl, 2.5 mM HEPES-NaOH, and 1 mM

CaCl2 (pH 7.2–7.4). EPSPs and miniature EPSPs (mEPSPs)
were recorded from neuromuscular junctions (NMJs) using
the focal macropatch technique (Vasin and Bykhovskaia,
2017). To record selectively from 1b type boutons, we used
DIC optics and 60� water immersion objective (Olympus
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0.95NA) with a 2-mm working distance. Recordings of exci-
tatory postsynaptic potentials (EPSPs) and miniature EPSPs
(mEPSPs) were performed with macropatch electrodes with
tip diameters of 5mm and 1-MV seal resistances and digi-
tized using a Digitdata A/D board and Axoscope software
(Molecular Devices). Nerve stimulation was performed with
Master-8 pulse stimulator (AMPI). The recordings were ana-
lyzed using Quantan software (Bykhovskaia, 2008).

Loading nerve terminals with BoNTs
BoNT serotypes BoNT/B or BoNT/G (1mg/ml, Meta-

biologics Inc) mixed (1:1) with fluorescent dye rhoda-
mine B isothiocyanate (Sigma-Aldrich) conjugated to
a 10-kDa dextran (RITC-dextran, concentration be-
tween 40 and 200 mM) were loaded into nerve terminals
through the cut axon. We have adopted the protocol
developed for loading Ca21 indicators in Drosophila termi-
nals (Rossano and Macleod, 2007). The second abdominal
muscle segment was used in these experiments to minimize
the potential variability. The axon was cut to a length of
;0.5 mm from the site of the muscle innervation and in-
serted into the suction electrode. The suction electrodes
were fire polished and had the opening diameter of 2–3mm,
so that the axon would fit tightly and there would be no solu-
tion exchange between the bath and the suction electrode.
The suction electrode was filled with the mixture of BoNT
and RITC, positioned near the cut axon, and the axon was
rapidly suctioned into the electrode. Subsequently, the re-
cording electrode was rapidly positioned over a 1b bouton
as close to the suction electrode as possible to minimize the
BoNT diffusion time Evoked transmission was elicited via
the same suction electrode.

Immunohistochemistry
Dissected larvae were fixed for 45min in HL3 saline

containing 4% formaldehyde. Following washing in PBST
(0.1% Triton X-100 containing 1� PBS solution), larvae
were preincubated in the blocking solution containing 2%
normal goat serum, 2% bovine serum albumin, and
0.05% sodium azide for 1 h. Primary antibody was ap-
plied overnight at 4°C. The secondary antibody was ap-
plied for 4–6 h at the room temperature.
For Cpx immunostaining, Drosophila anti-Cpx antibody

(1:200), a generous gift from J. T. Littleton (Huntwork and
Littleton, 2007; Cho et al., 2014) and a secondary goat
anti-rabbit polyclonal Cy3 IgG antibody (1:200, Novus
Biologicals) were used. For the horseradish peroxi-
dase (HRP) labeling, the preparations were incubated
with anti-HRP conjugated to Alexa Fluor 488 (1:250,
Jackson ImmunoResearch). To detect BoNT, we used
a polyclonal monovalent antibody specific to BoNT/B
(1:100, Metabiologics) and a secondary mouse anti-
rabbit IgG antibody (1:100, Life Technologies).
Fluorescence was visualized and imaged using Velocity

software (Improvision) on a laser-based confocal micro-
scope (PerkinElmer) with an ORCA-ER CCD camera
(Hamamatsu) using an oil-immersion 50�/0.9 objective
(Olympus).

Molecular dynamics
The molecular systems were constructed using Visual

Molecular Dynamics Software (VMD, Theoretical and
Computational Biophysics Group, NIH Center for
Macromolecular Modeling and Bioinformatics, at the
Beckman Institute, University of Illinois at Urbana-
Champaign). All the simulations were performed in a
water/ion environment with explicit waters. Potassium
and chloride ions were added to neutralize the sys-
tems and to yield a 150 mM concentration of KCl.
Water boxes with added ions were constructed using
VMD. The phosphatidylcholine (POPC) lipid bilayers mimick-
ing an SV were generated using VMD. The initial structure of
anionic lipid bilayer containing phosphatidylserine (POPS) and
phosphatidylinositol 4,5-bisphosphate (PIP2), POPC:
POPS:PIP2 (75:20:5) mimicking the PM (Alwarawrah
and Wereszczynski, 2017) was kindly provided by J.
Wereszczynski (Illinois Institute of Technology). In all
the systems, the lipid bilayers were positioned in the
xy-plane.
The MD simulations were performed employing

CHARMM36 force field (Vanommeslaeghe et al., 2010)
modified to include the parameters for PIP2 as described
previously (Alwarawrah and Wereszczynski, 2017). The
simulations were performed with periodic boundary
conditions and Ewald electrostatics in the NPT ensem-
ble at 310K. The heating (20 ps) and equilibration
(100 ns) phases were performed employing NAMD
(Phillips et al., 2005) Scalable Molecular Dynamics
(Theoretical and Computational Biophysics Group, NIH
Center for Macromolecular Modeling and Bioinformatics, at
the Beckman Institute, University of Illinois at Urbana-
Champaign) at XSEDE (Extreme Science and Engineering
Discovery Environment) Stampede cluster (TACC). The
NAMD simulations were performed with a flexible cell and
with a time-step of 1.5 fs, employing Langevin thermostat
and Berendsen barostat. Production runs were performed
at Anton2 supercomputer (Shaw, 2014; Shaw et al., 2009)
with Desmond software through the MMBioS (National
Center for Multiscale Modeling of Biological Systems,
Pittsburgh Supercomputing Center and D.E. Shaw
Research Institute). All the Anton2 simulations were
performed in a semi-isotropic regime, with a time-step
of 2.5 fs, and employing the multigrator (Lippert et al.,
2013) to maintain constant temperature and pressure.
The trajectory analysis was performed employing VMD
and Vega ZZ (Drug Design Laboratory) software. All the
parameters along all the trajectories were computed
with a time step of 2.4 ns.

Statistical analysis
One-way ANOVA followed by the Tukey’s test was em-

ployed to evaluate statistical significance.

Results
We took advantage of botulinum toxins BoNT/B (Schiavo

et al., 1992) and BoNT/G (Yamasaki et al., 1994), which
cleave Syb at two different sites (Fig. 1A). Transgenic ex-
pression of BoNTs in Drosophila demonstrated that both
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Figure 1. Loading BoNT in the nerve terminals. A, Cleavage sites for BoNT/B and BoNT/G in the mammalian Syb and Drosophila
n-syb. B, The sites of BoNT/B and BoNT/G cleavage shown at the model of the clamped state of the SNARE-Cpx complex. Note
that the BoNT/G cleavage site is situated within the unraveled C terminus of Syb, while the BoNT/B cleavage site is situated within
the zippered Syb region. C, The diagram illustrating the protocol of the BoNT loading through the cut axon innervating the muscles 6
and 7 of the Drosophila NMJ. D, The RITC dye mixed with BoNT diffused through the entire NMJ on BoNT loading. E, Immunostaining
shows the presence of BoNT/B in the nerve terminals in the end of the experiment. F–H, Evoked transmission is rapidly reduced on
BoNT loading. Examples of recorded EPSPs (F) illustrate that EPSP amplitude diminishes within minutes in BoNT/B and BoNT/G loaded
preparations (blue and green), but not in control baseline recordings (black). The kinetics of the EPSP decay (G) shows a rapid decrease
for both BoNT/B (blue) and BoNT/G (green) versus control. The data are normalized by the EPSP amplitude of the first response. Each
data point represents an average of five experiments. In the end of the recording (H) the EPSP amplitude in BoNT loaded preparations is
significantly reduced compared with the baseline control; ***p,0.001. ns - not significant.
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serotypes cleave the Drosophila neuronal Syb (n-syb;
Backhaus et al., 2016). Our initial goal was to test the “late
clamp” model (Bykhovskaia et al., 2013; Vasin et al., 2016),
which proposed that the clamped state of the SNARE-Cpx
complex involves the unraveled layers 7–9 of the SNARE
bundle (Fig. 1A,B). As such, this model predicts that n-syb
will be accessible for the cleavage by BoNT/G but not by
BoNT/B (Fig. 1B) when the SNARE complex is clamped.
Conversely, a more radically unzippered n-syb would be ac-
cessible to cleavage by BoNT/B.
BoNT was loaded through the cut axon (Fig. 1C;

Rossano and Macleod, 2007). To monitor loading, we
added RITC to the solution and ensured that the dye
reached the nerve terminals (Fig. 1D). To ensure the pres-
ence of BoNT in the terminals, at the end of the recordings
we fixed the preparations and performed immunostaining
for BoNT/B (Fig. 1E). In addition, we assessed BoNT ac-
tivity by monitoring evoked release on the nerve stimula-
tion, since at these conditions the pool of docked SVs is
rapidly depleted, and therefore the EPSP amplitude
should decay rapidly (Hua et al., 1998). To assess whether
this is the case, we stimulated the nerve continuously at a
3-Hz frequency while loading either BoNT/B or BoNT/G.
For both BoNT serotypes, we observed rapid decay in
EPSP amplitudes (Fig. 1F), and within 10min the evoked
activity was almost entirely eliminated (Fig. 1F,G).
Next, we loaded the preparations with BoNT/B or

BoNT/G and monitored the decay in spontaneous synap-
tic activity. BoNT/G loading produced a rapid decay in
spontaneous transmission (Fig. 2A–C, green). In contrast,
there was essentially no decay after BoNT/B loading with-
in 20min (Fig. 2A–C, blue). These results suggest that n-
syb is accessible for BoNT/G cleavage but to a lesser ex-
tent for BoNT/B cleavage. This is consistent with the
model wherein BoNT/B does not cleave the clamped
SNARE complexes of docked SVs (Fig. 2D, blue), while
BoNT/G does (Fig. 2D, green). Indeed, the rate of sponta-
neous transmission is low (;0.7–0.8Hz per bouton; Vasin
et al., 2016) and the number of SVs docked to the PM is
large (;1000 per bouton; Meinertzhagen et al., 1998;
Sabeva et al., 2017), and therefore docked SVs can main-
tain spontaneous transmission for 20min or longer, ac-
counting for steady spontaneous transmission in BoNT/B
loaded preparations.
Since the model proposes that the clamped state of the

SNARE complex with partially unraveled Syb is stabilized
by Cpx, it could be expected that the differential effects of
BoNT/G and BoNT/B serotypes would be abolished for
cpx�/� NMJs. To test whether this is the case, we recorded
spontaneous transmission from cpx�/� NMJs on BoNT/G
versus BoNT/B loading. We found that the differential effect
of the BoNT/B and BoNT/G serotypes was completely abol-
ished in cpx�/� preparations (Fig. 2E–G). Indeed, sponta-
neous transmission at cpx�/� NMJs decayed rapidly on
loading either BoNT/G or BoNT/B. This could be expected
because of high rates of spontaneous transmission in cpx�/
� NMJs (;80Hz; Vasin et al., 2016), which should rapidly
deplete the pool of docked SVs.
We next employed Cpx mutagenesis to delineate the

role of the Cpx AH in the clamping mechanism. The

following mutants have been generated (Fig. 3A): (1) dele-
tion of the Cpx AH and N terminus (cpxD(AH1N), residues
4–48); (2) deletion of the N terminus only (cpxDN, residues 4–
35); and (3) replacement of the Cpx AH by the poly A se-
quence (cpxAH(poly A), residues 37–48 being replaced). All the
mutated Cpx forms were expressed in the cpx�/� back-
ground. We have ascertained that the mutated proteins are
properly expressed in the nerve terminals (Fig. 3B).
We found that the mEPSP frequency in the cpxD(AH1N)

mutant was ;17-fold higher than in the control rescue line
(Fig. 3C–E, ochre vs orange), although it was not as high as
in cpx�/� (;80Hz; Vasin et al., 2016). Interestingly, the
cpxDN mutant (Fig. 3C,D, pink) had an unaltered mEPSP fre-
quency compared with the control, showing that the spon-
taneous activity was inhibited by the Cpx AH region.
Notably, replacing the native AH sequence with the poly A
sequence in the cpxAH(poly A) mutant decreased the mEPSP
frequency significantly below the control level (Fig. 3C,D,
maroon vs orange). None of the mutants showed any signifi-
cant alterations in either mEPSP amplitude (Fig. 3E) or
evoked transmission (Fig. 3F,G) compared with the rescue
control.
These results clearly show that the Cpx AH is required

for the Cpx clamping function while the Cpx N-terminal
domain has no role in it. Further, these results show that
the structure of the Cpx AH is fine-tuned for incomplete
clamping, since its replacement with a poly A sequence
actually enhances the Cpx clamping function. How could
the poly A sequence be more functional than the native
sequence? The simplest explanation is that the Cpx AH is
inserted between the SNARE bundle and an SV thus cre-
ating an extra barrier between the PM and an SV. Since the
poly A sequence is hydrophobic, it would likely have a high
affinity to an SV and could therefore create a more reliable
barrier than the native Cpx AH. To explore this possibility,
we performed molecular modeling of the SNARE-Cpx com-
plex between lipid bilayers mimicking the PM and an SV.
The structure of the Drosophila SNARE-Cpx bundle with

partially unraveled n-syb (Vasin et al., 2016) was positioned
between the bilayers. The distance between the bilayers
was adjusted to 3nm since at this distance the bilayers do
not interfere with the SNARE-Cpx bundle, the C-terminal
residues of n-syb become embedded in the SV bilayer, and
the electrostatic repulsion between the bilayers is not promi-
nent (Bykhovskaia et al., 2013; Fortoul et al., 2015). We then
performed 300ns of MD simulations for this molecular sys-
tem. The system remained stable, the Cpx AH remained
positioned between the SNARE bundle and the SV bilayer,
the unraveled C terminus of n-syb (layers 7–9) remained
separated from the bundle, and the C-terminal residues of
n-syb remained embedded in the SV bilayer (Fig. 4A). We
then replaced the Cpx AH (residues 37–48) with the poly A
sequence and repeated the simulations. Notably, we found
that at the end of the trajectory the mutated Cpx AH inter-
acted with the bilayer mimicking an SV more tightly, rein-
forcing the barrier between the bilayers (Fig. 4B, arrow).
We next asked whether this model of the fusion clamp

(Fig. 4A) has predictive power and could guide us in the
Cpx mutagenesis. To test this, we designed two point mu-
tations in the Cpx AH: poor-clamp and super-clamp. To
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Figure 2. Spontaneous transmission decays on BoNT/G but not on BoNT/B loading, and the differential effect of BoNTs is abol-
ished in cpx�/� NMJs. A–C, In WT preparations, spontaneous transmission significantly decays within 20 min BoNT/G but not
BoNT/B loading. Representative traces (A) that illustrate that after 20min of BoNT loading spontaneous transmission is reduced in
the BoNT/G loaded but not in the BoNT/B loaded NMJ. The mEPSP frequency is reduced over time (B) in BoNT/G loaded but not in
BoNT/B loaded preparations. The mEPSP frequency is binned over 10-s intervals and normalized by the first bin in each experi-
ment. In the end of 20-min loading, the mEPSP frequency is significantly reduced compared with the control baseline in BoNT/G
but not in BoNT/B loaded preparations; *p, 0.05, **p, 0.01, ***p, 0.001. D, The diagram illustrating that BoNT/G but not BoNT/B
would cleave Syb of the clamped SNARE-Cpx complexes of docked SVs. E–G, The cpx�/� preparations show rapid decay in the
mEPSP frequency on BoNT loading because of high rates of spontaneous transmission. However, the differential effect of BoNT/B
versus BoNT/G is abolished. ***p, 0.001. Representative traces (E) illustrate the reduction in spontaneous transmission after 20min
BoNT loading. The mEPSP frequency is rapidly reduced over time (F) in BoNT/G and BoNT/B preparations. In the end of 20-min
loading, the mEPSP frequency is significantly reduced compared with the control baseline in both BoNT/G and BoNT/B loaded
preparations. ns - not significant.
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design the poor-clamp mutation, we examined the atomic
model of the clamped SNARE-Cpx complex to identify
the Cpx residues which stabilize the unraveled state of n-
syb. We found that these interactions (Fig. 5A) predomi-
nantly involve the residues R43 and Q44 of the Cpx AH

(RQ motif; Fig. 5A, boxed region), which are conserved
between mammalian and Drosophila Cpx forms (R37 and
Q38 in the mammalian Cpx1). Therefore, the model pre-
dicts that cpxRQ-.AA mutation would produce the poor-
clamp phenotype.

Figure 3. Cpx AH has a pivotal role in the regulation of spontaneous transmission. A, The diagram showing the design of the muta-
tions in relevance to the structure of the SNARE-Cpx complex. Red: Syb; blue: Syx; green: SNAP25; orange: Cpx. B, All the mutants
show a normal Cpx expression pattern, with Cpx localized to the nerve terminals. Images show the double labeling for the neuronal
marker HRP and immunostaining for Cpx, which are co-localized. Scale bar: 10 mm. C, D, Cpx AH but not N-terminal domain regu-
lates the frequency of spontaneous transmission. Representative traces (C) and mEPSP frequencies (D) show that spontaneous
transmission is not altered in the cpxDN mutant (pink), is significantly reduced in the cpxAH(poly A) mutant (maroon), and is drastically
enhanced in the cpxD(N1AH) mutant (ochre); ***p, 0.001. E, The mutations do not alter mEPSP amplitudes. F, G, Evoked transmis-
sion is not altered in either of the mutants. Representative traces (F) and EPSP amplitudes (G) do not show any significant altera-
tions in either of the mutants. ns - not significant.

Research Article: New Research 7 of 13

March/April 2021, 8(2) ENEURO.0526-20.2021 eNeuro.org



The model also predicts that the super-clamp pheno-
type can be created by loosening the attachment of the
Cpx AH to the SNARE bundle. Such mutation would for-
tify the clamp by separating the Cpx AH from the bundle,
enhancing the interactions of the Cpx AH with the SV lipid
bilayer, and thus augmenting the barrier between the
SNARE bundle and the SV, similar to the cpxAH(poly A) mu-
tant (Fig. 4B). The examination of the atomic model re-
vealed tight links between the SNARE bundle and the IK
motif of Cpx (Fig. 5B, residues I47 and K48, homologous
to L41 and R42 in mammalian Cpx1). Therefore, it could
be predicted that mutating this motif would enhance the
clamping function of Cpx.
First, we tested these predictions in silico. The molecu-

lar systems (Fig. 4A) with the mutated Cpx forms (CpxRQ-

.AA, poor-clamp and CpxIK-.AA, super-clamp) were gen-
erated, and prolonged MD simulations (for 1.2 ms) for
each system were performed. To monitor the separation
of n-syb from the SNARE bundle, we measured the dis-
tance between Ca atoms of the C-terminal residues of n-
syb an Syx along each trajectory. In this in silicomolecular
system, zippering of n-syb onto t-SNARE would serve as
a measure for the ability of the SNARE complex to fully as-
semble and drive the SV-PM fusion. We found that the
molecular system with the CpxIK-.AA mutant had n-syb
separated from the t-SNARE bundle for the entire length
of the trajectory (Fig. 5C, navy), and this clamped state
was supported by the Cpx AH, which interacted with the
unraveled C terminus of n-syb and with the SV bilayer
(Fig. 5D, top). In contrast, the system containing the
CpxRQ-.AA mutant did not stabilize. In this system, the un-
raveled C terminus of n-syb separated from the bilayer
mimicking an SV and attached to the SNARE bundle (Fig.
5C, magenta, D, bottom), although full SNARE zippering
was not observed at our time-scale (1.2 ms). Finally, the
system containing native Cpx showed an intermediate

behavior, with the C terminus of n-syb remaining partially
unraveled at the end of the trajectory (Fig. 5C, orange, D,
middle). These results demonstrate in silico that the
CpxIK-.AA mutant would likely stabilize the clamped state
of the SNARE complex, producing the super-clamp phe-
notype, while the CpxRQ-.AA mutant would not be able to
maintain the clamp and would likely show the poor-clamp
phenotype.
We then tested these predictions in vivo. The mutated

cpx genes cpxIK-.AA and cpxRQ-.AA were expressed in
the cpx�/� background. Both mutated forms of Cpx
were properly expressed in the nerve terminals (Fig. 6A).
We then assayed spontaneous transmission in both lines.
We found that the mEPSP frequency was more than
doubled in the cpxRQ-.AA mutant compared with the con-
trol rescue line (Fig. 6B,C). Thus, as predicted by the
model, the cpxRQ-.AA mutant showed the poor-clamp
phenotype, although quantitatively the effect of the RQ-
.AA mutation in the Cpx AH was approximately 8-fold
below the effect of the Cpx AH deletion (Fig. 3). In con-
trast, the mEPSP frequency was significantly reduced in
the cpxIK-.AA mutant showing, as predicted, the super-
clamp phenotype. Neither mEPSP amplitude (Fig. 6D) nor
evoked transmission (Fig. 6E) was affected in either of the
mutants.
Altogether, our results support a model of the clamped

state of the SNARE complex with only two or three C-ter-
minal layers of Syb being unraveled. Our results also sug-
gest that this clamped state of the SNARE complex is
stabilized by the Cpx AH being inserted between the
SNARE bundle and the SV lipid bilayer, while also inter-
acting with the partially unraveled C terminus of Syb.
Finally, we show that this molecular model enables de-
signing poor-clamp and super-clamp mutations and thus
selectively manipulating Cpx clamping function and spon-
taneous synaptic transmission.

Figure 4. The all-atom model of the clamped SNARE-Cpx complex between lipid bilayers mimicking the PM and an SV. Cartoon
(top) and VdW (bottom) representations of the SNARE-Cpx complex are shown. A, Native Cpx (orange) stabilizes the unraveled C
terminus of Syb (red) and also interacts with the SV bilayer. B, The CpxAH(poly A) mutant interacts tightly with the SV bilayer (arrow)
enhancing the barrier between the SV and the PM.
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Discussion
Cpx is a potent regulator of synaptic transmission, and

its function has been studied extensively (Mohrmann et
al., 2015; Trimbuch and Rosenmund, 2016). Several mo-
lecular models have been developed to address the
mechanism by which Cpx inhibits spontaneous transmis-
sion (Giraudo et al., 2009; Kümmel et al., 2011; Li et al.,
2011; Bykhovskaia et al., 2013). Most of the models agree
that Cpx stabilizes a partially unraveled state of the
SNARE complex, thus preventing full SNARE zippering
and spontaneous fusion events. However, the specific
molecular detail of this mechanism is still debated.

Further, it is largely agreed that the Cpx AH has a pivotal
role in the clamping mechanism; however, it is not yet
clear how specifically it mediates the Cpx clumping
function.
One of the earliest models (Giraudo et al., 2009) sug-

gested that the Cpx AH intercalates between the unrav-
eled Syb and the t-SNARE bundle. Subsequently, this
model was modified to incorporate several SNARE com-
plexes cross-linked by Cpx molecules (Kümmel et al.,
2011; Krishnakumar et al., 2015). A more recent study
proposed that Cpx competes with Syb for binding to t-
SNARE and thus inhibits SNARE assembly (Zdanowicz et

Figure 5. The design and in silico testing of the Cpx poor-clamp and super-clamp mutants. A, The poor-clamp mutant is designed
to disrupt the RQ motif within the Cpx AH, which maintains the interactions between the Cpx AH and the unraveled n-syb terminus.
B, The super-clamp mutant is designed to disrupt the IK motif maintaining the interactions between the Cpx AH and the zippered
part of the SNARE bundle. C, MD simulations of the native and mutated complexes show that the super-clamp mutant maintains
the separation between the unraveled n-syb C terminus and the SNARE bundle, while the poor-clamp mutant does not. The graph
shows the distance between Ca atoms of the C-terminal residues of n-syb and Syx over the length of the 1.2-ms MD trajectory.
Trajectory points are separated by 240 ps. D, Structures of the mutated and native Cpx complexes in the end of respective MD tra-
jectories. Note the unraveled C terminus of n-syb and the Cpx AH tightly interacting with the SV bilayer in the super-clamp mutant.
In contrast, in the poor-clamp mutant, the C terminus of n-syb separated from the SV bilayer and started forming contacts with t-
SNARE.
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al., 2017). The studies cited above suggested that Cpx
radically interferes with the SNARE assembly, preventing
the major part of Syb from zippering onto the t-SNARE
bundle. An alternative late clamp model (Bykhovskaia et
al., 2013; Vasin et al., 2016) proposed that Cpx only inter-
feres with the final stages of SNARE zippering, inhibiting
two or three SV-proximal helical turns of Syb from zipper-
ing onto t-SNARE.
Interestingly, an in vivo study in Caenorhabditis elegans

demonstrated that the replacement of the Cpx AH with a
non-native helix (multiple repeats of the EAAK motif) did
not change spontaneous transmission (Radoff et al.,
2014). This study suggested that it is the helical structure
of the Cpx AH and not its specific sequence which is criti-
cal for the Cpx clamping function. However, this finding
appears to be in contradiction with several in vivo studies
in mouse (Yang et al., 2010) and Drosophila (Cho et al.,
2014; Vasin et al., 2016) which showed that point

mutations within the Cpx AH sequence can produce
poor-clamp or super-clam phenotypes.
We took advantage of the Drosophila preparation,

which shows a very strong and robust effect of Cpx on
spontaneous transmission (Huntwork and Littleton, 2007;
Jorquera et al., 2012). The first question we asked was:
how radically is the SNARE complex unzippered in its
clamped state? To elucidate this question, we took ad-
vantage of clostridial neurotoxins (Niemann et al., 1994;
Pellegrini et al., 1995; Xu et al., 1998; Hua and Charlton,
1999), a tool which has been broadly used to understand
how SNARE proteins control exocytosis. We used BoNT se-
rotypes B and G, which cleave Syb (n-syb in Drosophila) at
two different sites: near layer 7 (BoNT/G) and near layer 6
(BoNT/B). We reasoned that if Syb is unzippered by only
two or three helical turns in its clamped state, as suggested
by the late clamp model (Bykhovskaia et al., 2013), then we
would observe a faster depression of spontaneous release

Figure 6. Testing the super-clamp and poor-clamp mutations in vivo. A, Both mutants show a normal Cpx expression pattern, with
Cpx co-localized with the neuronal marker HRP. Scale bar: 10 mm. B, C, Recording traces (B) and EPSP frequencies (C) show that
spontaneous transmission is significantly increased in the poor-clamp mutant and significantly decreased in the super-clamp mu-
tant; *p, 0.05, ***p, 0.001. D, mEPSP amplitudes are not affected by the mutations. E, F, The mutations do not affect evoked
transmission, as evident from representative EPSP traces (E) and average EPSP amplitudes (F). ns - not significant.
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on BoNT/G loading since BoNT/G (but not BoNT/B) would
cleave docked SVs attached to the PM by partially unrav-
eled SNARE complexes. In contrast, if Syb is separated
from t-SNAREmore radically, as suggested by other models
(Giraudo et al., 2009; Kümmel et al., 2011), then both BoNT
serotypes would cleave partially zippered SNARE com-
plexes and, respectively, produce similar decays in sponta-
neous transmission. Our results supported the first scenario,
with BoNT/G producing a significantly stronger reduction in
spontaneous transmission than BoNT/B.
In line with these findings, our Cpx mutagenesis experi-

ments coupled with molecular modeling showed that the
region of the Cpx AH (11 residues forming three helical
turns) is critical for the Cpx clamping function, and that
this Cpx region would likely interact with the unraveled re-
gion of Syb. Indeed, removal of the Cpx AH produced an
;17-fold increase in the mEPSP frequency. In should be
noted, however, that this increase in spontaneous synap-
tic activity did not approach in magnitude the effect of the
Cpx deletion (Huntwork and Littleton, 2007; Jorquera et
al., 2012), which showed over 100 increase in the mEPSP
frequency when measured by the same technique as in
the present study (Vasin et al., 2016). Thus, although Cpx
AH represents an important structural element for clamp-
ing spontaneous fusion, it does not completely account for
this Cpx action. What other Cpxmotifs may contribute to fu-
sion clamping? Our study showed that this Cpx function
does not depend on its N-terminal domain, since its deletion
did not alter spontaneous transmission. However, an earlier
study at the mouse cultured neurons demonstrated that the
Cpx clamping function depends on its C-terminal domain
(Kaeser-Woo et al., 2012). Further investigation is needed to
understand how the Cpx AH and its C-terminal domain in-
teract in controlling spontaneous transmission.
Notably, we also found that replacing this Cpx region

with a poly A sequence significantly reduces the mEPSP
frequency compared with the control rescue line. This
finding agrees with the results obtained in C. elegans,
which showed that replacing the Cpx AH with a non-na-
tive helix rescues the Cpx function (Radoff et al., 2014).
Furthermore, our finding shows that a non-native helix,
such as the poly A sequence, can clamp spontaneous
transmission even better than the native Cpx AH. This re-
sult suggests that the Cpx sequence is fine-tuned to regu-
late the rate of spontaneous transmission but not
designed to maximally block it. This is not surprising,
since the spontaneous release is an important component
of synaptic transmission, required for neuronal develop-
ment and several forms of plasticity (Kavalali, 2015;
Andreae and Burrone, 2018).
To understand how the Cpx AH clamps fusion, we have

developed a molecular model of the SNARE-Cpx complex
between lipid bilayers mimicking an SV and the PM. Our
modeling suggested that the Cpx AH could clamp fusion
by creating a barrier between the SNARE bundle and the
SV bilayer while simultaneously interacting with the unrav-
eled C terminus of Syb. These three-partied interactions,
involving the partially unraveled C terminus of Syb, the
Cpx AH, and the SV bilayer would stabilize the clamped
state of the SNARE complex. In this model, a more

hydrophobic Cpx AH (such as the poly A sequence) could
produce a better clamp because of more tight interactions
with the SV bilayer.
We then combined computations and experiments to

test whether this model could guide us in targeted muta-
genesis. To produce the poor-clamp phenotype, we mu-
tated two residues within the Cpx AH (CpxRQ-.AA) which
were predicted to bind the unraveled Syb terminus.
Testing this mutation in silico suggested that indeed, the
poor- clamp mutation would accelerate SNARE zippering.
We next generated the Drosophila line harboring the
poor-clamp mutation and demonstrated that the sponta-
neous transmission in this mutant was increased more
than twice compared with the control rescue. One could
argue that the mutation could reduce the Cpx expression
levels, however, this explanation is highly unlikely. Indeed,
earlier studies (Cho et al., 2014; Vasin et al., 2016) showed
that mutations within the Cpx AH do not affect either Cpx
expression or delivery to the nerve terminals, and the im-
munolabeling data obtained in the present study argues
that this not the case for the poor-clamp CpxRQ-.AA mu-
tant. Instead, our results suggest that the poor-clamp
phenotype is produced by the compromised interactions
of the Cpx AH with the n-syb unraveled terminus, as pre-
dicted by the model. Notably, the quantitative effect of the
poor-clamp mutation (;2-fold increase) is much smaller
than the effect of the Cpx AH deletion (;17-fold). This re-
sult is in line with our model, which suggests that the
clamping mechanism enabled by the Cpx AH includes
two components: (1) binding the partially unraveled C ter-
minus of n-syb and preventing its full zippering; and (2)
creating a barrier between the SV and the SNARE bundle
and thus separating the SV from the PM. These two
mechanisms are likely to act synergistically. Indeed, the
attachment of the Cpx AH to an SV would promote the
separation of the Cpx AH from the SNARE bundle and, re-
spectively would stabilize the partially unzippered state of
Syb. Since the CpxRQ-.AA mutant can only compromise
the first but not the second mechanism, it is not surprising
that the effect produced by this mutation is modest. The
atomic model developed here enables systematic tar-
geted manipulations by the two mechanisms and evaluat-
ing their quantitative impact. For example, the model
predicts that the fusion clamp can be enhanced by fortify-
ing the interactions of the Cpx AH with the SV bilayer by
substituting the Cpx residues that face away from the
SNARE bundle by more hydrophobic residues, such as
Ala, Phe, Trp, or Leu. Furthermore, the model also pre-
dicts that the fusion clamp can be fortified by weakening
the interactions between Cpx AH and the SNARE bundle.
To test the latter prediction, we designed the super-

clamp mutation by disrupting the interactions of the Cpx
AH with the zippered part of the SNARE bundle, thus pro-
moting the interactions of the Cpx AH which mediate the
fusion clamp. A similar strategy for designing super-
clamp single point mutations in Cpx and n-syb was em-
ployed in an earlier study (Vasin et al., 2016). Testing the
super-clamp mutation in silico showed that the mutation
would slow down zippering of the SNARE complex, and
the Drosophila line harboring the super-clamp mutation
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showed a significant and selective decrease in the spon-
taneous transmission.
These results promote mechanistic understanding of

how Cpx interactions fine-tune spontaneous synaptic
transmission and provide the strategy for selectively ma-
nipulating the spontaneous release component.
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