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SUMMARY

Traditional cognitive neuroscience uses task-evoked activations to map neuro-
cognitive processes (and information) to brain regions; however, how those pro-
cesses are generated is unknown. We developed activity flow mapping to iden-
tify and empirically validate network mechanisms underlying the generation of
neurocognitive processes. This approach models the movement of task-evoked
activity over brain connections to predict task-evoked activations. We present
a protocol for using the Brain Activity Flow Toolbox (https://colelab.github.io/
ActflowToolbox/) to identify network mechanisms underlying neurocognitive
processes of interest.
For complete details on the use and execution of this protocol, please refer to
Cole et al., 2021.
BEFORE YOU BEGIN

Utility of the protocol

Identifying brain mechanisms that generate neurocognitive processes is a central problem in

neuroscience. Traditionally, brain activations have been simply linked with cognitive processes

present during a given task, leaving outstanding questions about the mechanisms underlying

those cognitive processes (Mill et al., 2017). Additionally, little is known about the influence of

brain interactions on the instantiation of neurocognitive processes, even though there is

increasing evidence that neural information is propagated over a distributed functional network

architecture (Passingham et al., 2002; Ito et al., 2017; Mars et al., 2018). Here we demonstrate

the activity flow mapping procedure, which: (1) builds connectivity-based models that simulate

the activity flow processes that likely generate task-evoked activity in a given neural population,

and (2) compares the resulting task-evoked activity predictions to the empirically observed task-

evoked activity to provide evidence for/against the proposed generative process. This strategy

has the benefit of each element of the procedure being empirically based and thus having a less

abstract interpretation than other approaches (such as standard neural network or encoding

models). Further, a growing body of research implementing activity flow mapping (discussed

more extensively in expected outcomes) has observed high prediction accuracy across a variety

of research questions, suggesting that the activity flow mapping framework is accurately charac-

terizing many information processing mechanisms. Overall, this supports the conclusion that

neurocognitive processes are specified largely by activity flowing over the brain’s network archi-

tecture (Cole et al., 2016; Ito et al., 2020b). Activity flow mapping is well-suited to address a va-

riety of research questions, such as those regarding the functional relevance of brain connectivity

(e.g., a particular connection, a subnetwork, or a connectivity change), or the role of task-evoked
STAR Protocols 3, 101094, March 18, 2022 ª 2021 The Author(s).
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activations in one part of the brain in the generation of activity in other parts of the brain (e.g.,

prediction of visual cortex activity from prefrontal cortex activity). In the following protocol we

provide a step-by-step guide to using the Brain Activity Flow Toolbox (https://colelab.github.

io/ActflowToolbox/), which is a publicly available analysis toolbox that principally implements

the activity flow mapping procedure. We will demonstrate its use with an example fMRI dataset,

recommend best practices when possible, explain supplemental functionality of the toolbox

(e.g., built-in functionality for computing connectivity with different methods), and outline infer-

ential advantages and limitations of this approach.

Process imaging data

The activity flow mapping procedure was designed for neuroimaging data such as functional

magnetic resonance imaging (fMRI), with future versions anticipated to accommodate electroen-

cephalography/magnetoencephalography (EEG/MEG) (Mill et al., 2021), electrocorticography

(ECoG), and spiking data. Throughout the protocol we will delineate activity flow mapping

and discuss key considerations and recommendations with respect to fMRI data. Research using

data of a different imaging modality should implement best practices in data processing based

on the relevant literature. One of the main components of the activity flow mapping procedure is

empirically estimated brain connectivity (see format data inputs for the Brain Activity Flow

Toolbox for more details). Throughout the protocol we demonstrate this with estimates of func-

tional connectivity (FC), however structural connectivity, which can be estimated using diffusion-

weighted magnetic resonance imaging (amongst other approaches), can readily be used in place

of functional connectivity (Yan et al., 2021a).

Preprocessing

Timing: Varies based on amount of data, but typically several hours – 1 week

The Brain Activity Flow Toolbox (also termed the Actflow Toolbox) is compatible with a variety

of preprocessing pipelines, such as the Human Connectome Project (HCP) minimal preprocess-

ing pipeline (Glasser et al., 2013) or fMRIPrep pipelines (Esteban et al., 2019) (see key

resources table for open source analysis tools). FMRI preprocessing utilizes structural data

(e.g., T1w and T2w images), functional data (e.g., resting and/or task time series), and

references (e.g., field maps and select templates). We recommend preprocessing steps that

include motion correction and alignment of functional to anatomical images along with

empirically validated approaches for the removal of physiological artifacts such as motion

and respiration artifacts (Ciric et al., 2017). The removal or attenuation of physiological arti-

facts is crucial for estimation of FC, given that these artifacts can introduce spurious depen-

dencies among time series, leading to false inferences regarding brain connectivity (Power

et al., 2014).

1. For the removal of motion and physiological artifacts, we recommend a version of the methods

empirically validated by Ciric et al. (2017), including:

a. Modeling and removing motion parameters, their derivatives, and quadratics. Standard mo-

tion correction algorithms provide sixmotion parameters (see key resources table), yielding 24

total nuisance parameters related to motion.

b. aCompCor (Behzadi et al., 2007) for ventricle and white matter timeseries (i.e., physiolog-

ical noise); using the first five principal components for each (independently extracted) plus

their derivatives and quadratics, yielding 40 total nuisance parameters related to heart

rate, motion, and respiration. Note that using aCompCor is equivalent to using global

signal regression to better remove motion and respiratory artifacts (Power et al., 2018),

but without the circularity introduced by regressing the mean gray matter signal from itself

(which can artificially increase the number of negative functional connections; Murphy et

al., 2009).
2 STAR Protocols 3, 101094, March 18, 2022
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2. Further, general linear models (GLMs) are typically used to model activations, convolved with

a hemodynamic response function (Friston et al., 1995; Handwerker et al., 2004; Lindquist

et al., 2009). If using task-state data to estimate FC, we recommend using finite impulse

response (FIR) regressed task data to estimate task-state FC (Cole et al., 2019) (see format

data inputs for the Brain Activity Flow Toolbox for details, and the key resources table for

source code information).
Spatial autocorrelation considerations

The Actflow Toolbox contains tools that address potential circularity in prediction accuracy. It

is a known issue that fMRI data are spatially smooth (due to local vasculature and additionally

from preprocessing smoothing steps), which may artificially inflate the correlation between

signals of nearby voxels. Some studies suggest that smoothing due to local vasculature occurs

in proximities roughly between 2 mm to 5 mm (Malonek and Grinvald, 1996; Logothetis and

Wandell, 2004). This is theoretically problematic for activity-flow-predicted activations

involving connectivity that is estimated between to-be-predicted target regions and nearby sour-

ces (i.e., the target region’s activity may blur into nearby source activity). We recommend not

using spatial smoothing as a preprocessing step to reduce this effect, but rather we have

included tools to account for this potential confound by masking a conservative 10 mm of

vertices around the target (i.e., excluding them from the analysis). This is demonstrated in the

step-by-step method details (Part 2) (see Cole et al., 2021 for a specific investigation of this po-

tential confound).
Format data inputs for the Brain Activity Flow Toolbox

Timing: 5–10 min

The two key data inputs for Actflow Toolbox analyses include: (1) task-evoked activation data,

and (2) data to be used for connectivity estimation (e.g., resting-state data). We recommend

storing these data in Python NumPy arrays for compatibility with Python, taking less memory

compared to a Python list, and support of multidimensional data types. Further, NumPy supports

a wide variety of mathematical operations and is cross-compatible with many other Python mod-

ules (e.g., SciPy). The two data inputs should be formatted with the following dimensions:

3. Task activation data: nodes by task conditions by subjects

a. Nodes: brain regions, parcels, voxels, or vertices;

b. Task conditions: cross-event/block averages (e.g., GLM beta estimates), blocks, events, or

time points

c. Subjects: this third dimension is optional and select functions iterate over subjects (detailed

throughout this protocol in sample code blocks).

Note:Given that we recommend iterating the main activity flow mapping steps over subjects,

we do not specifically recommend z-scoring (normalizing) data across subjects. However,

normalization may be an appropriate preprocessing step in select studies, depending on

the research question(s) and data.

4. Data to be used for connectivity estimation: nodes by time points by subjects

a. Nodes: brain regions, parcels, voxels, or vertices. These should match nodes in the task acti-

vation data.

b. Time points: resting- or task-state time points.

c. Subjects: this third dimension is optional and select functions iterate over subjects (detailed

throughout this protocol in sample code blocks).
STAR Protocols 3, 101094, March 18, 2022 3



REA

Dep

The

A p
and
(and

Sof

The

Col
(CA

Com

Info

Cod
FC

HC
and

fMR
doc

Pyt

Oth

Dem

ll
OPEN ACCESS

4

Protocol
Note: If using task-state data for connectivity estimation (i.e., task-state FC), an additional

dimension of condition may be used and iterated (looped) over outside the FC estimation

function (see the step-by-step method details Part 2 code block). Suggested data format:

nodes by time points by condition by subjects. If each condition has a different number of

time points, a Python data dictionary is recommended. The difference between task acti-

vation data versus task data used to estimate task-state FC is that the former typically con-

sists of the beta coefficient outputs from the task GLM (see before you begin: preprocess-

ing), and the latter typically consists of the GLM residuals. Cole et al., 2019 systematically

tested the impact that task-evoked activations have on task-state FC estimates. Accord-

ingly, we recommend the best-performing method to address the possibility of artificially

inflated task-state FC estimates, namely using FIR-regressed task data to estimate task-

state FC. FIR regression is a flexible method for removing task-evoked responses that

may induce spurious FC estimates (see Cole et al., 2019 for more details and the key re-

sources table for source code information).
KEY RESOURCES TABLE
GENT or RESOURCE SOURCE IDENTIFIER

osited data

Human Connectome Project (HCP) S1200 release. Van Essen et al., 2013 and
Marcus et al. (2013)

https://www.humanconnectome.org/study/
hcp-young-adult

ortion of the HCP S1200 (n=30), preprocessed
available in the Brain Activity Flow Toolbox
used throughout this protocol).

Ito et al. (2020a) https://github.com/ColeLab/ActflowToolbox/
tree/master/examples/HCP_example_data

tware and algorithms

Brain Activity Flow Toolbox Cole et al. (2016) https://doi.org/10.5281/zenodo.5768754

e-Anticevic Brain-Wide Network Partition
B-NP) Resource

Ji et al. (2019) https://github.com/ColeLab/ColeAnticevicNetPartition

binedFC Toolbox Sanchez-Romero and
Cole (2021)

https://github.com/ColeLab/CombinedFC

rmation Transfer Mapping code Ito et al. (2017) https://github.com/ColeLab/informationtransfermapping

e for FIR regression to correct task-state
confounds

Cole et al., 2019 https://github.com/ColeLab/TaskFCRemoveMeanActivity

P minimal preprocessing pipelines: documentation
links to install analysis tools

Glasser et al. (2013) https://www.humanconnectome.org/software/hcp-mr-
pipelines

IPrep minimal preprocessing pipelines:
umentation and links to install analysis tools

Esteban et al. (2019) https://fmriprep.org/en/stable/

hon version 3 or higher Van Rossum and
Drake (2009)

https://www.python.org/

er

o Jupyter notebook available in the Brain This paper https://github.com/ColeLab/ActflowToolbox/blob/master/
b
Activity Flow Toolbox. examples/HCP_example.ipyn
MATERIALS AND EQUIPMENT

� Python version 3 or higher recommended. All code in the toolbox (as well as code blocks

throughout this protocol) conforms to PEP 8 style guidelines (https://www.Python.org/dev/

peps/pep-0008/).

� Installation of The Brain Activity Flow Toolbox (see key resources table and step-by-step method

details).

� Neuroimaging data formatted per before you begin.

� Recommended Python modules (i.e., packages) to install, either via PIP or website download, and

then imported at the top of Python script following one of these syntax conventions:
STAR Protocols 3, 101094, March 18, 2022
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# General

import <module_name>

# Importing a specific attribute (functions, classes, variables) from a module

from <module_name> import <attribute>

# Specifying short-hand keyword; to be used throughout script

import <module_name> as <short_hand_name>

# Specifying a short-hand keyword for a module attribute

import <module_name>.<attribute> as <short_hand_name>
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Note: Modules are listed below in lowercase to follow conventions for installation and

importing.

o numpy version 1.17.0 or higher

o h5py version 2.9.0 or higher

o scipy version 1.5.0 or higher

- scipy.stats

o sklearn version 0.20.3 or higher

- sklearn.linear_model.LinearRegression

o statsmodels version 0.12.2 or higher

o matplotlib version 3.0.3 or higher

- matplotlib.pyplot

- matplotlib.image

o seaborn version 0.9.0 or higher

o wbplot version 1.0.11 or higher

- Note: This may require additional installation of nibabel version 3.1.0 or higher.

- wbplot.pscalar

� Packages typically included with the Python distribution (or with the setuptools library) but recom-

mended to specifically import at the top of the script (note that the versioning of these are linked

with the Python version):

o sys

o math

o pkg_resources

o time

� Optional software: are linked with the Python version:

o Connectome workbench GUI to visualize and map fMRI data (https://www.humanconnectome.

org/software/connectome-workbench).

Note: See troubleshooting problem 1 for details on troubleshooting potential issues with im-

porting Python modules.
STEP-BY-STEP METHOD DETAILS

Part 1: Install the Brain Activity Flow Toolbox

Timing: 1–5 min

Installation of the Actflow Toolbox includes cloning (or downloading) the package from GitHub.

Software development guidelines and example usage can be found at https://github.com/
STAR Protocols 3, 101094, March 18, 2022 5
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ColeLab/ActflowToolbox. We recommend using Git via the command line interface (which requires

an internet connection).

1. If not already installed, install Git by following the directions provided at https://git-scm.com/

downloads.

2. Open the command line interface (e.g., Terminal application in macOS) and navigate to the

appropriate directory:
3. Install Actflow Toolbox with Git:

>cd �/research_project_directory/
Part 2: Estimate connectivity

Timing: 5–30 min

This section describes how to estimate FC with the methods provided by the Actflow Toolbox.

Brain connectivity is pivotal to the activity flow mapping procedure because it specifies (via esti-

mated connectivity weights) how activity flowing over interacting brain regions contributes to a

held out regions’ task activity (Cole et al., 2016). Importantly, this builds upon the principle that

connectivity is used to transfer information in the brain via activity flow processes (Ito et al.,

2020b). We focus on the combinedFC (Sanchez-Romero and Cole 2021; see key resources table)

estimation method as this is our current recommended best practice. The toolbox also contains

the following options for FC estimation (most of which are detailed elsewhere throughout this pro-

tocol): Pearson correlation (corrcoefconn.py), multiple linear regression (multregconn.py), partial

correlation (partial_corrconn.py), and principal component regression (pc_multregconn.py). In

the following demonstrations we focus on resting-state FC but provide considerations for alterna-

tively utilizing task-state FC. Further, it is worth noting that the connectivity estimate utilized in ac-

tivity flow mapping does not need to be FC. For example, structural connectivity can be used (see

expected outcomes for current examples in the literature).

4. Load data: in a Python compatible text editor (e.g., Atom), integrated development environment

(e.g., PyCharm), or development package (e.g., Jupyter Notebook) that sources the same parent

directory as /Actflowtoolbox/, load task activation data (Figure 1C) and data to be used in con-

nectivity estimation (see before you begin for formatting) (Figure 1D).

a. The following code block example loads a subset of N = 30 subject’s data from the HCP S1200

release (see key resources table), which can be found in the example notebook included in the

Actflow Toolbox (see key resources table).

b. Further, throughout this protocol we used the multimodal parcellation (MMP) developed by

Glasser et al. (2016) to define 180 cortical regions per hemisphere (360 total) (black outlines

in Figure 1A). Minimally preprocessed versions of this data and registration details are publicly

available at https://www.humanconnectome.org/ (as well as detailed in Glasser et al., 2013;

see key resources table).

Note: It is worth noting that the core usage of the Actflow Toolbox does not strictly require

data to be organized per this parcellation scheme. The only requirement is that the data inputs

are formatted as described in the before you begin section. As described, a node can be at the

level of parcels, regions (defined by the atlas of the user’s choice), voxels, or vertices; activity

flow mapping results will be returned at the same level.

>git clone --recurse-submodules https://github.com/ColeLab/ActflowToolbox.git
6 STAR Protocols 3, 101094, March 18, 2022
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Figure 1. Loaded data, HCP S1200 example

(A) Cortical schematic of the Cole-Anticevic Brain-Wide Network Partition (CAB-NP) and its 12 functional networks

from Ji et al. (2019), reproduced with permission. In select portions of this protocol, cortical regions were ordered by

these networks (see y-axes in panels C and D). This corresponds to the variable <netorder> used in select code blocks.

(B) The seven cognitive domains (totaling 24 conditions) sampled in the HCP S1200 task fMRI dataset (Barch et al.,

2013). These correspond to the x-axis in panel C and the second dimension of the input variable <activity_data>.

(C) Task-evoked activation patterns across 24 task conditions (mean across N = 30 subjects). This was the data

contained in the input variable <activity_data>, which was used throughout the protocol, and constitutes the

comparison reference for prediction accuracy statistics.

(D) The data utilized for connectivity estimation (mean across N=30 subjects) - which was the resting-state time series

for 1 run (used to estimate rest FC) - in the examples used throughout this protocol. This corresponds to the input

variable <rest_data>.
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Note: The import lines in the corresponding code block specify all modules needed

throughout all demonstration code blocks used in this protocol.
Load example data from �/HCP_example.ipynb

port pkg_resources

port sys

port numpy as np

port h5py

om scipy import stats

port time

port sklearn

om sklearn.linear_model import LinearRegression

port math as math

port statsmodels.api as sm

port matplotlib.pyplot as plt

port matplotlib.image as mpimg

port seaborn as sns

port wbplot

om wbplot import pscalar

port ActflowToolbox as actflow

port ActflowToolbox.connectivity_estimation as fc

Instantiate variables

tflow_dir = pkg_resources.resource_filename(

"ActflowToolbox.examples", "HCP_example_data/"

STAR Protocols 3, 101094, March 18, 2022 7



subj_nums = ["100206", "108020", "117930", "126325", "133928", "143224", "153934",

"164636", "174437", "183034", "194443", "204521", "212823", "268749", "322224", "385450",

"463040", "529953", "587664", "656253", "731140", "814548", "877269", "978578", "100408",

"108222", "118124", "126426", "134021", "144832"]

n_trs = 1195

# Load task activations (GLM betas); 360 MMP regions x 24 HCP tasks x 30 HCP subjects

file_path = actflow_dir + "HCP_example_taskactivations_data" + ".h5"

h5f = h5py.File(file_path, "r")

activity_data = h5f["taskbeta"][:]

h5f.close()

n_nodes, n_conditions, n_subjs = activity_data.shape

# Load resting-state fMRI data: 360 MMP regions x one run of resting-state fMRI (1195 time

points) x 30 HCP subjects

rest_data = np.zeros((n_nodes, n_trs, n_subjs))

for subj_ix in range(n_subjs):

file_path = (

actflow_dir + "HCP_example_restrun1_subj" + subj_nums[subj_ix] + "_data" + ".h5"

)

h5f = h5py.File(file_path, "r")

rest_data[:, :, subj_ix] = h5f["restdata"][:]

h5f.close()

ll
OPEN ACCESS

8

Protocol
Note: The corresponding code block demonstrates how to load the entire example dataset

provided by the Actflow Toolbox, however the data files can be found in the cloned Actflow-

Toolbox directory within the following path: /ActflowToolbox/examples/HCP_example_data/

. A single participant’s resting-state data file is named as follows: HCP_example_restrun1_-

subj<######>_data.h5 (where <######> is replaced by one of the participant codes listed

in the variable in the corresponding code block called <subj_nums>). Participants’ task acti-

vation data is concatenated in the array inside HCP_example_taskactivations_data.h5. The

corresponding code block demonstrates how to extract relevant data from *.h5 files.

Optional: Avoid potential circularity due to spatial smoothness by excluding source vertices

that are 10 mm from the target node border (see before you begin for background) (Figure 2).

In the present protocol, target nodes refer to the iteratively held-out brain regions (or parcels,

vertices, or voxels) (Figure 2 black region) whose task activations are predicted based on

modeled contributions from source nodes, which are all other brain regions (excluding the

target). For example: if there are 360 regions in total, the first iteration to predict task activa-

tions in target region one will hold out region one and use data from source regions two

through 360 (359 sources in total) to make the prediction. This is iterated over all 360 target

regions. The details of this procedure are described at-length in Part 3, where actflowtest is

implemented. Target and source regions can be spatially contiguous, which can potentially

raise concerns regarding spatial autocorrelation. To address this, we have added an (optional)

step in the iterative process just described that excludes (or masks) vertices 10 mm outside of

each target region’s border (Figure 2 green vertices) from being part of the source set. That is,

contiguous source regions’ data will exclude data from vertices in this mask. This effectively

adds a 10 mm ‘‘buffer’’ between a given target and all of its contiguous sources. The Actflow

Toolbox has built-in functionality to perform this 10 mm masking procedure on fMRI data us-

ing the MMP atlas (Glasser et al., 2016) (Figure 2). We recommend the HCP minimal prepro-

cessing pipeline (Glasser et al., 2013; see key resources table) (in addition to our other

nuisance regression recommendations in before you begin), as it yields time series data re-

sampled and aligned onto common cortical surface vertices and subcortical voxels, which

are more generally referred to as ‘‘grayordinates’’ (note that the data demonstrated in this

protocol is from the cortical surface only). Accordingly, we used the MMP atlas because it

was developed with HCP grayordinates and vertex-to-region correspondence is readily
STAR Protocols 3, 101094, March 18, 2022
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Figure 2. Optional step to avoid circularity due to spatial autocorrelation

All steps are performed iteratively, for each target region. Step 1: Identify the to-be-predicted, held-out target

region on the MMP atlas surface. The example target region shown (black) is the left hemisphere area PGi (Glasser

et al., 2016). Note that all steps are performed for each target region, including right hemisphere regions. The left

hemisphere lateral surface is solely visualized for simplicity. Step 2: Use the HCP workbench command -cifti-dilate

(https://www.humanconnectome.org/software/workbench-command/) to identify source region vertices (also

termed grayordinates) that are 10 mm outside the given target region’s border (green). Steps 1 and 2 are already

computed across all target/source node sets, and the resulting masks are built into the Actflow Toolbox. Step 3a:

Exclude the source vertices identified in Step 2 from the computation of source regions’ task-evoked activations for

a given task condition (example task condition ‘‘working memory 2-back: body’’ is shown). This is performed by

calcactivity_parcelwise_noncircular. In this step, a source regions’ activity is computed by taking the average of

all included source vertices belonging to that source region. Step 3b: Exclude the source vertices identified in

Step 2 from the estimation of FC with the target region. This is performed by calcconn_parcelwise_noncircular. The

results of Steps 3a and 3b can be used as inputs into actflowtest, which is detailed in the step-by-step method

details: Part 3.

ll
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identifiable (from a parcellation that underwent robust validation testing; see Glasser et al.,

2016 for details). Currently only 10 mm masks are available in this step. Additionally, this re-

quires the node dimension of input data to be composed of vertices. This can be implemented

for both task activation data and connectivity estimation, as follows:
Exclude source vertices 10 mm from target nodes to avoid circularity

Using preloaded vertex-wise data: activity_data_vertex and rest_data_vertex

Non-circular task activations

tivity_data_noncirc = np.zeros((n_nodes, n_conditions, n_subjs))

r subj_ix in range(n_subjs):

activity_data_here = activity_data_vertex[:, :, subj_ix]

activity_data_noncirc_all = fc.calcactivity_parcelwise_noncircular(

activity_data_here

)

for node_ix in range(n_nodes):

for cond_ix in range(n_conditions):

extracted_data = activity_data_noncirc_all[node_ix, node_ix, cond_ix]

activity_data_noncirc[node_ix, cond_ix, subj_ix] = extracted_data.copy()

Non-circular resting-state FC

_arr_noncirc = np.zeros((n_nodes, n_nodes, n_subjs))

r subj_ix in range(n_subjs):

rest_data_here = rest_data_vertex[:, :, subj_ix]

# Can specify connmethod = "combinedFC" here

fc_arr_noncirc[:, :, subj_ix] = fc.calcconn_parcelwise_noncircular(rest_data_here)
Note: The foregoing procedure to exclude source vertices 10 mm from the target border may

require 30min - 1 h of computational time, depending on the input data dimensions (e.g., how
STAR Protocols 3, 101094, March 18, 2022 9
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many subjects), as well as the computational environment’s capabilities. For reference, we ran

the last code block on a compute node on Rutgers University’s Amarel high performance

computing cluster (see here for specifications: https://oarc.rutgers.edu/resources/amarel/)

to gauge run times. The data utilized had the following dimensions: <activity_data_vertex>

was of shape 59412 vertices by 24 conditions by 30 subjects; <rest_data_vertex> was of shape

59412 vertices by 1195 time points by 30 subjects. The resting-state array was approximately

17 GB, whereas the task activity array was only 0.3 GB. The portion annotated with ‘‘Non-cir-

cular task activations’’ took approximately 8 min and the portion annotated with ‘‘Non-circular

resting-state FC’’ took approximately 27 min. Altogether these processes used approximately

68% of 20 requested cores per node and 26% of 64 GB requested memory. However, these

workload specifications relate to the size of vertex-level input data rather than the Actflow

Toolbox functions, and should serve as a reference rather than a recommendation. Users

that maintain vertex-level data and are interested in applying the above analysis steps should

implement data management practices most suitable to their pipelines and computational

environments.

c. The following are additional parameter options available when implementing calcactivity_-

parcelwise_noncircular (Figure 2, Step 3a), but are set to defaults in the corresponding code

block:

i. dlabelfile: This is a string indicating the parcellation reference file. We have provided a

default dlabel file in-function. For each vertex it lists the corresponding region number

in the MMP atlas (Glasser et al., 2016). While use of the optional step here (applying a

10 mm dilated mask to source vertices) is currently based upon the MMP atlas, this param-

eter is available as an input in case the load method fails, users may specify this file path

directly. We have outlined this use case in troubleshooting: problem 4. This file is a *dla-

bel.nii, which is CIFTI-2 formatted and readable by most neuroimaging software. We

recommend the following resource for more information on CIFTI files: https://wiki.

humanconnectome.org/display/PublicData/HCP+Users+FAQ.

ii. cortex_only: This is a Boolean that can be set to either True or False. The default is True,

which indicates to assess only cortical regions. If False, both cortical and subcortical re-

gions will be assessed.

iii. verbose: This is a Boolean that is set to False by default. If True, the user will see printed

output that tracks the progress of the function.

d. The following are additional parameter options available when implementing calcconn_par-

celwise_noncircular (Figure 2, Step 3b), but are set to defaults in the corresponding code

block:

i. connmethod: This is a string that indicates which functional connectivity estimation

method to use. The options are: ‘multreg’ (default) (multiple linear regression), ‘pearson-

corr’ (Pearson correlation), ‘pc_multregconn’ (principal components regression), and

‘combinedFC’ (Sanchez-Romero and Cole, 2021).

ii. dlabelfile: The same as listed above for calcactivity_parcelwise_noncircular.

iii. precomputedRegularTS: This is an optional input parameter that is set to None by default.

If provided, it should be an array of the mean time series of the original set of regions (i.e.,

pre-masking) that has the same dimensions as the input variable <data> (i.e., <rest_data>

in the corresponding example code block).

iv. cortex_only: The same as listed above for calcactivity_parcelwise_noncircular.

v. verbose: The same as listed above for calcactivity_parcelwise_noncircular.

5. Continuing in the same editor, environment, or notebook, continue on the next line with the

following code to estimate connectivity.

Note: This example computes resting-state FC with the combinedFC (Sanchez-Romero and

Cole, 2021) method, as our current recommended best practice (Figure 3A). The Actflow
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Figure 3. Functional connectivity

(A) The grand average (mean of N = 30 subjects resting-state connectivity matrix estimated via combinedFC) of 360

MMP cortical regions, ordered along each axis per the CAB-NP (see Figure 1A). This represents the connectivity

estimates used in this protocol for activity flow mapping.

(B) The same as in panel A, but using task timeseries to estimate FC (mean across N = 30 subjects and all HCP tasks).

The use of task-state FC in mapping cognitive computations was assessed in Cole et al., 2021.
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Toolbox provides a variety of FC estimationmethods; see extended example usage at https://

github.com/ColeLab/ActflowToolbox/blob/master/examples/HCP_example.ipynb, which

can be applied to either resting-state or task-state data.

Note: This assumes <rest_data> has been formatted per before you begin recommendations:

in a NumPy array of shape nodes by TR by subject (note the for-loop iterates over subjects).
Estimate resting-state functional connectivity with combinedFC

nodes, n_trs, n_subjs = rest_data.shape

_arr = np.zeros((n_nodes, n_nodes, n_subjs))

r subj_ix in range(n_subjs):

net_mask = fc.combinedFC(rest_data[:, :, subj_ix])

fc_arr[:, :, subj_ix] = fc.multregconn(

rest_data[:, :, subj_ix], conn_mask=(net_mask != 0)

)

a. The following are additional parameter options available when implementing combinedFC

(see Sanchez-Romero and Cole, 2021 for more details), but are set to defaults in the corre-

sponding code block:
i. target_ts: This is an optional parameter set to None by default. This is recommended for

two use cases: (1) When the user wants to estimate connectivity for only one target node

(with all other source nodes). This should contain the target node’s time series, or, a one

dimensional vector of activity across time points. Connectivity will be compared to each

source node’s time series in the <dataset> input (e.g., <rest_data> in the corresponding

code block), and a one dimensional connectivity vector will be returned. (2) When calling

the optional parameter of <conn_method=’combinedFC’> in the calcconn_parcelwise_-

noncircular function. The user does not need to change any inputs in this case because the

calcconn_parcelwise_noncircular function has built-in handling when <conn_method=’-

combinedFC’>.

ii. parcelInt: This is an optional parameter set to None by default. This is also used by calc-

conn_parcelwise_noncircular when <conn_method=’combinedFC’> which also has built-

in handling to manage this input. This input helps index the final connectivity network. If

the user would like to use <target_ts> without calcconn_parcelwise_noncircular (e.g., has
STAR Protocols 3, 101094, March 18, 2022 11
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another use for separating the source and target node time series), then this is the index-

ing value of the target node. If there is only one target node, this can be set to 0.

iii. source_cols: This is an optional parameter set to None by default. This is the correspond-

ing source node indexing information to <parcelInt> explained above. That is, calcconn_-

parcelwise_noncircular has built-in handling if <conn_method=’combinedFC’>. Other-

wise, this is the indexing vector for the source nodes (with the target held out) in the

final connectivity network. The following code block is a simple example of how this

can be determined:
ermine the indices of source node columns for a given target node (parcelInt); to be used to

x the final connectivity array

elInt = 0

sources = 360

ce_cols = np.arange(num_sources)

ce_cols = np.delete(source_cols, parcelInt)
iv. methodCondAsso: A string that determines which method to use to evaluate conditional

associations (i.e., the first portion of the combinedFC procedure). The options are ‘parti-

alCorrelation’ (default) or ‘multipleRegression’.

v. methodParcorr: A string that specifies how the partial correlation matrix is computed,

and is thus only relevant when <methodCondAsso=’partialCorrelation’>. The options

are ‘inverseCovariance’ (default) and ‘regression’.

vi. alphaCondAsso: A scalar that specifies the alpha significance cut-off for the conditional

association evaluation. The default is 0.01.

vii. methodAsso: A string specifying the method for the second procedure performed by

combinedFC: testing whether edges should be included or excluded in the connectivity

matrix (i.e., the unconditional association procedure). The options are ‘correlation’

(default) and ‘simpleRegression’.

viii. alphaAsso: A scalar that specifies the alpha significance cut-off for the unconditional as-

sociation evaluation. The default is 0.01.

ix. equivalenceTestAsso: A Boolean that is set to False by default. If set to True, the uncon-

ditional association procedure will be performed via equivalence testing. When False,

two-sided null hypothesis testing will be performed.

x. lower_bound: A scalar that specifies the negative bound for the minimum r value of inter-

est in the equivalence test. The default value is -0.1.

xi. upper_bound: A scalar that specifies the positive bound for the minimum r value of inter-

est in the equivalence test. The default value is +0.1.

b. The following are additional parameter options available when implementing multregconn:

i. target_ts: This is an optional parameter set to None by default. This is recommended for

two use cases: (1) When the user wants to estimate connectivity for only one target node

(with all other source nodes). This should contain the target node’s time series, or, a one

dimensional vector of activity across time points. Connectivity will be compared to each

source node’s time series in the <activity_matrix> input (e.g., <rest_data> in the corre-

sponding code block), and a one dimensional connectivity vector will be returned. (2)

When calling the optional parameter of <conn_method=’multreg’> in the calcconn_par-

celwise_noncircular function. The user does not need to change any inputs in this case

because the calcconn_parcelwise_noncircular function has built-in handling when <con-

n_method=’multreg’>.

ii. parcelstoexclude_bytarget: This is an optional parameter set to None by default. This can

be a dictionary of lists, where each list includes source regions to exclude for each target

parcel. This is not used when <target_ts> is set, and thus not used by calcconn_parcelwi-

se_noncircular. This can be used when there are specific source regions (the entire region)

that should be held out from connectivity estimation.
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iii. conn_mask: This is an optional parameter set to None by default. This is mainly used when

calling multregconn after combinedFC (as in the corresponding code block), and specifies

a mask to exclude some connections from being fit in the multiple regression procedure by

setting them to zero. This should be an array that matches the dimensions of the output

<fc_arr> consisting of ones and zeros: ones indicate a connection and zeros indicate no

connection. If <target_ts> is set, the dimensions of <conn_mask> should be the number

of nodes in the original <activity_matrix> (i.e., <rest_data> in the corresponding code

block) by one.

Alternatives: Estimate FC with task-state data (see before you begin for recommendations

and data formatting details) (Figure 3B).
Estimate task-state functional connectivity with combinedFC

Note: this assumes each task condition contains the same number of time points. If this is not

e case, a data dictionary may be used (instead of a 4D numpy array).

nodes, n_trs, n_conditions, n_subjs = task_data.shape

_arr = np.zeros((n_nodes, n_nodes, n_conditions, n_subjs))

r subj_ix in range(n_subjs):

for cond_ix in range(n_conditions):

net_mask = fc.combinedFC(task_data[:, :, cond_ix, subj_ix])

fc_arr[:, :, cond_ix, subj_ix] = fc.multregconn(

task_data[:, :, cond_ix, subj_ix], conn_mask=(net_mask != 0)
Optional: Visualize the connectivity matrix with regions sorted along the x- and y-axes per the

MMP (Glasser et al., 2016) and CAB-NP (Ji et al., 2019), per the following code (resting-state

FC example):

)

Cole-Anticevic Brain-Wide Network Partition (Ji et al., 2019) variables

tworkpartition_dir = pkg_resources.resource_filename(

"ActflowToolbox.dependencies", "ColeAnticevicNetPartition/"

tworkdef = np.loadtxt(networkpartition_dir + "/cortex_parcel_network_assignments.txt")

tworkorder = np.asarray(sorted(range(len(networkdef)), key=lambda k: networkdef[k]))

torder = networkorder.copy()

Visualize FC matrix with Toolbox function

_mat = np.mean(fc_arr, axis=2)[netorder, :][:, netorder]

= actflow.tools.addNetColors_Seaborn(fc_mat)

Note: fig can be used to save the figure as follows (change strings as appropriate):

_directory = "/my/figure/directory/here/"

_file_name = fig_directory + "fc_matrix.png"
CRITICAL: Timing depends on computational capabilities of a given system and/or envi-

fig.savefig(fig_file_name, bbox_inches="tight", format="png", dpi=600)
ronment. We recommend a test run to assess whether a high performance computing

environment will be needed, or, if the analysis should be broken up into smaller groups.

The following dimensions can become particularly large in select datasets: nodes (e.g.,

thousands of vertices), conditions (when estimating task-state FC), and/or subjects

(e.g., N > 100). The following code modification can be used as a test run for n = 10

subjects:
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# Wrapping the time function around the code to assess computation time

n_test_subjs = 10

start_time = time.time()

n_nodes, n_trs, n_subjs = rest_data.shape

fc_arr = np.zeros((n_nodes, n_nodes, n_subjs))

for subj_ix in range(n_test_subjs):

net_mask = fc.combinedFC(rest_data[:, :, subj_ix])

fc_arr[:, :, subj_ix] = fc.multregconn(

rest_data[:, :, subj_ix], conn_mask=(net_mask != 0)

)

end_time = time.time()

print(

"Computation time for "

+ str(n_test_subjs)

+ " subjects: "

+ str((end_time - start_time) / 60)

+ " minutes."

)

Computation time for 10 subjects: 0.08017793099085489 minutes.
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Note: This test of elapsed computational time was performed on the Rutgers University

Amarel compute cluster (https://oarc.rutgers.edu/resources/amarel/) on one compute node

with 10 available cores and 64 GB available memory. We additionally ran the same code block

on a local machine, which was a Macbook Pro with the following specifications: 2017 model

with macOS Catalina 10.15.6, 2.3 GHz dual-core processor, and 16 GB of RAM. The elapsed

time was approximately 0.09 min when running this code block in a Python-enabled terminal

on that local machine.

Note:As in Yan et al. (2021a), structural connectivity may be used in place of FC. Further, alter-

nate estimates of FC may be used, such as latent FC (as in: McCormick et al., 2021). If using a

brain connectivity estimate that is not covered by the Actflow Toolbox, this section (Part 2) can

be substituted with project-specific code (or skipped if estimated outside of Python) and the

resulting FC data array can be used in Part 3 as long as it follows the formatting convention of:

nodes by nodes by subjects.
Part 3: Run actflowtest

Timing: 2–10 min

This section provides instructions for running actflowtest, which is the main mapping procedure in

the Actflow Toolbox. We also provide a look ‘‘under the hood’’ and describe the quantitative steps

performed within actflowtest (depicted diagrammatically in Figure 4).

6. Run the main function of the toolbox, actflowtest.py, which can be continued from the code

above. This is the activity flow mapping procedure (Figure 4), which comes included with pre-

dicted-to-actual similarity assessment across multiple conditions and subjects. The following

group-level statistics are returned to indicate prediction accuracy: Pearson r with t-testing,

percent variance explained via the coefficient of determination, and the mean absolute error

(see expected outcomes for details on accuracy indices).
STAR Protocols 3, 101094, March 18, 2022
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Figure 4. Activity flow mapping procedure performed by actflowtest

(A) Activity flow mapping toy diagram and corresponding formula (adapted from Cole et al., 2016 with permission).

Task activity for the held out node, j (purple), is predicted by the sum of task activity of all other nodes, i (blue) (where

n = total number of nodes), weighted by their connectivity estimates with j (grey).

(B) Activity flow mapping procedure performed by actflowtest with the example HCP S1200 data (N = 30) used

throughout this protocol. The computations inside actflowtest are numbered inside dark grey squares, as follows:

[1] For held-out target region j, connectivity estimates between j and all other source regions are [2] multiplied

by all other regions’ actual task activations (iterated per task). [3] The resulting activity flow map contains the

task activations of all source regions weighted by their connectivity estimate with j. [4] Flow map values are summed to

equal the predicted activity of j. [5] Computations 1–4 are iterated over all regions and all tasks, which produces a map

of activity-flow predicted task activations across the brain. [6] Predicted activations are compared with

actual activations via prediction accuracy indices (see expected outcomes). Excluded source vertices (10 mm from the

target region j; see before you begin; step-by-step method details part 2; and Figure 2) are masked in green.
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Note: This assumes <activity_data> has been formatted per before you begin recommenda-

tions, or, in a NumPy array of shape nodes by conditions by subject (note that the last dimen-

sion is optional).
ctivity flow mapping with resting-state FC estimated via combinedFC

tflow_output = actflow.actflowcomp.actflowtest(activity_data, fc_arr)
# A

ac
Note: By default actflowtest prints prediction accuracy results; see expected outcomes for

examples.
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a. The following are additional parameter options available when implementing actflowtest, but

are set to defaults in the corresponding code block:

i. actVect_group_test: This is an optional parameter set to None by default. This can be used

to provide independent data to assess prediction accuracy. Some examples include sepa-

rate runs or separate participants. The dimensions of this should match <actVect_group>

(i.e., the variable <activity_data> in the corresponding code block).

ii. print_by_condition: This is a Boolean set to True by default that directs the model_com-

pare function to print the prediction accuracy statistics for each condition separately.

iii. full_report: This is a Boolean set to False by default. If True, the model_compare function

will assess prediction accuracy across multiple dimensions of the data. See expected out-

comes for a full explanation of these statistics.

iv. separate_activations_bytarget: This is a Boolean set to False by default. If True, this indicates

that the input <actVect_group> (i.e., the variable <activity_data> in the corresponding code

block) has a single activation vector for the to-be-predicted target node (i.e., to perform activity

flow mapping for individual target nodes) and will provide additional handling for this.

v. transfer_func: This is an optional parameter set to None by default, and accepts a string

otherwise. If set, activity flow mapping will utilize a transfer function. The options are

‘linear’, ‘relu’, ‘sigmoid’, and ‘logit’. This will be applied to the activity of all other nodes

(blue nodes in Figure 4A; i.e., source nodes for a given target node) in the activity flowmap-

ping procedure. Usage of a transfer function assumes that the target node’s time series is

primarily driven by inputs (e.g., local field potentials), such that source time series need to

be converted from inputs to outputs via a transfer function.

vi. avgthencomp_fixedeffects: This is a Boolean set to False by default. If True, the model_-

compare function will assess prediction accuracy after averaging across participants, which

is sometimes referred to as a ‘‘fixed effects’’ analysis. We recommend analyses with partic-

ipants as random effects (i.e., effects for each participant, which can be later averaged to

assess group effects), and thus recommend keeping this False (but have included the op-

tion for specific use cases).

7. Extract results from the <actflow_output> dictionary with the following code (continued from

above):
# Extract the predicted and actual activations

predicted_activations_array = actflow_output["actPredVector_bytask_bysubj"]
Optional: The following code can be used to extract prediction accuracy:

actual_activations_array = actflow_output["actVect_actual_group"]
# Optionally extract prediction accuracies to NumPy arrays

correlations_full_model = actflow_output["model_compare_output"][

"fullcomp_compthenavg_output"

]["corr_vals"]

expl_variances_full_model = actflow_output["model_compare_output"][

"fullcomp_compthenavg_output"

]["R2_vals"]

maes_full_model = actflow_output["model_compare_output"]["fullcomp_compthenavg_output"][

"mae_vals"

]

tstat_full_model = actflow_output["model_compare_output"][

"tval_ActflowPredAcc_fullcomp"

]

pval_full_model = actflow_output["model_compare_output"]["pval_ActflowPredAcc_fullcomp"]
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Figure 5. Activity flow mapped task activations compared to actual task activations across all nodes and tasks

(A) Predicted task activation patterns across 24 conditions and all MMP cortical regions, sorted into their CAB-NP

functional network assignments (color coded per Figure 1A) (mean of N=30 subjects).

(B) The actual task activation patterns (as in Figure 1C). The predicted activations exhibited high similarity to the actual

activations (r = 0.81, R2 = 0.65, MAE = 6.83; see expected outcomes for more on measuring accuracy).
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Optional part 4: Visualize results

Timing: 1–5 min

Once the activity flow mapping procedure is complete, there are a variety of approaches to visual-

izing results. Here we provide instructions to produce our recommended visualizations, focusing on

comparing predicted task activations to actual task activations. Please note that depending on the

research question and data, researchers may find the need to modify these figures, or utilize another

figure type altogether (see expected outcomes for an overview of the current literature implement-

ing activity flow mapping).

8. Visualize the predicted and actual activation patterns across all task conditions (Figure 5).
# Visualize predicted and actual task activation patterns across all nodes and tasks

# HCP S1200: names of the 24 conditions (x-axis tick strings)

task_names = ["EMOTION:fear", "EMOTION:neut", "GAMBLING:win", "GAMBLING:loss",

"LANGUAGE:story", "LANGUAGE:math", "MOTOR:cue", "MOTOR:lf", "MOTOR:rf", "MOTOR:lh",

"MOTOR:rh", "MOTOR:t", "REASONING:rel", "REASONING:match", "SOCIAL:mental",

"SOCIAL:rnd", "WM0bk:body","WM0bk:faces","WM0bk:places","WM0bk:tools","WM2bk:body","WM

2bk:faces", "WM 2bk:places", "WM 2bk:tools"]

# Visualize activity-flow-predicted activation patterns across all 24 HCP S1200 conditions

plt.figure(figsize=[7, 5])

ax = sns.heatmap(

np.mean(predicted_activations_array, axis=2)[netorder, :],

center=0,

cmap="seismic",

cbar=True,

yticklabels=100,

xticklabels=task_names,

)

ax.figure.suptitle("Predicted Task Activations (mean across subjects)")

ax.set(ylabel="cortical regions")

plt.show()

# Visualize actual (empirical) activation patterns across all 24 HCP S1200 conditions

plt.figure(figsize=[7,5])
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Figure 6. Activity flow mapped task activations compared to actual task activations across all nodes and one task

(A) Activity-flow-predicted task activation patterns for one task condition (the win condition of the gambling task),

across all MMP cortical regions (mean of N = 30 subjects).

(B) The actual task activation patterns for the gambling (win) condition, across all MMP cortical regions (mean of N = 30

subjects). The predicted activations exhibited high similarity to the actual activations (r = 0.81, R2 = 0.64, MAE =5.12;

see expected outcomes for more on measuring accuracy with the ‘nodewise_compthenavg’ flag).

ax = sns.heatmap(

np.mean(actual_activations_array, axis=2)[netorder, :],

center=0,

cmap= "seismic",

cbar=True,

yticklabels=100,

xticklabels=task_names,

)

ax.figure.suptitle("Actual Task Activations (mean across subjects)")

ax.set(ylabel="cortical regions")
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9. Visualize the predicted and actual activation patterns for a select task condition, mapped onto

a cortical brain schematic (Figure 6). This uses wbplot (https://github.com/jbburt/wbplot), a

Python module (see materials and equipment) built upon Connectome Workbench commands

(https://www.humanconnectome.org/software/connectome-workbench) to generate brain sche-

matics in-line, such that wbplot can be called within an IDE or Jupyter Notebook. Functionality is

limited and use of the workbench GUI is recommended for full visualization options and HCP inte-

gration.

Note: A pixdim warning message may appear; this can be ignored.

plt.show()
# Visualize predicted and actual task activation patterns across all nodes and 1 task

cond_ix = 2 # see task_names for corresponding task

n_parcels = 360 # this should match n_nodes used upstream in code. 360 across-cortex MMP re-

gions; 180 per hemisphere (Glasser et al., 2016)

# Activity-flow-predicted activations for one task condition

inputdata = np.mean(predicted_activations_array, axis=2)[:, cond_ix]

# Flip hemispheres, since CAB-NP is ordered left-to-right, while wbplot uses right-to-left

inputdata_flipped = np.zeros(np.shape(inputdata))

inputdata_flipped[0:int(n_parcels / 2)] = inputdata[

int(n_parcels / 2):int(n_parcels)

]
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inputdata_flipped[int(n_parcels / 2):int(n_parcels)] = inputdata[

0:int(n_parcels / 2)

]

file_out = fig_directory + "out.png"

colormap = "seismic" # consider setting to all "reds" if no negative values

pscalar(file_out=file_out, pscalars=inputdata_flipped, cmap=colormap, transparent=True)

img = mpimg.imread(file_out)

plt.figure()

plt.axis("off")

plt.title("Predicted activations (" + task_names[cond_ix] + ")")

plt.imshow(img)

# Actual activations to one task condition

inputdata = np.mean(actual_activations_array, axis=2)[:, cond_ix]

# Flip hemispheres, since CAB-NP is ordered left-to-right, while wbplot uses right-to-left

inputdata_flipped = np.zeros(np.shape(inputdata))

inputdata_flipped[0:int(n_parcels / 2)] = inputdata[

int(n_parcels / 2):int(n_parcels)

]

inputdata_flipped[int(n_parcels / 2):int(n_parcels)] = inputdata[

0:int(n_parcels / 2)

]

file_out = fig_directory + "out.png"

colormap = "seismic" # consider setting to all "reds" if no negative values

pscalar(file_out=file_out, pscalars=inputdata_flipped, cmap=colormap, transparent=True)

img = mpimg.imread(file_out)

plt.figure()

plt.axis("off")

plt.title("Actual activations (" + task_names[cond_ix] + ")")

plt.imshow(img)
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Expected outcomes

Prediction accuracy: model comparison report

The core tool of the Actflow Toolbox, actflowtest (see part 3 in step-by-step method details), by default

returns a report of the prediction accuracy indices that assess how similar the activity-flow-predicted ac-

tivations are to the actual activations (visualized in Figures 5 and 6). These accuracy indices include: (1)

Pearson r (with associated t-statistic and p-value), computedwith numpy.corrcoef. (2) Variance explained

via coefficient of determination (R2), computed with sklearn.metrics.r2_score. (3) Mean absolute error

(MAE) (see Cole et al., 2016), computed with NumPy functions corresponding to the following formula

(n = number of subjects):

MAE =
Sn

i =1

�
�predicted � actual

�
�

n

A sample report from the Actflow Toolbox example dataset (see key resources table), which as-

sessed n = 30 HCP S1200 subjects and utilized the resting-state FC estimated via combinedFC,

printed as follows:
===Comparing prediction accuracies between models (similarity between predicted and actual

brain activation patterns)===

==Comparisons between predicted and actual activation patterns, across all conditions and no-

des:==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):

Each comparison based on 24 conditions across 360 nodes, p-values based on 30 subjects (cross-

subject variance in comparisons)
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Mean Pearson r = 0.81, t-value vs. 0: 64.44, p-value vs. 0: 7.31e-33

Mean % variance explained (R^2 score, coeff. of determination) = 0.65

Mean MAE (mean absolute error) = 6.83

Note: Pearson r and Pearson r^2 are scale-invariant, while R^2 and MAE are not. R^2 units: per-

centage of the to-be-predicted data’s unscaled variance, ranging from negative infinity

(because prediction errors can be arbitrarily large) to positive 1. See https://scikit-lear-

n.org/stable/modules/generated/sklearn.metrics.r2_score.html for more info.

ll
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By default, these assessments are based on an optional input variable, <comparison_type>, in

the function model_compare.py (which is called within actflowtest), which has five possible op-

tions specified as strings: (1) comparison_type = "fullcompare_compthenavg": This is the

default comparison method, where predicted and actual activations are compared across all con-

ditions and nodes simultaneously. This is accomplished by collapsing the data across the condi-

tion and node dimensions with numpy.reshape. This process treats the variance between condi-

tions and nodes equally, but independently per subject. The results are summarized (as in the

provided sample report) with averages of the cross-subject accuracy indices. (2) comparison_-

type = "conditionwise_compthenavg": This is run separately for (i.e., iterated over) each subject

and node, and comparisons are made between the predicted and actual activations across con-

ditions. This can be thought of as characterizing the accuracy of a node’s response profile, or a

profile of responses across all task conditions. The results are summarized by averaging over

both the node and subject dimensions. (3) comparison_type = "conditionwise_avgthencomp":

Here, predicted and actual activation data are averaged initially across subjects (sometimes

called a fixed-effects analysis). Then, the comparisons are run separately for each node,

comparing response profiles as in conditionwise_compthenavg. This will boost the signal-to-

noise ratio of the activation data, but will reduce the ability to assess the spread of accuracy

scores across subjects (which is possible with conditionwise_compthenavg). The results are sum-

marized by averaging over the node dimension. (4) comparison_type = "nodewise_compthe-

navg": This is run separately for each subject and condition, and comparisons are made between

the predicted and actual activations across nodes, or the whole-brain (or, whole-cortex, depend-

ing on which nodes are assessed with the Actflow Toolbox) activation patterns. These vectors can

be thought of as a response profile across the brain to a given condition. The results are summa-

rized by averaging over both the condition and subject dimensions. (5) comparison_type = "no-

dewise_avgthencomp": Here, predicted and actual activations are averaged initially across sub-

jects. Then, comparisons are run separately for each condition, comparing the whole-brain

response profiles to each condition. The results are summarized by averaging over the condition

dimension.

If a specific comparison type is required, users may specifically call the model_comparison func-

tion: see the quantification and statistical analysis section for an example. If all comparison types

are of interest, users may turn on another optional input variable in the actflowtest.py function,

<full_report>, which is by default turned off, by using the following modification to the actflowt-

est code block in Part 3 (see Figure 6 for visualization of condition 3):
# Return full model comparison report

actflow_output = actflow.actflowcomp.actflowtest(

activity_data, fc_arr, full_report=True

)
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==Condition-wise comparisons between predicted and actual activation patterns (calculated

for each node separately):==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):

Each correlation based on N conditions: 24, p-values based on N subjects (cross-subject vari-

ance in correlations): 30

Mean Pearson r = 0.83, t-value vs. 0: 62.45, p-value vs. 0: 1.8026564213102585e-32

Mean % variance explained (R^2 score, coeff. of determination) = 0.35

Mean MAE (mean absolute error) = 6.83

Note: Pearson r and Pearson r^2 are scale-invariant, while R^2 and MAE are not. R^2 units: per-

centage of the to-be-predicted datas unscaled variance, ranging from negative infinity

(because prediction errors can be arbitrarily large) to positive 1. See https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.r2_score.html for more info.

==Node-wise (spatial) correlations between predicted and actual activation patterns (calcu-

lated for each condition separately):==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):

Each correlation based on N nodes: 360, p-values based on N subjects (cross-subject variance in

correlations): 30

Cross-condition mean r=0.78, t-value vs. 0: 55.40, p-value vs. 0: 5.66e-31

By task condition:

Condition 1: r=0.70, t-value vs. 0: 24.83, p-value vs. 0: 4.351151202867745e-21

Condition 2: r=0.66, t-value vs. 0: 22.49, p-value vs. 0: 6.664353565074144e-20

Condition 3: r=0.81, t-value vs. 0: 49.47, p-value vs. 0: 1.4548795509484526e-29

Condition 4: r=0.81, t-value vs. 0: 44.23, p-value vs. 0: 3.61e-28

Condition 5: r=0.71, t-value vs. 0: 28.35, p-value vs. 0: 1.08-22

Condition 6: r=0.72, t-value vs. 0: 30.75, p-value vs. 0: 1.10e-23

Condition 7: r=0.79, t-value vs. 0: 39.28, p-value vs. 0: 1.07e-26

Condition 8: r=0.69, t-value vs. 0: 24.92, p-value vs. 0: 3.94e-21

Condition 9: r=0.68, t-value vs. 0: 27.53, p-value vs. 0: 2.45e-22

Condition 10: r=0.68, t-value vs. 0: 28.77, p-value vs. 0: 7.10e-23

Condition 11: r=0.67, t-value vs. 0: 32.17, p-value vs. 0: 3.07e-24

Condition 12: r=0.68, t-value vs. 0: 29.39, p-value vs. 0: 3.90e-23

Condition 13: r=0.83, t-value vs. 0: 39.87, p-value vs. 0: 6.95e-27

Condition 14: r=0.84, t-value vs. 0: 44.50, p-value vs. 0: 3.02e-28

Condition 15: r=0.83, t-value vs. 0: 46.05, p-value vs. 0: 1.136e-28

Condition 16: r=0.83, t-value vs. 0: 56.14, p-value vs. 0: 3.86e-31

Condition 17: r=0.82, t-value vs. 0: 40.62, p-value vs. 0: 4.09e-27

Condition 18: r=0.78, t-value vs. 0: 38.98, p-value vs. 0: 1.32e-26

Condition 19: r=0.83, t-value vs. 0: 50.51, p-value vs. 0: 8.01e-30

Condition 20: r=0.83, t-value vs. 0: 42.43, p-value vs. 0: 1.183e-27

Condition 21: r=0.83, t-value vs. 0: 51.47, p-value vs. 0: 4.68e-30

Condition 22: r=0.78, t-value vs. 0: 41.73, p-value vs. 0: 1.90e-27

Condition 23: r=0.81, t-value vs. 0: 49.27, p-value vs. 0: 1.64e-29

Condition 24: r=0.82, t-value vs. 0: 39.27, p-value vs. 0: 1.071e-26

ll
OPEN ACCESSProtocol
Expectations and considerations across research questions

As of the time this protocol was prepared, the Actflow Toolbox (or its precursors) has been success-

fully applied to multiple datasets and task paradigms related to a variety of cognitive domains.

These studies contain in-depth considerations for how activity flow mapping can be applied to

various research questions, as well as expectations regarding prediction accuracy and related statis-

tics. We have listed these studies in Table 1 with study specifications highlighted, to operate as a

reference guide for expected outcomes of specific research questions (note that future work with ac-

tivity flow mapping need not be limited by the specifications in Table 1):

Note: Unless stated otherwise, these studies in Table 1 utilized fMRI data and resting-state

connectivity estimates in the activity flow mapping procedure.
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Table 1. Reference guide for expected outcomes of activity flow mapping applied to specific research questions.

Citation Sample(s) Task paradigm(s)
Connectivity estimation
method(s)

Summary of research and
outcomes

Cole et al. (2016) 100 healthy adults (HCP
500 subjects release)
and simulated data.

Seven cognitive domains: emotion,
reward learning, language, motor,
relational reasoning, social
cognition, and working memory.

Resting-state FC was
assessed with Pearson
correlation, multiple linear
regression, and principal
components regression
(for vertex-wise analyses).

Introduced activity flow
mapping. High prediction
accuracy was exhibited by
activity flow mapped
activations, establishing
the utility of this procedure.
The relationship between
parameters underlying the
simulated fMRI data and
prediction accuracy was
also assessed, helping to
validate activity flow
mapping for use with fMRI.

Ito et al. (2017) 32 healthy adults. Rapid instructed task learning
paradigm.

Resting-state FC was
estimated with multiple
linear regression at the
brain region level, and with
principal components
regression at the vertex
level.

Introduced information
transfer mapping, which
utilizes the activity flow
principle to assess
decodability in the
representational geometry
of predicted versus actual
activation patterns. See key
resources table for source
code information.

Mill et al. (2020) 101 elderly participants
(Adult Children study,
Knight Alzheimer’s
Disease Research Center,
Washington University
in St. Louis).

The Stroop task and a semantic
animacy task.

Resting-state FC was
estimated with principal
components regression,
with a nested cross-
validation scheme to
identify the optimal
number of principal
components for repeat
reliability of the FC
estimates.

Assessed healthy versus at-
risk (for Alzheimer’s
Disease) aging populations
with a cross-validation
approach, as well as
relationships between
activity flow mapping
results and individual
differences in behavior.

Hearne et al.
(2021)

36 schizophrenia cohort
versus 96 healthy controls.

Spatial working memory task. Intrinsic FC (including other
tasks and rest) was
estimated with principal
components regression.

Activity flow mapping was
used to identify the activity
flow abnormalities likely
driving the observed
abnormal spatial working
memory brain activations
and associated abnormal
behavior in patients. This
study also developed a
simulated intervention for
treating schizophrenia.

Keane et al. (2021) 20 healthy adults. Visual shape completion task. Resting-state FC was
estimated with multiple
regression.

Assessed task activations
with a decoding approach
plus assessment of
functional network
contributions.

Schultz et al.
(2021)

100 healthy adults. Rapid instructed task learning
paradigm.

Resting-state FC was
estimated with Pearson
correlation.

Adapted the activity flow
mapping procedure to the
connectivity fingerprint
framework proposed by
Passingham et al. (2002)
(updated by Mars et al.,
2018) to predict task rule
representations. This
analysis was applied at the
parcel level (based on
vertex-level multivariate
pattern analysis estimates)
and additionally assessed
functional network
differences.

(Continued on next page)
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Table 1. Continued

Citation Sample(s) Task paradigm(s)
Connectivity estimation
method(s)

Summary of research and
outcomes

Mill et al. (2021) 32 healthy adults. A sensory two-alternative
forced choice task.

Resting-state FC was
estimated with multivariate
autoregression.

This study utilized dense-
array EEG data. Resting-
state FC predicted future
brain activity and motor
activations via dynamic
activity flow mapping.
Further, simulated lesions
were implemented to
assess functional network
contributions to response
information flow.

Ito et al. (2021) 100 healthy adults. Rapid instructed task learning
paradigm.

Resting-state FC was
estimated with principal
components regression at
the vertex level.

Decoded task context and
stimuli. This study
implemented a task-
performing, empirically-
derived neural network
(which was based on
activity flow mapping
principles) that modeled
conjunctive
representations to
investigate how sensory
and task-rule information is
integrated in conjunction
hubs.

Cole et al., 2021 352 healthy adults
(subset of HCP S1200
dataset) with split-half
validation.

The same task conditions
described in Figure 1 were
assessed in this study.

Both task-state and resting-
state FC were estimated
with Pearson correlation,
principal components
regression, and multiple
linear regression.

This study assessed the
contribution of task-state
FC (relative to resting-state
FC) to shaping task-evoked
activity flows underlying
task-evoked activations.

Sanchez-Romero
et al. (2021)

176 healthy adults
(subset of HCP S1200
dataset) and simulated
data.

Seven cognitive domains:
emotion, reward learning,
language, motor, relational
reasoning, social cognition,
and working memory.

Multiple FC estimation
methods, including a
directed FC (effective
connectivity) method.

Simulated and empirical
neuroimaging data were
used to compare multiple
FC estimation methods.

McCormick et al.
(2021)

352 healthy adults
(subset of HCP S1200
dataset)

The same task conditions
described in Figure 1 were
assessed in this study.

A latent factor across
multiple FC states termed
latent FC; each state
estimated with Pearson r.

Assessed whether a latent
factor across multiple FC
states improves prediction
accuracy of activity flow
mapping, as well as
prediction of a general
intelligence score, g.

Yan et al. (2021a) 100 unrelated healthy
adults from the HCP.

The task paradigms in Figure 1,
focusing on the relational
reasoning and n-back
working memory tasks.

Structural connectivity
derived from diffusion
tensor imaging.

Structural connectivity was
utilized in the activity flow
mapping procedure.

Yan et al. (2021b) 80 healthy adults (subset of
University of California Los
Angeles Consortium for
Neuropsychiatric Phenomics
LA5c study).

The paired associate
memory task.

Connectivity estimates
included resting-state FC
estimated via multiple
linear regression, and
structural connectivity
derived from diffusion
tensor imaging.

The activity flow mapping
procedure plus information
transfer mapping was
applied to assess
functional network
contributions to episodic
memory processes.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Further model comparisons

In addition to the model comparison options contained in actflowtest and the various accuracy

indices and associated statistics that are reported (see expected outcomes), the Actflow Toolbox

contains specific functions that can be used to further compare model variants. Below we provide

three example model comparison questions, corresponding code, and sample results:
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1. How does multiple regression based rest FC versus Pearson correlation based rest FC impact

model performance?
# How does FC estimated with multiple regression vs correlation impact model performance?

# Estimate rest FC with multiple regression

fc_arr_mult_reg = np.zeros((n_nodes, n_nodes, n_subjs))

for subj_ix in range(n_subjs):

fc_arr_mult_reg[:, :, subj_ix] = fc.multregconn(rest_data[:, :, subj_ix])

# Estimate rest FC with Pearson correlation

fc_arr_corr = np.zeros((n_nodes, n_nodes, n_subjs))

for subj_ix in range(n_subjs):

fc_arr_corr[:, :, subj_ix] = fc.corrcoefconn(rest_data[:, :, subj_ix])

# Model 1: Activity flow mapping with rest FC via multiple regression

actflow_output_mult_reg = actflow.actflowcomp.actflowtest(

activity_data, fc_arr_mult_reg

)

# Model 2: Activity flow mapping with rest FC via Pearson correlation

actflow_output_corr = actflow.actflowcomp.actflowtest(activity_data, fc_arr_corr)

# Compare the two models, 10 subjects only

model_compare_output = actflow.model_compare(

target_actvect=activity_data[:, :, :10],

model1_actvect=actflow_output_mult_reg["actPredVector_bytask_bysubj"][:, :, :10],

model2_actvect=actflow_output_corr["actPredVector_bytask_bysubj"][:, :, :10],

full_report=False,

print_report=True,

)

===Comparing prediction accuracies between models (similarity between predicted and actual

brain activation patterns)===

==Comparisons between predicted and actual activation patterns, across all conditions and no-

des:==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):

Each comparison based on 24 conditions across 360 nodes, p-values based on 10 subjects (cross-

subject variance in comparisons)

Model1 mean Pearson r=0.78

Model2 mean Pearson r=0.59

R-value difference = 0.20

Model1 vs. Model2 T-value: 12.81, p-value: 4.41e-07

Model1 mean % predicted variance explained R^2=0.58

Model2 mean % predicted variance explained R^2=-595.00

R^2 difference = 595.57

Model1 mean MAE = 7.08

Model2 mean MAE = 277.10

Model1 vs. Model2 mean MAE difference = -270.02

Note: Pearson r and Pearson r^2 are scale-invariant, while R^2 and MAE are not. R^2 units: per-

centage of the to-be-predicted data’s unscaled variance, ranging from negative infinity

(because prediction errors can be arbitrarily large) to positive 1. See https://scikit-lear-

n.org/stable/modules/generated/sklearn.metrics.r2_score.html for more info.

24
a. The following are additional parameter options available when implementing corrcoefconn,

but are set to defaults in the corresponding code block:
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i. target_ts: This is an optional parameter set to None by default. This can be used when the

user wants to estimate connectivity for only one target node (with all other source nodes).

This should contain the target node’s time series, or, a one dimensional vector of activity

across time points. Connectivity will be compared to each source node’s time series in

the <activity_matrix> input (e.g., <rest_data> in the corresponding code block), and a

one dimensional connectivity vector will be returned.

b. The following are additional parameter options available when implementing model_com-

pare, some of which are set to defaults in the corresponding code block:

i. model2_actvect: This is an optional parameter set to None by default. This can be used

when one wants to compare activity flow mapping results across two models. This is

demonstrated here by comparing a model where FC was estimated with multiple regres-

sion versus a model where FC was estimated with Pearson correlation. This should contain

the array of predicted activation values outputted by actflowtest. Note it does not matter

which results are put in <model1_actvect> and which are put into <model2_actvect> (i.e.,

the order does not matter).

ii. full_report: This is a Boolean set to False by default. If True, prediction accuracy will be

assessed across all dimensions. See expected outcomes for a detailed explanation of

these statistics.

iii. print_report: This is a Boolean set to True by default, which will print the full model com-

parison report. If False, printing results will be suppressed.

iv. print_by_condition: This is a Boolean set to True by default and only works when <prin-

t_report=True>. If True, the printed report will include results for each condition sepa-

rately.

v. comparison_type: This is a string specifying how to compute prediction accuracy. The op-

tions are extensively described in the expected outcomes section, but in brief the options

are: ‘fullcompare_compthenavg’, ‘conditionwise_compthenavg’, ‘conditionwise_avgth-

encomp’, ‘nodewise_compthenavg’, and ‘nodewise_avgthencomp’.

vi. avgthencomp_fixedeffects: This is a Boolean set to False by default. If True, prediction

accuracy will be assessed after averaging across participants, which is sometimes referred

to as a ‘‘fixed effects’’ analysis. We recommend analyses with participants as random ef-

fects (i.e., effects for each participant), and thus recommend keeping this False (but

have included the option for specific use cases).

vii. mean_absolute_error: This is a Boolean set to True by default and determines whether

mean absolute error is included as one of the prediction accuracy indices (see expected

outcomes for the formula and further details).

2. How does multiple regression based rest FC versus Pearson correlation based rest FC impact

model performance, per node (i.e., condition-wise)? (Figure 7A)
# Continued from the code block above; assessing all MMP regions

# Assessing generalization across regions (i.e., assessing the cross-condition response pro-

files of each region)

model_compare_output = actflow.model_compare(

target_actvect=activity_data[:, :, :10],

model1_actvect=actflow_output_mult_reg["actPredVector_bytask_bysubj"][:, :, :10],

model2_actvect=actflow_output_corr["actPredVector_bytask_bysubj"][:, :, :10],

comparison_type="conditionwise_compthenavg",

full_report=False,

print_report=True,

)
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Figure 7. Comparing activity flow model performance with different resting-state FC estimation methods

(A) Prediction accuracy (mean across subjects) of activity flow mappings based on multiple linear regression (black)

versus Pearson correlation (grey) estimated rest FC. This corresponds to the model comparison flag

‘conditionwise_compthenavg’ (see expected outcomes), where response profiles (task activations across 24 HCP

conditions) are compared (predicted-to-actual) per node (MMP regions, sorted along the x-axis per functional

network assignment in Figure 1A). Across the majority of nodes, the response profile prediction accuracies were

higher for the multiple regression model.

(B) Prediction accuracy as in panel A, but for the ‘nodewise_compthenavg’ model comparison type (see expected

outcomes). Per task condition, the cross-node activation patterns are compared (predicted-to-actual). As in the

condition-wise model comparison in (A), the multiple regression based rest FC model performed best.

===Comparing prediction accuracies between models (similarity between predicted and actual

brain activation patterns)===

==Condition-wise comparisons between predicted and actual activation patterns (calculated

for each node separately):==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):

Each correlation based on N conditions: 24, p-values based on N subjects (cross-subject vari-

ance in correlations): 10

Model1 mean Pearson r=0.81

Model2 mean Pearson r=0.62

R-value difference = 0.19

Model1 vs. Model2 T-value: 12.46, p-value: 5.572065132326254e-07

Model1 mean % predicted variance explained R^2=0.09

Model2 mean % predicted variance explained R^2=-1450.42

R^2 difference = 1450.51

Model1 mean MAE = 7.08

Model2 mean MAE = 277.10

Model1 vs. Model2 mean MAE difference = -270.02

Note: Pearson r and Pearson r^2 are scale-invariant, while R^2 and MAE are not. R^2 units: per-

centage of the to-be-predicted data’s unscaled variance, ranging from negative infinity

(because prediction errors can be arbitrarily large) to positive 1. See https://scikit-lear-

n.org/stable/modules/generated/sklearn.metrics.r2_score.html for more info.
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3. How does multiple regression based rest FC versus Pearson correlation based rest FC impact

model performance, per task condition? (Figure 7B)
# Continued from the code block above; assessing the first 4 HCP conditions

# This comparison assesses generalization across task conditions

str_here = "actPredVector_bytask_bysubj"
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model_compare_output = actflow.model_compare(

target_actvect=activity_data[:, :4, :][:, :, :10],

model1_actvect=actflow_output_mult_reg[str_here][:, :4, :][:, :, :10],

model2_actvect=actflow_output_corr[str_here][:, :4, :][:, :, :10],

comparison_type="nodewise_compthenavg",

full_report=False,

print_report=True,

)

===Comparing prediction accuracies between models (similarity between predicted and actual

brain activation patterns)===

==Node-wise (spatial) correlations between predicted and actual activation patterns (calcu-

lated for each condition separately):==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):

Each correlation based on N nodes: 360, p-values based on N subjects (cross-subject variance in

correlations): 10

Model1 mean Pearson r=0.74

Model2 mean Pearson r=0.56

R-value difference = 0.18

Model1 vs. Model2 T-value: 21.83, p-value: 4.19e-09

By task condition:

Condition 1: Model 1 r=0.62, Model 2 r=0.52, Model 1 vs. 2 R-value difference =0.10, t-value

Model1 vs. Model2: 6.48, p-value vs. 0: 0.0001

Condition 2: Model 1 r=0.62, Model 2 r=0.49, Model 1 vs. 2 R-value difference =0.13, t-value

Model1 vs. Model2: 4.50, p-value vs. 0: 0.002

Condition 3: Model 1 r=0.81, Model 2 r=0.66, Model 1 vs. 2 R-value difference =0.15, t-value

Model1 vs. Model2: 10.75, p-value vs. 0: 1.95e-06

Condition 4: Model 1 r=0.81, Model 2 r=0.65, Model 1 vs. 2 R-value difference =0.16, t-value

Model1 vs. Model2: 11.69, p-value vs. 0: 9.64e-07
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Non-standard hypothesis testing considerations

Once predicted activations are mapped, researchers may require hypothesis testing procedures

beyond prediction accuracy. Below we list recommendations for non-standard use cases (‘‘stan-

dard’’ testing referring to student’s t-testing, ANOVA, regression, and more).

Nonparametric data: For research questions where it is unknown if the underlying data follow a

normal distribution and/or involving multiple comparisons, we recommend the max-statistic (typi-

cally, max-T) nonparametric permutation approach described in Blair and Karniski (1993) and Nich-

ols and Holmes (2002). Max-T testing derives a 95% confidence interval from the maximum T distri-

bution as a critical threshold with an associated p-value equal to one divided by the number of

permutations used. This corrects for multiple comparisons (family-wise error) while providing non-

parametric p-values. A max-T function is provided as part of the Actflow Toolbox (https://github.

com/ColeLab/ActflowToolbox/blob/master/tools/max_t.py).

Assessing decoding accuracy: If using activity flow mapping in a decoding paradigm (as in Ito et al.,

2017; Keane et al., 2021; Ito et al., 2021), we recommend following the best practices proposed by

Varoquaux et al. (2017). In brief, k-fold cross-validation with at least 20% of the data left out is the

most robust approach. If hyperparameters are needed, they should be tuned via nested cross-

validation.
LIMITATIONS

The success of activity flow mapping depends on the following factors: (1) The quality of the data,

which can be impacted during the initial acquisition and/or during data processing. We have
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provided best practice recommendations throughout this protocol for fMRI data. Specifically, we

recommend the minimal preprocessing pipeline provided by Glasser et al. (2013), nuisance regres-

sion recommendations provided by Ciric et al. (2017), FC estimation with combinedFC (Sanchez-Ro-

mero and Cole, 2021), and task regression (when using task-state FC) recommendations provided by

Cole et al., 2019. See the key resources table for open source analysis tools for most of the above

recommendations. (2) In Cole et al., 2021, we found evidence that prediction accuracy increases

with the amount of data utilized for FC estimation, or, how many time points were sampled per state

(resting-state overall time points for rest FC; time points per task condition for task-state FC). This

effect tended to plateau at around 20 min of data, likely because at the upper bounds of the predic-

tion accuracy index (approaching R2 = 1), differences between compared models shrink (‘‘hit the

ceiling’’).

The inferences based on activity flow mapping results are limited in the following ways: (1) A

nonlinear relationship between neural inputs and outputs is assumed by many neuroscientists.

However modeling this nonlinearity remains a challenge, often because parameters are intro-

duced that are difficult to estimate empirically and that limit the interpretability of a given

model’s results. While future work may adapt activity flow mapping to incorporate nonlinearities,

the present approach is based on linear estimates of neural interaction. As a preview of future

non-linear implementations of activity flow mapping, a non-linearity is used by Ito et al.

(2021), demonstrating the importance of non-linearities in implementing rule-guided behavior.

(2) The advantages and disadvantages of any given neuroimaging method also apply to activity

flow mapping results. For example, fMRI BOLD is a coarse proxy of spiking (and/or local field po-

tential) activity; EEG suffers from the source localization inverse problem. Thus, any inferential

limits for the actual task activations also apply to the activity-flow-predicted task activations.

This is an important consideration for studies that seek to assess the connectivity patterns rele-

vant to a given region’s activity flow predicted activations (e.g., functional network contribu-

tions). Disentangling feedforward versus feedback signals remains a challenge (particularly

with fMRI), thus, inferences regarding the directionality of connectivity patterns should be

made with care.

TROUBLESHOOTING

Problem 1

When estimating FC (Part 2) with the built-in functions multregconn or combinedFC (which was the

method outlined in the step-by-step method details section, part 2), the following error message

may appear:
Exception: More nodes (regressors) than timepoints! Use regularized regression
Potential solution

This is because the input data (e.g., <rest_data>) contains more nodes (the first dimension) than time

points (the second dimension). Firstly, check that the dimensions of the input variable are as ex-

pected (e.g., print(rest_data.shape)). If the data dimensions are as expected, then the error was

caused by having too few time points. With the application of multiple linear regression to estimate

FC, there needs to be a sufficient number of observations for the target node (or responses) relative

to the number of source nodes (regressors or predictors). If more data cannot be added, we recom-

mend a regularized regression approach, such as pc_multregconn provided in the Actflow Toolbox.
Problem 2

An error message appears in the Python coding environment indicating a module cannot be suc-

cessfully imported (e.g., ModuleNotFoundError) (Part 1). This is likely due to a module being used

by the toolbox or one of its dependencies not being installed, or, being installed improperly.
28 STAR Protocols 3, 101094, March 18, 2022



ll
OPEN ACCESSProtocol
Potential solutions

� Check that the module name and Python syntax are correct.

� Attempt to reinstall the module with PIP (see materials and equipment) and run the Python code

again (may require opening a new tab if running Python from the command line).

� It is possible that the Python build environment on a given machine does not include some of the

modules listed in this protocol by default (e.g., setuptools and related packages). In this case, we

recommend installing and using a Python virtual environment management tool such as pyenv

(see here: https://github.com/pyenv/pyenv) or pipenv (see here: https://packaging.Python.org/

guides/tool-recommendations/).

� It is possible that a module (particularly those downloaded from a website or imported via Git)

may be sourced to a specific directory (e.g., Actflow Toolbox will work this way). Make sure the

Python code is either run from the same directory, or points to the directory during the import.

For example:
# Activity Flow Toolbox was installed via Git under the �/research_projects directory:

parent_dir = "/Users/myname/research_projects/"

sys.path.insert(0, parent_dir)

import ActflowToolbox as actflow
Problem 3

Select data may raise the following error with the principal components regression (https://github.

com/ColeLab/ActflowToolbox/blob/master/connectivity_estimation/pc_multregconn.py) method

for estimating FC (Part 2):
numpy.linalg.linalg.LinAlgError: SVD did not converge
Potential solution

This is likely due to the precision limits of sklearn.linear_model.LinearRegression in

certain computational environments. We recommend creating a duplicate version of the

pc_multregconn.py script (e.g., duplicating and renaming the file with the name pc_

multgregconn_alt.py), and trying this alternative package in the appropriate lines, which are

listed in the following code block:
import statsmodels.api as sm

# Note: lines of the original code are skipped for brevity; see pc_multregconn.py

# The multiple regression step utilized in PC-regression; alternative code

regr = sm.OLS(y, reduced_mat) # Lines: 60, 89, 115, 135

reg = regr.fit() # Lines: 62, 90, 115, 137

# The FC vector utilized in PC-regression; alternative code

betasPCR = pca.inverse_transform(reg.params) # Lines: 92, 117
Problem 4

When performing the optional step to avoid potential circularity due to spatial smoothness

by excluding source vertices that are 10 mm from the target node border (see before you begin

for conceptual details and Part 2 for code), an error message may appear regarding the *dlabel.nii

file, such as:
FileNotFoundError: No such file or no access:

’�/ActflowToolbox/dependencies/ColeAnticevicNetPartition/

CortexSubcortex_ColeAnticevic_NetPartition_wSubcorGSR_parcels_LR.dlabel.nii’

STAR Protocols 3, 101094, March 18, 2022 29

https://github.com/pyenv/pyenv
https://packaging.python.org/guides/tool-recommendations/
https://packaging.python.org/guides/tool-recommendations/
https://github.com/ColeLab/ActflowToolbox/blob/master/connectivity_estimation/pc_multregconn.py
https://github.com/ColeLab/ActflowToolbox/blob/master/connectivity_estimation/pc_multregconn.py


ll
OPEN ACCESS Protocol
Potential solution

This error is related to the computational environment having trouble accessing the Actflow

Toolbox’s dependencies. The quickest solution is to first download the *dlabel.nii file called

CortexSubcortex_ColeAnticevic_NetPartition_wSubcorGSR_parcels_LR.dlabel.nii to a specific

directory path, for example: /my/research/project/directory/CortexSubcortex_ColeAnticevic_Net

Partition_wSubcorGSR_parcels_LR.dlabel.nii. This file can be downloaded from here: https://

github.com/ColeLab/ColeAnticevicNetPartition/blob/master/CortexSubcortex_ColeAnticevic_

NetPartition_wSubcorGSR_parcels_LR.dlabel.nii. Second, to use the optional parameter of

<dlabelfile> in either calcconn_parcelwise_noncircular or calccactivity_parcelwise_noncircular, in

the code block from Part 2 as follows:
# Exclude source vertices 10 mm from target nodes to avoid circularity

# Using preloaded vertex-wise data: activity_data_vertex and rest_data_vertex

defaultdlabelfile =

’/my/research/project/directory/CortexSubcortex_ColeAnticevic_

NetPartition_wSubcorGSR_parcels_LR.dlabel.nii’

# Non-circular task activations

activity_data_noncirc = np.zeros((n_nodes, n_conditions, n_subjs))

for subj_ix in range(n_subjs):

activity_data_here = activity_data_vertex[:, :, subj_ix]

activity_data_noncirc_all = fc.calcactivity_parcelwise_noncircular(

activity_data_here,

dlabelfile=defaultdlabelfile,

)

for node_ix in range(n_nodes):

for cond_ix in range(n_conditions):

extracted_data = activity_data_noncirc_all[node_ix, node_ix, cond_ix]

activity_data_noncirc[node_ix, cond_ix, subj_ix] = extracted_data.copy()

# Non-circular resting-state FC with combinedFC

fc_arr_noncirc = np.zeros((n_nodes, n_nodes, n_subjs))

for subj_ix in range(n_subjs):

rest_data_here = rest_data_vertex[:, :, subj_ix]

# Can specify connmethod = "combinedFC" here

fc_arr_noncirc[:, :, subj_ix] = fc.calcconn_parcelwise_noncircular(

rest_data_here,

dlabelfile=defaultdlabelfile,

)

Problem 5

The printed output of actflowtest (Part 3) lists data dimensions not consistent with your input data.

For example, you wish to perform activity flow mapping for the first target node only, and otherwise

your task activation data contains 24 conditions and 30 subjects. You run the following:
# Activity flow mapping with resting-state FC estimated via combinedFC; attempting to run ac-

tivity flow mapping for the first target node only (index 0)

actflow_output = actflow.actflowcomp.actflowtest(activity_data[0,:,:], fc_arr)
But you receive this printed output
===Comparing prediction accuracies between models (similarity between predicted and actual

brain activation patterns)===

==Comparisons between predicted and actual activation patterns, across all conditions and

nodes:==

–Compare-then-average (calculating prediction accuracies before cross-subject averaging):
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Each comparison based on 1 conditions across 24 nodes, p-values based on 30 subjects (cross-

subject variance in comparisons)

Mean Pearson r = 0.02, t-value vs. 0: 0.32, p-value vs. 0: 0.7484007039676109

Mean % variance explained (R^2 score, coeff. of determination) = -0.30

Mean MAE (mean absolute error) = 23.63
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This incorrectly lists 1 condition across 24 nodes.
Potential solution

This is because the activity flowmapping procedure is designed to iteratively hold out target nodes’

task activations and use source nodes’ activations, weighted by their connectivity with the target, to

predict the target’s activity (see Figure 4). This procedure currently relies on the target and source

sets including the same number of nodes. However, given that this procedure is iterative, the activ-

ity-flow-predicted activations that are returned were computed per target node. Thus, the output

can be indexed instead to obtain the predicted activations of one target node, as follows:
# Activity flow mapping with resting-state FC estimated via combinedFC

actflow_output = actflow.actflowcomp.actflowtest(activity_data, fc_arr)

# Extract first target nodes’ results only

predicted_activations_one_target = actflow_output["actPredVector_bytask_bysubj"][

0, :, :

]

#

ac

)

#

pr

]

#

me

mo

co

]

R2

]

ma

]

pr

pr

pr
Note:When the data was handled properly, the cross-condition prediction accuracies for this

first target node were actually (across-subject average): r = 0.99, R2 = 0.90, and MAE = 6.07.

This can be extracted as follows (as in Part 3, but specifying condition-wise results):
Activity flow mapping with resting-state FC estimated via combinedFC

tflow_output = actflow.actflowcomp.actflowtest(

activity_data, fc_arr, full_report=True

Extract first target nodes’ results only

edicted_activations_one_target = actflow_output["actPredVector_bytask_bysubj"][

0, :, :

Extract and print prediction accuracy statistics for that first target node (across-subject

ans)

del_compare_dict = actflow_output["model_compare_output"]

rr_conditionwise_compthenavg_bynode = model_compare_dict[

"corr_conditionwise_compthenavg_bynode"

_conditionwise_compthenavg_bynode = model_compare_dict[

"R2_conditionwise_compthenavg_bynode"

e_conditionwise_compthenavg_bynode = model_compare_dict[

"mae_conditionwise_compthenavg_bynode"

int("r = " + str(np.nanmean(corr_conditionwise_compthenavg_bynode, axis=1)[0]))

int("R-squared = " + str(np.nanmean(R2_conditionwise_compthenavg_bynode, axis=1)[0]))

int("MAE = " + str(np.nanmean(mae_conditionwise_compthenavg_bynode, axis=1)[0]))
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r = 0.986819103980586

R-squared = 0.9046279146038344

MAE = 6.07483973061582
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Note: please submit issues in GitHub following these conventions: https://docs.github.

com/en/issues/tracking-your-work-with-issues/creating-an-issue. Additionally, we encourage

users to join the ColeNeuroLab Users Group to stay up to date with any major updates to this

toolbox (see: https://groups.google.com/forum/#!forum/coleneurolab_users).

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact: Carrisa V. Cocuzza (carrisacocuzza@gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All code is publicly available on GitHub: https://github.com/ColeLab/ActflowToolbox (https://doi.

org/10.5281/zenodo.5768754).
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