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a b s t r a c t 

Language is an integral part of society which enables communication among its members. To shed light on how 

words gain their meaning and how their meaning evolves over time, color naming is often used as a case study. 

The color domain can be defined by a physical space, making it a useful concept for studying denotation of 

meaning. Though humans can distinguish millions of colors, language provides us with a small, manageable set 

of terms for categorizing the space. Partitions of the color space vary across different language groups and evolve 

over time (e.g. new color terms may enter a language). Investigating universal patterns in color naming provides 

insight into the mechanisms that give rise to the observed data. Recently, computational techniques have been 

utilized to study this phenomenon. Here, we develop a methodology for transforming a color naming data set—

namely, the World Color Survey—which is based on constraints imposed by the stimulus space. This transformed 

data is used to initialize a nonparametric Bayesian machine learning model in order to implement a culture and 

theory-independent study of universal color naming patterns across different language groups. All of the methods 

described are executed by our Python software package called ColorBBDP . 
• Data from the World Color Survey is transformed from its original format into binary features vectors which 

can be given as input to the Beta-Bernoulli Dirichlet Process Mixture Model. 
• This paper provides a specific application of Variational Inference on the Beta-Bernoulli Dirichlet Process 

Mixture Model towards a color naming data set. 
• New mathematical measures for performing post-cluster analyses are also detailed in this paper. 
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Introduction 

The study of language and its evolution has been a topic long studied in academia. Within this

field of study, color has been a particularly useful case study for investigating important features of

language because of its property as a physical, quantifiable entity. Since color exists in a tangible

space, the color categories of a language can be clearly denoted. That is, the meaning of color terms

can be clearly defined and, thus, compared cross-culturally. Studying the commonalities of these 

color categories across different linguistic groups can identify universal patterns and help uncover 

the mechanisms which cause languages to develop and evolve over time. 

In 1969, Brent Berlin and Paul Kay published their book Basic Color Terms: Their Universality and

Evolution , which sparked a renewed interest in the study of color naming in academia and gave way

to decades of research on this topic. As an extension to their existing work and in an effort to provide

empirical evidence of their hypotheses, Berlin and Kay conducted the World Color Survey (WCS)

[9] . The data from the WCS was collected from 110 unwritten, monolingual, pre-industrial, tribal

languages, with an average of 24 participants per language ( ∼2,640 participants in total). Participants

completed two tasks: the naming task and the mapping task . In the naming task, participants assigned

names to 330 Munsell color chips (see Fig. 1 ), which were presented one at a time, in a fixed random

order. In the mapping task , participants were given a color term from their language and were asked

to pick a color chip (or set of color chips) from the stimulus set which best exemplified that term.
Fig. 1. The set of 330 Munsell color chips used in the World Color Survey. 

https://github.com/kirbijoe/colorBBDP
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his set of color chips were referred to as focal colors . This data set has been widely used to study the

roperties and evolution of color naming systems. 

At the time of their inception, the discussion and analysis of color naming was predominantly

ased in linguistics and anthropology. In recent years, though, there has been an increase in the

pplication of quantitative methods and approaches to the WCS data, including machine learning

echnique. The application of machine learning methods to the WCS has been conducted primarily

y Brown and Lindsey. They performed the k-means clustering algorithm on both the individual

erms used [ 10 ] as well as individual participant systems [11] . The clustering of the color terms

evealed a constrained set of color categories—easily equated with the English color categories and

ome composites—with which almost all languages could partition the color space. The use of k-

eans to cluster the set of participant categorization systems revealed universally occurring motifs .

hese motifs were taken as representations of universal patterns found in the data. Brown and Lindsey

oncluded that (i) motifs were widespread and present in many unrelated languages, pointing to their

niversality, and (ii) that there was a surprising level of diversity of motifs within languages. Both of

hese studies revealed universal properties of the WCS data set, some of which were consistent with

he claims of Berlin and Kay [3] . These studies showed the variety of ways machine learning methods

ould be applied to this data set and their ability to draw conclusions about universality (and even

he possible evolutionary trajectory) of color naming systems. 

We follow in the same vein as Lindsey and Brown [11] in that we hope to discover possible

niversal structures through a clustering of participant data. However, our approach extends the

revious literature by endeavoring to perform a clustering of the data without any assumptions about

he models’ level of complexity. This can be achieved through the use of nonparametric variational

ayesian inference methods to approximate the parameters of a generative, unsupervised infinite

ixture model. 

ata set used 

This study uses naming task data gathered from WCS participants [5] . The data is publicly available

t no cost via the survey website ( http://www1.icsi.berkeley.edu/wcs/data.html ). The naming task data

an be found in the term.txt file on the project website. The data text sheet consists of a long list of

he names participants from all languages assigned to each color chip where each line contains the

anguage number (1 to 110), participant number, chip number (1 to 330), and abbreviation of term

sed. Supplementary text files contain information on each language, participant details, as well as

ata from the naming task. Of the 110 languages surveyed, four languages 1 are omitted from our data

et due to data collection and transcription issues. Only the 320 chromatic chips (column B1–I40 in

ig. 1 ) are included in the data due to their disjointed nature from the 10 achromatic chips. Therefore,

ll future references “the data” will be to the collection of naming task data for 106 languages (2,552

ndividuals) on the 320 chromatic chips in the color grid. For our purposes, the WCS data is formatted

nto a naming matrix for each participant. Each matrix has 320 columns representing the set of color

hips (see Fig. 1 ) and n rows based on number of terms used by the participant. A cell ( i, j ) given

 values of 1 if the participant used name i to name chip j and 0 otherwise. Each column will have

xactly one 1 (i.e. a color chip can only have one term). 

ethod details 

Variational Inference for the Beta-Bernoulli Dirichlet Process Mixture Model (BBDP) [ 7 , 13 ] is

mployed to uncover universal patterns in the WCS [8] . It combines a Beta-Bernoulli observation

odel with the Dirichlet Process mixture model. Together, it allows us to cluster binary features

ectors of participants without assuming the number of clusters. Model selection is performed by

sing variational inference methods [4] to estimate the lower bound of the marginal likelihood (i.e.
1 The four languages omitted are: Huastec (Language 45), Mampruli (Language 62), Tarahumara-C (Language 92), and 

arahumara-W (Language 93). 

http://www1.icsi.berkeley.edu/wcs/data.html
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the evidence of the lower bound or ELBO) of the observed data. Doing so first requires transforming

the WCS in such a way that is compatible with the model and allows for cross-group comparisons.

Our ColorBBDP software package transforms the data based on the physical constraints of the stimulus

space so that the BBDP can compare participants from across language groups. 

Beta-Bernoulli Dirichlet process mixture model with variational inference 

The mathematical formalization of this model, as described below, is also included in the Appendix

of Joe and Gooyabadi’s paper which reported experimental results from an implementation of this 

methodology [8] . 

Beta-Bernoulli Mixture Model: Suppose we have data set X = { X 1 , ..., X N } , where each observation

X i is a binary vector with D dimensions representing D attributes of an observation. An entry x id = 1

if X i has the attribute d and x id = 0 otherwise. If we let θ be the mean of the Bernoulli distribution,

then the Bernoulli likelihood can be written generally as: 

P (x | θ ) = θ x ( 1 − θ ) 
1 −x 

Using this form, the probability density for each observation X i can then be computed by: 

P ( X i | θ ) = 

D ∏ 

d=1 

θ
x id 
d 

( 1 − θd ) 
1 −x id 

where θ is a D -dimensional vector with entries θd for d ∈ { 1 , ..., D } represent the probability that an

observation has the attribute d. 

The conjugate prior to the Bernoulli distribution is the Beta distribution with parameters β1 

and β2 . Therefore, the prior, P (θ ) can be given by the following function: 

P ( θ ) = 

1 

B ( β1 , β2 ) 
θβ1 −1 ( 1 − θ ) 

β2 −1 

where the Beta function B ( β1 , β2 ) serves a normalization constant and β1 , β2 are shape parameters

that determined based on prior beliefs or existing knowledge. We only search the portion of the

parameter space where β1 , β2 ∈ ( 0 , 1 ) because the shape of the beta distribution is biased towards

the bounds of its domain, 0 and 1, when β1 , β2 < 1. This behavior is useful when drawing priors for

a Bernoulli mixture model. 

A Beta-Bernoulli mixture model can be defined by a mixture of K Beta-Bernoulli distributions. In

order to identify which of the K distributions each data point X i was drawn from, we introduce a

latent variable Z = { Z 1 , ..., Z N } . F or each Z i ∈ Z , Z i is a K-dimensional vector which has exactly one

entry equal to 1, corresponding to the cluster assignment of X i . Each of the K distributions in the

mixture model has a corresponding weight, represented by π = { π1 , ..., πK } , such that 
K ∑ 

k =1 

πk = 1 .

Therefore, the distribution of the latent variable Z conditioned upon its weights π is: 

P ( Z| π) = 

N ∏ 

i =1 

K ∏ 

k =1 

π
z ik 
k 

and the Bernoulli likelihood can then be formalized as: 

P ( X| Z, θ ) = 

N ∏ 

i =1 

K ∏ 

k =1 

P ( X i θk ) 
z ik 

Fig. 2 depicts a graphical model representation of the Beta-Bernoulli mixture model. 

Dirichlet Process Mixture Model: The Dirichlet Process (DP) is a nonparametric prior for infinite,

discrete distributions. Therefore, the DP mixture model is able to cluster exchangeable data points 

without determining the number of clusters a priori by assuming an infinite number of latent clusters.

For this reason, DP mixture models are synonymously known as infinite mixture models. These 

processes are commonly used in Bayesian nonparametric methods because they allow the number 

of clusters to grow as more data points are introduced to the model. 
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Fig. 2. A graphical model of the Beta-Bernoulli mixture model. 

Fig. 3. A graphical model of the Dirichlet Process mixture model. 

 

t  

d

 

 

 

 

 

 

 

a  

t  

S

 

m  

a  

i  

o  

i  

p  
A DP can be thought of as a distribution over distributions. Suppose G is a Dirichlet process,

hen G ∼ DP ( α, G 0 ) where α ∈ R 

+ is called the dispersion parameter and G 0 is the base probability

istribution. Draws from the process G are taken according to the following algorithm: 

1. Assume there are X 1 , ..., X N observations and k unique values for the variable K (which represent

k clusters present at the time). 

2. For observation X i , with probability α
N−1+ α , a new draw is taken from G 0 (i.e. X i is assigned to a

new cluster). 

3. With probability 
n k 

N−1+ α , where n k is the number of observations currently in cluster k , X i joins

cluster k . 

4. Each observation is iteratively assigned to a cluster until all N observations have been grouped.

Cluster assignments are stored in the latent variable Z where Z i ∈ Z is a K-dimensional vector

with the k -th element being equal to 1 (corresponding to datum X i being assigned to the cluster

k ) and all other elements equal to 0. 

The end result of this process is then a distribution over the partitions of the data X , which serves

s a prior over the class assignment vector Z. Some common analogies used to describe the DP are

he Chinese Restaurant Process, the Stick-Breaking Construction, and a modified version of Polya’s Urn

cheme. A graphical model for the DP mixture model is presented in Fig. 3 . 

Variational Inference: Due to the complexity of the statistical models in Bayesian nonparametric

ethods, many of the resulting integrals become intractable and thus require other techniques to

pproximate the parameters of the model. One such family of techniques is called variational Bayesian

nference . Variational inference can be used as a way to (i) estimate the model’s posterior distribution

r (ii) to compute an evidence of the lower bound (ELBO), which is then used for model selection. The

ntuition behind (ii) is that the higher the computed marginal likelihood of a model is, the higher the

robability that the data was generated by that model. Therefore, the model with the highest ELBO is
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Fig. 4. An example of the data transformation process from WCS naming task data to a binary features vector (original figure 

published in [8] ). This transformation is achieved by considering the given names of neighboring color chips. Performing this 

transformation generates a set of binary features vectors which are comparable with each other, regardless of the language 

spoken by the participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

selected as the most appropriate model, given the data. In this paper, we use variational inference for

the purpose of computing the lower bound of the marginal likelihood. 

Given a set of unobserved variables Z and a data set X , the posterior distribution can be

approximated by the variational distribution Q : P (Z| X ) ≈ Q (Z) . The aim of variational inference is

to minimize the distance between the true posterior P (Z| X ) and the approximated distribution Q(Z)

and thus seeks to find the Q which minimizes this distance. The distance between distributions P and

Q is most often formalized using Kullback-Leibler Divergence (KL-divergence), defined as 

KL ( Q ‖ P ) = 

∑ 

Z 

Q ( Z ) log 
Q ( Z ) 

P (Z| X ) 

This function can be rewritten and rearranged to yield 

log P ( X ) = KL ( Q|| P ) − E Z [ log Q ( Z ) − log P ( Z, X ) ] = KL ( Q|| P ) + L ( Q ) 

The term L (Q ) is called the Evidence Lower Bound (ELBO). Maximizing L (Q ) will reveal the Q

which minimizes the KL-divergence since log P (X ) is fixed with respect to Q . 

Transforming world color survey participant data 

The ColorBBDP dissociates the participants from the specific color terms they used by transforming 

the naming matrix of each WCS participant into an n -dimensional binary features vector. The binary

vector is constructed by comparing the names given to neighboring color chips by a single WCS

participant. Color chips in the chromatic component of the WCS color grid (chips B1–I40 in Fig. 1 )

are chosen one at a time to be the reference chip , and the name for the reference chip is compared

to the name of one of its 4 vertically and horizontally adjacent neighbors (or 3 in the case of chips

located on rows B and I 2 ). Each element of the binary vector represents one of these pairs. The value

of an index in the vector is set equal to 1 if the two color chips being compared have the same name

and 0 if they have different names (see Fig. 4 ). This comparison was performed for all possible pairs

of neighboring color chips. 

Transforming the naming task data in this way results in a set of 2,552 data points each with 2,320

binary attributes [8] . In order to prevent the model from needing to parse through excessive amounts

of data and since this pairwise judgment is reflexive, redundant pairs are omitted from the features

vector; that is, (chip i , chip j) is included in the vector, but not ( j, i ) . 
2 Color grid is a Mercator projection of the Munsell color space, so the ends of the rows are considered connected but the 

tops and the bottoms represent the poles of the 3-dimensional solid. Therefore, chips in rows B and I do not have vertically 

adjacent neighbors in the north and south direction, respectively. 
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ColorBBDP is able to maintain the structure of the original naming schema while abstracting away

rom their linguistic origin, by drawing on properties of the physical color space. Approaching the

roblem in this way (i.e. abstracting away from the specific color terms used) allows for a cross-

roup study of universal patterns where the BBDP clusters participants based on adjacent neighbor-

ike judgments. 

odel implementation 

The model described in this paper is a special case of an infinite mixture model called the Beta-

ernoulli Dirichlet Process Mixture Model, using variational inference for model selection [ 7 , 13 ]. The

ain advantage of using this model is the ability to perform a clustering without needing to define

he resulting number of clusters a priori . Infinite mixture models are able to achieve this by assuming

n infinite number of latent clusters and then letting the resulting clusters grow as more data is

ntroduced to the model. 

There is a Python package called BayesPy [12] that can construct the required models and can

erform inference over these models. BayesPy is a tool that implements variational Bayesian inference

n conjugate exponential family models. Since our data is binary in nature, we define a Bernoulli

ikelihood function. The conjugate prior to the Bernoulli distribution is the Beta distribution, resulting

n a Beta-Bernoulli observation model. BayesPy approximates infinite dimensional distributions, such

s the Dirichlet process, by setting the maximum number of clusters K to a value much higher than

he number of expected clusters. We initialize K = 100 clusters and consistently find the number of

esulting clusters K 

∗ < 100 , indicating that the results are driven by the data and not the upper bound

8] . These parameters can be altered in the ColorBBDP program. 

electing hyperparameters 

Though one of the main benefits of implementing a model using Bayesian nonparametric methods

s the ability of the model to freely determine parameters’ values throughout the training process,

hese models still contain variables which need to be exogenously determined. These variables are

alled hyperparameters . Several methods are commonly used in order to search the parameter space

or set of hyperparameters which will yield the most “optimal” result, such as grid search, random

earch, Bayesian optimization, and evolutionary optimization [ 1 , 2 ]. We chose to use random search to

stimate values for our model’s hyperparameters. 

A naive search method is employed instead of one which actively searches for an optimum

e.g. Bayesian or evolutionary optimization) because the more simplistic approach was found to be

ufficient for the purposes of this study. Hence, random search is used to search the parameter

pace for an estimate of the optimum. The optimal parameters are the determined by finding the

ombination which yields the highest ELBO. Several sets of 100 random initializations were run at a

ime in an effort to determine general regions of optimality. This revealed a broad pattern. Higher

alues of β generated higher ELBOs whereas α did not appear to have much of an influence on the

alue of the ELBO (see Fig. 5 ). This finding is consistent with the fact that the model is more sensitive

o the beta distribution hyperparameters than the Dirichlet process concentration parameter [13] .

herefore, based on the pattern obtained from running multiple set of initializations and precedence

rom previous literature, the hyperparameters selected for the model were α = 10 0 0 and β = β1 ,

2 = 0 . 9 [8] . 

olorBBDP software features 

The ColorBBDP software package contains novel methodologies to perform comparisons between

ndividuals and groups as well as graphing functions for an easy visual representation. Further

xplanation and formalization of the following features are detailed in [8] . 

Centroids : The centroid function provides a singular representation of a group. Centroids are

onstructed by taking the modal term used by the group’s participants for each color chip. By



8 K. Joe and M. Gooyabadi / MethodsX 8 (2021) 101572 

Fig. 5. Scatter plot representing 100 random initializations of the BBDP. The x-axis represents the α parameter (Dirichlet 

process concentration parameter) in log units. The y-axis represents the β hyperparameter ( β1 , β2 of the beta distribution). 

The darker the color of the data point, the higher the ELBO of the algorithm run using those hyperparameters. 

 

 

 

 

 

 

 

 

constructing the centroid in this manner, it becomes the representation which minimizes distance 

from every other member of the group. 

Boundary Heatmaps : Boundary heatmaps also provide singular representations of a group, but 

provide a more informative figure by revealing the underlying strength of the category partitions. 

Strength is defined as the level of agreement among the group over the partition depicted by the

centroid. By considering both the group centroids and boundary heatmaps, similar modal maps are 

able to be distinguished through varying regions of salience within the partitions. The boundary 

heatmap is presented as a matrix mimicking the shape of the color grid in Fig. 1 where the value in

each individual cell represents that chip’s boundary probability (i.e. likelihood it exists on a category

boundary) [6] . 

Schematic Similarity: Schematic Similarity (SS) is a measure that can be used to compare two

participants’ color naming data without making any assumptions about the participants’ language or 

culture. This analysis is based on the partition itself and, therefore, is not dependent on the names

assigned to regions of the color space. SS performs term comparisons at the participant level in

an effort to preserve maximal information. The range of SS spans from 0 to 1, where two identical

schemes have SS = 1 and two completely disjoint schemes have SS = 0. 

Group Error: The group error function measures the diversity within each WCS language group 

based on the resulting clusters of participants determined by the mixture model. Error is a function
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f the number of clusters a language group is split up into and the distance between those clusters.

 value of 1 indicates that all participant from a WCS language group were found in distinct clusters

hile a value of 0 means that all participants from the language were clustered together. 

oftware and data access 

The ColorBBDP software package along with the WCS data used for this project can be accessed

ublicly ( https://github.com/kirbijoe/colorBBDP ). The software is written in Python and is cost free

nd open to all researchers for use. 

onclusion 

We present a methodology for converting color naming data into a form that allows for the

iscovery of universal patterns by enabling cross-group comparison. This approach eliminates the

eed for researchers to possess cultural knowledge of language groups, as the data conversion

escribed here retains the structure of the participants’ naming schema. Among the methods

escribed in this paper are new tools for visualizing and analyzing the resulting clusters obtained

rom the mixture model. Together, these elements comprise the ColorBBDP software package—an

mplemented modeling and analysis of the World Color Survey data set. 
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