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Endothelial progenitor cells in cardiovascular diseases
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Abstract

Cardiovascular diseases (CVDs) are the leading cause of death in both developed

and developing countries. Endothelial progenitor cells (EPCs) are derived from

hematopoietic stem cells with powerful function of angiogenesis. There are many

studies on the relation between coronary heart disease and circulating EPCs. In this

review, we discuss biological characteristics of endothelial progenitor cells, some

influencing factors of the number and function of EPCs, and the role of EPCs in the

treatment of cardiovascular disease. At last, we bring some perspectives on the

future of endothelial progenitor cell therapy.
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1 | INTRODUCTION

In the past few decades, cardiovascular diseases (CVDs) are one of the

most common and important causes of death in both developed and

developing countries.1 Many CVDs, such as atherosclerosis, hypertension,

and chronic heart failure, are closely related to endothelial dysfunction,

which may reduce arterial elasticity, and eventually leading to CVDs.2-4

Under the circumstances, a great number of studies have been done on

endothelial tissue and angiogenesis, which show us that different kinds of

molecular, cellular, and functional changes in the endothelium tissue may

affect the process of angiogenesis.5-7 Blood vessel formation is the basic

process of the regeneration and development of organisms and tissues.8

More and more studies demonstrate that circulating endothelial progenitor

cells (EPCs) derived from the bone marrow conduce to angiogenesis and

normal vascular homeostasis.9 Therefore, transplantation of exogenous

EPCs has gradually turned into a novel cell therapy for CVDs.10-12

2 | ENDOTHELIAL PROGENITOR CELLS
(EPCs)

2.1 | Characteristics of EPCs

It was considered that differentiation of mesodermal cells to angio-

blasts and subsequent endothelial differentiation was a specific

process occurring in embryonic development for a long time. This

concept was overthrown in 1997 when Asahara et al13 demon-

strated that CD34‐positive hematopoietic progenitor cells isolated

from adults could be differentiated into endothelial phenotype

in vitro. There is no explicit definition of EPCs, but in general,

EPCs, formed in the bone marrow or nonhematopoietic tissues, can

be conceptually considered a heterogeneous group of cells, with a

characteristic of being detected at different phases of endothelial

differentiation in the peripheral blood.14

There are lots of studies on the markers for identification of

EPC populations. In general, EPCs in bone marrow have a mixed

phenotype of early progenitor cells and endothelial cells and they

mainly express CD34, a highly glycosylated transmembrane protein,

vascular endothelial growth factor receptor 2(VEGFR2), a receptor

for vascular endothelial growth factor and CD133/AC133, and gly-

cosylated transmembrane peptides binding cholesterol15-17. How-

ever, CD34, VEGFR2, and CD133 are not the specific markers of

EPCs. For example, VEGFR2 can also be expressed in dendritic

cells, macrophages, or T lymphocytes18 while CD34 is expressed in

mature endothelial cells as well. Some other studies indicated that

there were other additional markers of circulating EPCs such as

CD31, CD45, CD105, CD117, and CD146.19-21 Among them,

CD31 can be seen in mature endothelial cells, CD45 can be

tracked on neutrophils, monocytes, dendritic cells, and lymphocytes,
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CD105 and CD117 are expressed on hematopoietic stem cells,

and CD146 can be found on memory lymphocytes.14,22-25 When

EPCs enter into peripheral blood, they have gradually lost the

immature hematopoietic precursor marker CD133, but remaining

CD34 and VEGFR‐2 to express. Therefore, the expression of sur-

face antigen can also be used to track the differentiation and mat-

uration of EPCs. Still, specific EPC markers need further research

and discovery.

Endothelial progenitor cells in a study group were different

from those of other researches, suggesting that EPC is not a single

type of cell population.26 There are two different types of EPCs:

the early and late EPCs. Early EPCs, shaping like a spindle, grow

fastest at 2‐3 weeks and die after 4 weeks, while late EPCs, with

cobblestone shape, grow frantically at 4‐8 weeks and have a lifes-

pan of about 12 weeks.26 The study showed that the gene expres-

sion profiles of two kinds of EPCs were different, including VE‐
cadherin, Flt‐1, KDR, and CD45, which indicated early EPC was a

heterogeneous group of cells that differentiated from heman-

gioblasts to mature cells, whereas late EPCs are homogeneous and

well differentiated.26 In terms of function, though early EPCs

secreted angiogenic cytokines (vascular endothelial growth factor,

interleukin 8) more than late EPC, both types of EPC showed com-

parable vasculogenic capacity in vivo.26

2.2 | Mobilization and homing of EPCs

The initial vascular plexus is then remodeled and refined through

proliferation and migration of endothelial cells to form new vessels

from the preexisting ones during angiogenesis.27 During the pro-

cess, ECs are tightly held together to form the inner lumen of

blood vessels.28 Owing to the close junction, ECs can control

paracellular permeability and the entry and exit of molecules.10

Besides, ECs are also involved in immune surveillance and

blood flow control and maintaining the stability of intravascular

environment.29

EPCs are mainly located in the bone marrow. The bone marrow

contains a large number of hematopoietic stem cells and bone mar-

row stromal cells. In such a microenvironment, the progenitor cells

differentiate into different stages and become different subsets of

cells. Under normal physiological conditions, EPCs account for only

0.01% of circulating monocytes. When affected by various sorts of

factors including physiological or pathological and endogenous or

exogenous, such as estrogen, statins, physical exercise, acute ische-

mia after myocardial infarction, unstable angina pectoris, and the

state of hypoxia, EPCs are stimulated and reach the effect site. Dur-

ing the process of mobilization and homing of EPCs, some molecular

including the cytokines of granulocyte colony‐stimulating factor (G‐
CSF), matrix metalloproteinases‐9 (MMP‐9), VEGF, SDF‐1, endothe-
lial nitric oxide synthases (eNOS), and nitric oxide (NO) play impor-

tant roles30. Under the action of these molecular, EPCs are released

from bone marrow through endothelial sinusoid and travel into the

blood circulation to work.30,31

3 | INFLUENCING FACTORS OF THE
NUMBER AND FUNCTION OF EPCs

Vascular endothelial cell is a layer of cell covering the inner side of

vascular wall and plays an essential role in almost all vascular func-

tions.32 A variety of factors may damage endothelial cells, which

include physical injuries, biochemical injuries, and immune‐mediated

damages. When these happen, ECs are disabled to maintain the

homeostasis, which is named as endothelial dysfunction and may

lead to cardiovascular diseases.2,33,34 The pathophysiology of

endothelial dysfunction is very complicated, and many mechanisms

are related to it. Among them, oxidative stress is recognized by the

most people. In the state of oxidative stress, the production of reac-

tive oxygen species (ROS) exceeds the ability of endogenous oxygen

radicals scavenging enzyme systems, causing the reduction in NO, a

substance produced by endothelial cells through eNOS activation.35

NO takes effect both in EPC mobilization and in EPC migration and

proliferation and promote angiogenesis.35

In the treatment of coronary artery disease, the balance between

endothelial damage and repair should be paid high attention. Under

physiological conditions, endothelial cells are not only responsible for

the metabolic exchange of blood and tissue fluid, but also synthesize

and secrete a variety of bioactive substances to ensure the normal

contraction and relaxation of blood vessels, maintain the vascular

tension, regulate blood pressure, and keep the balance between

coagulation and anticoagulation. If the balance is destroyed,

endothelial cells will not be able to deal with all kinds of injury fac-

tors, thus leading to the disease.

It is due to the ability of EPCs to assemble and repair at the site

of vascular damage that there are an increasing number of

researches involving angiogenesis in the therapeutic use of EPCs.36

In patients with CAD, as the severity of the disease increases, the

number of EPCs and circulating EPCs gradually decreases.37-39 This

may be the result of endothelial dysfunction in patients with CAD.37

The coronary artery of the patients with coronary heart disease

has endothelium‐dependent vasodilatation, which not only involves

the coronary artery, but also often involves the peripheral arteries.

Therefore, the elastic function of the peripheral arteriole can be

clearly defined by the detection of the radial pulse wave, which

reflects the function of the vascular endothelium itself.40,41 It is a

new index to evaluate the function of vascular endothelial cells. This

study shows that the vascular endothelial function is closely related

to the number and activity of circulating endothelial progenitor

cells.40,41 The decrease in EPCs suggests the decline of endothelial

repair ability and impairment of function, resulting in the injury of

arterial elasticity, which may lead to the occurrence of coronary

heart disease. On this basis, factors relating to arterial elasticity and

EPCs may lead to changes in vascular endothelial function and body

physiology, such as age, fluid shear force, physical exercise, smoking,

hypertension, endothelial microparticles, miRNA, berberine, nitric

oxide synthase, nitric oxide production and release, oxidative stress,

and signaling pathway (CXCR4/JAK‐2, BMP4/ID2, CXR7/PEKK, etc.),
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drugs (Losartan, Ramipril, Nifedipine, statins), 25-hydroxycholesterol,

and gene transfer.

Aging is a major risk factor for clinical cardiovascular disease, and

this relationship is mainly driven by the development of endothelial

dysfunction.42,43 Tao et al44 found that the number of circulating

endothelial progenitor cells in healthy elderly decreased progres-

sively, and the number of circulating endothelial progenitor cells was

positively correlated with arterial elasticity. Endothelial progenitor

cells participate in the endothelial repair and endothelial function

regulation, and as a result, aging leads to decreased arterial elasticity

and the changes in the function and structure of the artery wall. In

the process of aging, the production of free radicals is not balanced

with the effectiveness of antioxidants.30 Increased ROS level will

potentially stimulate chronic inflammation, eventually leading to

impaired EPCs mobilization.30 Vascular senescence is an important

factor in the aging of the human body.

Fluid shear stress is the frictional tangential force imposed on the

vessel wall when blood flow through a vessel.45 Obi et al46 demon-

strated that when cultured EPCs are exposed to shear stress in a

flow‐loading device, their bioactivities increased significantly in prolif-

eration, anti‐apoptosis, migration, production of bioactive substances,

and antithrombosis. Xia et al47 showed that shear stress precondition-

ing reinforced the migration, adhesion, and re‐endothelialization com-

petencies in both young and elderly EPCs, which suggested that the

upregulation of the shear stress contributes to the enhancement of

endothelialization ability of endothelial progenitor cells.

Physical exercise is another risk factor for CAD, and it causes

increased NO production. Gando et al48 reported that regular physi-

cal exercise could delay the age‐related decline in arterial elasticity

in the healthy people. Laufs et al49 demonstrated that physical exer-

cise increased the number of EPCs in bone marrow and peripheral

blood, and the upregulation of EPC in exercise depended on NO and

VEGF. In conclusion, physical exercise is a significant method to

improve vascular function and prevent vascular diseases.50

Cigarette smoking, both active and passive, is one of the leading

causes of morbidity and mortality in cardiovascular disease. Mobar-

rez et al51 found that cigarette smoking had an acute effect on

endothelial cells, platelet and leukocyte function, and injury to vascu-

lar wall.

Hypertension is a common risk factor for the incidence of vascu-

lar disease. Wang et al52 indicated that impaired endothelial function

and decreased arterial elasticity persist in the human body though

blood pressure of hypertensive patients was controlled through

drugs. Therefore, the optimal therapy for patients with hypertension

is not just to lower blood pressure, but also to improve vascular

damage.52

MicroRNAs are recently discovered key regulators of gene

expression. Wang et al53 experimented on type 2 diabetic mice and

proved that miR‐27b can rescue and protect impaired bone marrow–
derived endothelial cells.

Elevated circulating endothelial microparticles (EMPs) are associ-

ated with endothelial dysfunction. Wang et al54 found that the

decrease in the circulating CD3+/CD42 particles caused by berberine

contributed to the improvement of endothelial function in healthy

subjects by contrasting the healthy subjects whether using berberine

therapy or not. Decreasing EMPs may become a novel therapeutic

target for improving endothelial dysfunction in humans.

4 | THE ROLE OF EPCs IN THE
TREATMENT OF CARDIOVASCULAR
DISEASE

Since EPCs have many effective characteristics, including easiness to

gain from the peripheral blood, powerful angiogenic and vasculo-

genic effects, and the stability of the lineage and a reduced risk of

tumorigenicity, EPCs is more and more used in the clinic.55,56

4.1 | Endothelial progenitor cell capture stent

One of the major applications of EPCs is a device called EPC capture

stent, which can repair damaged arterial endothelium using the char-

acteristics of bone marrow–derived EPCs. EPC capture stent is a

kind of stainless steel stent with the surface of EPC antibody, which

makes up a covalently coupled polysaccharide intermediate coating

with anti‐human CD34 antibodies.36 With the stent, circulating EPCs

will be attracted by the anti‐human CD34 antibodies, differentiate

into mature endothelial cells, and aggregate together to form a spe-

cial blood vessel. Randomized clinical trials conducted on the EPC

capture stents showed that they were safe, and there was no evi-

dence of increasing risk of heart disease after market surveillance.56

EPC capture stents are feasible and safe, and the major adverse car-

diac events are reported to be between 4.2% and 16%. However,

some studies have shown that endothelial progenitor cells have

adverse effects on stent implantation in the treatment of acute ST‐
segment elevation myocardial infarction compared with traditional

stents. The most dangerous and common one is thrombogenesis,

although this finding is still controversial.57-60

4.2 | Endothelial progenitor cell therapy

Based on the previous studies, it is widely known that through mobi-

lization and homing of bone marrow–derived EPCs, the process of

angiogenesis can be started and tissue ischemia for CAD can be alle-

viated.36 Since this new treatment is at the emerging stage, many

studies have discussed EPCs as a cellular candidate for regenerative

therapies, and more data from the ongoing trials will help to estab-

lish the safety of EPC treatment.56 However, questions still remain

with regard to safety and efficacy and further research is needed.

5 | CONCLUSIONS AND PERSPECTIVES

Endothelial progenitor cells are important therapeutic targets in the

field of regenerative medicine. Since the discovery of EPCs in adult

blood circulation, the mechanism of recruitment, mobilization,
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homing and differentiation has been gradually recognized. Neverthe-

less, further research on its molecular biological process will help

clarify how to optimize biological conditions to improve angiogenesis

in patients. In the current situation, genetic modification of EPCs

before transplantation may become a new research hot spot.

Although there are still many problems ahead, we have reason to

believe that EPCs can be applied to the clinical treatment of coro-

nary heart disease in the near future.
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