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Abstract

Background: Cohort collaborations often require meta-analysis of exposure-outcome association estimates across
cohorts as an alternative to pooling individual-level data that requires a laborious process of data harmonization on
individual-level data. However, it is likely that important confounders are not all measured uniformly across the
cohorts due to differences in study protocols. This imbalance in measurement of confounders leads to association
estimates that are not comparable across cohorts and impedes the meta-analysis of results.

Methods: In this article, we empirically show some asymptotic relations between fully adjusted and unadjusted
exposure-outcome effect estimates, and provide theoretical justification for the same. We leverage these results to
obtain fully adjusted estimates for the cohorts with no information on confounders by borrowing information from
cohorts with complete measurement on confounders. We implement this novel method in CIMBAL (confounder
imbalance), which additionally provides a meta-analyzed estimate that appropriately accounts for the dependence
between estimates arising due to borrowing of information across cohorts. We perform extensive simulation
experiments to study CIMBAL’s statistical properties. We illustrate CIMBAL using National Children’s Study (NCS) data
to estimate association of maternal education and low birth weight in infants, adjusting for maternal age at delivery,
race/ethnicity, marital status, and income.

Results: Our simulation studies indicate that estimates of exposure-outcome association from CIMBAL are closer to
the truth than those from commonly-used approaches for meta-analyzing cohorts with disparate confounder
measurements. CIMBAL is not too sensitive to heterogeneity in underlying joint distributions of exposure, outcome
and confounders but is very sensitive to heterogeneity of confounding bias across cohorts. Application of CIMBAL to
NCS data for a proof-of-concept analysis further illustrates the utility and advantages of CIMBAL.

Conclusions: CIMBAL provides a practical approach for meta-analyzing cohorts with imbalance in measurement of
confounders under a weak assumption that the cohorts are independently sampled from populations with the same
confounding bias.
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Background
In cohort collaborations, such as the Environmental influ-
ences on Child Health Outcomes (ECHO), analyses are
often done by pooling cohort-level results using meta-
analysis techniques [1]. We use the term ‘collective anal-
ysis’ to describe collaborative meta-analysis in which an
apriori analytical plan is developed to answer a specific
research question, the analytic code is developed cen-
trally, distributed to the individual cohorts, applied to
each cohort’s data, and results are collected from each
cohort which are then meta-analyzed. This increases uni-
formity with the idea of reducing bias. Further, due to
onerous computational needs of big data– as is com-
mon in modern observational epidemiologic studies and
genome-wide association studies–, divide-and-conquer
approaches are becoming popular. A divide-and-conquer
algorithm involves dividing the data into independent
blocks, analyzing each block separately, and combining
solutions from each block to get the solution for the
full data [2]. If the goal is to estimate model parameters
from the full data, then meta-analysis can be consid-
ered a divide-and-conquer approach that avoids compute-
intensive model fitting on a very large sample size. Several
cohort collaborations such as the Chronic Kidney Disease
Prognosis Consortium (CKD-PC) operate exclusively in
this manner [3].
Despite practical advantages of meta-analysis in cohort

collaborations, it is likely that important confounders
are not necessarily measured across all cohorts since
each cohort may have been independently funded with
independent study protocols. We refer to this problem as
‘confounder imbalance’. As pointed by Voils et al. [4], there
appears to be no consensus on how to synthesize adjusted
and unadjusted parameter estimates in a meta-analysis.
Therefore, it is an open question of how to deal with this
situation in the collective analysis. The simplest option is
to combine unadjusted estimates only because it is avail-
able from all studies and is easy to interpret. Historically,
unadjusted analyses have been emphasized for their inter-
pretability and generalizability [5]. However, unadjusted
estimates provide biased inference about the exposure-
outcome association. The investigator could also be most
conservative by restricting the analysis to cohort studies
which have measured all pertinent confounders. This
is likely to result in decreased sample size (and hence
loss of information) that these cohort collaborations
often capitalize upon. Alternatively, as the CKD-PC has
done previously [6], the cohort collaboration may list
deviations such as not having measured particular vari-
ables in an appendix. This potentially combines various
estimands in which some are adjusted for all possible
confounders and others for only a subset of confounders,
thus ignoring potential heterogeneity in estimates. Yet
another approach is to conduct separate meta-analysis

of unadjusted and adjusted estimates, report both esti-
mates, and qualitatively assess the conclusions from each.
This may lead to difficulty in interpretation if the two
meta-analysis results do not support the same conclu-
sion. These naive approaches have been described with
examples elsewhere [4].
A more sophisticated and statistically principled

approach is GENMETA, a generalized meta-analysis
method that relies on an external reference dataset to
provide information on the joint distribution of covari-
ates that are needed for the analysis [7]. The reference
data can be of fairly modest size, should be independent
of the cohorts under study, should have individual-level
measurements on all possible covariates, and need not be
linked to the outcome of interest. Using GENMETA, one
can capitalize on this external data source to correct for
missing confounders by relying on the joint distribution as
a mapping to allow for fully adjusted estimates. However,
an external data source representative of the underlying
population fromwhich the cohort studies are being drawn
may not always be available. Kundu and Chatterjee [8]
subsequently relaxed this independence assumption for
the external data source in GENMETA.
In this article, using the idea of ‘confounding risk ratio’

(ratio of the unadjusted risk ratio to the adjusted risk ratio)
[9, 10], we show how information may be borrowed across
cohorts or studies reporting only summary-level data to
result in fully adjusted estimates to be combined in the
meta-analysis step. Our approach enables cohorts with
incomplete information on confounders to contribute to
the collective analysis. Our focus is onmeta-analysis in the
setting of parametric regression modelling of exposure-
outcome association given a set of confounders. Although
we describe our approach in the context of cohort stud-
ies, it is also relevant for a meta-analysis of random-
ized controlled trials, where the imbalance in measur-
ing the effect modifiers across trials is prevalent. We
first empirically observe that for a large enough cohort
the difference of the exposure-outcome effect estimates
(fully adjusted vs unadjusted) is independent of the sam-
ple size for both linear and logistic regressions. Using
a generalized linear model, we theoretically justify that
this limiting behavior is not unexpected. We addition-
ally provide exact theoretical limits in the linear regres-
sion framework. We then leverage these asymptotic rela-
tions to implement our approach in a novel meta-analysis
method for confounder imbalance, which we refer to as
CIMBAL (implementation available in R, https://github.
com/RayDebashree/cimbal). We provide details on how
CIMBAL not only imputes the adjusted estimates (effect
estimates and their variances) for cohorts with missing
confounders but also provides a meta-analyzed estimate
that appropriately accounts for the dependence between
estimates arising due to borrowing of information across
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cohorts. We perform extensive simulation experiments to
empirically demonstrate the afore-mentioned asymptotic
relations under different generalizations, and to study sta-
tistical properties such as bias, type I error and power
of CIMBAL. To illustrate the application of CIMBAL,
we present a proof-of-concept meta-analysis of randomly
chosen subsets of the National Children’s Study (NCS)
data to estimate association of maternal education and
low birth weight in infants, adjusting for maternal age at
delivery, race/ethnicity, marital status, and income.

Methods
Notation, models, and existing approaches
Consider the following measurements from an epidemi-
ologic study: response or outcome Y, exposure X and
the full set of q possible confounders C. Our interest
lies in quantifying the true exposure-outcome associa-
tion. To assess exposure-outcome association, a cohort
with no information on any confounder will consider an
unadjusted model

Y =αunadj + βunadjX + εu,

εu ∼ N
(
0, σ 2

unadj

)
(if continuous response)

logit (P(Y = 1)) =αunadj + βunadjX (if binary outcome)

and report unadjusted estimate of association (β̂unadj) and
its standard error (SE) (ŝeunadj). On the other hand, a
cohort that measured all relevant confounders will con-
sider a fully adjusted model

Y =αadj + βadjX + γ ′C + εa,

εa ∼ N
(
0, σ 2

adj

)
(if continuous response)

logit (P(Y = 1)) =αadj + βadjX + γ ′C (if binary outcome)

and report adjusted estimate of association (β̂adj) and its
SE (ŝeadj). For simplicity, in this article we will focus on
cohorts with either no or full confounder information. Let
us assume there are K cohorts, of which Kc cohorts have
complete information on confounders while Km cohorts
have no confounder information. Thus, one can gather
the unadjusted estimates of exposure-outcome associa-
tion from all cohorts

{(
β̂j,unadj, ŝej,unadj

)
, j = 1, 2, ...,K

}

and the adjusted estimates from the complete cohorts{(
β̂j,adj, ŝej,adj

)
, j = 1, 2, ...,Kc

}
.

Meta-analysis: unadjusted. This is the most common
meta-analysis approach for combining parameter esti-
mates from studies with disparate sets of confounders.
The fixed-effect inverse-variance weighted meta-analysis

estimate and its SE are given by β̂
(meta)
unadj =

∑K
j=1 wjβ̂j,unadj∑K

j=1 wj

and ŝe(meta)
unadj = 1√∑K

j=1 wj
, where wj = 1/ŝe2j,unadj for all

j = 1, 2, ...,K .

Meta-analysis: complete only. Since unadjusted esti-
mates are biased and usually artificially large in the pres-
ence of unmeasured confounders, this approach only
combines the studies with fully adjusted estimates. The
meta-analyzed effect estimate and its SE are given by

β̂
(meta)
adj =

∑Kc
j=1 wjβ̂j,adj∑Kc

j=1 wj
and ŝe(meta)

adj = 1√∑Kc
j=1 wj

, where

wj = 1/ŝe2j,adj for all j = 1, 2, ...,Kc.

Idea of confounding risk ratio
Assuming a binary outcome Y, a binary exposure X and
a binary unmeasured confounder C, Cornfield et al. [11]
showed the following inequalities must hold in order for
the confounder to fully explain the observed exposure-
outcome association:

RRXY � RRCY and RRXY � p1/p0

where RRXY is the risk ratio for the association between
the outcome and the exposure, RRCY is the risk ratio for
the association between the outcome and the confounder,
and p0 (p1) is the prevalence of the confounder in the
unexposed (exposed) group. Later, Flanders and Khoury
[9] proposed the idea of confounding risk ratio (coRR) [12]
to quantify unmeasured confounding, and determined the
bounds of coRR as

1 � coRR � min{ORXC , RRCY , 1/p0, RRCY /(1 − p0
+p0RRCY ), ORXC/(1 − p0 + p0ORXC)}

where ORXC is the odds ratio for the association of the
exposure with the confounder. In an analysis of a sin-
gle cohort without access to other information about
the unmeasured confounder C, an investigator would be
required to make estimates of these parameters from
some source (e.g., from literature or expert opinion) to
define the bounds. However, in a cohort collaboration
where one or more cohorts have collected the pertinent
set of confounders, this information may be used and
applied to the cohorts that did not measure one or more
of the confounders. In other words, the cohorts with a
complete set of confounders may provide the coRR that
may be applied to crude (unadjusted or partially adjusted)
estimates of association. We build on this idea to provide
fully adjusted estimates of exposure-outcome association
for cohorts with no information on confounders using
fully adjusted and unadjusted estimates from cohorts with
complete information on confounders. We empirically
show asymptotic relations between adjusted and unad-
justed estimates from both linear (continuous response)
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and logistic (binary outcome) regressions, and also pro-
vide theoretical support for these relations in a general-
ized linear model setup.

Relations between adjusted and unadjusted estimates and
their variances
Linear regression
Using simulations on a continuous response, a binary
or a continuous exposure and two binary confounders,
we observe that the difference of association estimates
β̂unadj − β̂adj (commonly referred to as ‘omitted variable
bias’ in econometrics literature) is stabilizing to a constant
as sample size increases (Supplementary S1). This appears
to be true regardless of the strength and direction of the
true exposure-outcome association.
To theoretically explore this relation, we assume all the

variables Y,X andC are continuous, and that the following
joint distribution of variables holds at the population-
level:

Y =αadj + βadjX + γ ′C + εa, where

εa ∼N
(
0, σ 2

adj

)
(True model)

X =η0 + η′C + εx, where εx ∼ N
(
0, σ 2

x
)

C =μ + εc, where εc ∼ N(0,�)

A cohort, which randomly sampled n individuals from this
population and measured Y, X and C will consider a fully
adjusted model to determine exposure-outcome associa-
tion using (β̂adj, ŝe2adj). It may also consider an unadjusted
model without any confounder adjustment and get (β̂unadj,
ŝe2unadj). Note that in the population (true model) all the
variables Y, X and C are considered random. In the sam-
ple (adjusted or unadjustedmodel), Y is treated as random
while X and C are assumed to be fixed. For simplicity
of theoretical exposition, we assume αunadj = 0 = αadj,
which is satisfied when the variables in themodels are cen-
tered around their means. Then, the relation between the
unadjusted and the adjusted effect estimates from linear
regression is given by the following result.

Result 1 Under the probability law (true model)
assumed above,

β̂unadj − β̂adj
P−→ η′�γ

σ 2
x + η′�η

as n → ∞

where β̂unadj and β̂adj are obtained from linear regression
models of Y on X unadjusted and adjusted for confounders
respectively, and P−→ denotes convergence in probability.

In other words, for a large enough cohort, the differ-
ence of the unadjusted and the adjusted effect estimates
from a linear regressionmodel are independent of the true

exposure-outcome effect size (βadj) and also of the sample
size (n).

Result 2 Under the true model assumed above, the
effect estimates from a linear regression model are non-
negatively correlated, i.e., Cov(β̂unadj, β̂adj) ≥ 0.

Proofs of these results are outlined in Supplementary
S2. We also provide empirical proof of Result 1 by sim-
ulating data from the same data generating model as the
population-level true model assumed above (Supplemen-
tary S2). For more general settings, such as non-normal
distributions for the exposure and the confounders, our
empirical evidence supports that β̂unadj− β̂adj is asymptot-
ically independent of true exposure-outcome association
and the sample size (Supplementary S1). It is quite possi-
ble that these results are not new since many researchers
across different quantitative fields have done theoreti-
cal work on linear models for several years [13, 14].
Notwithstanding this possibility, we state them here for
completeness as these relations are leveraged by our novel
meta-analysis approach.

Logistic regression
Using simulations, the above asymptotic sample size
invariance property appears to hold for a logistic regres-
sion with binary outcome Y, any exposure X and any con-
founders C (Supplementary S3). In other words, for a large
enough cohort, β̂unadj − β̂adj

def= log(ÔRunadj) − log(ÔRadj)
does not appear to depend on the sample size. Unlike the
linear regression scenario, this relation does not appear
to be independent of the true odds ratio (ORadj = eβadj )
in logistic regression. In fact, under certain assumptions–
including binary exposure X, independence of X and C as
in a randomized trial, and weak effects γ of covariates C–,
Gail et al. [15] derived the asymptotic approximate bias
β̂unadj−β̂adj for non-linearmodels using second order Tay-
lor series. In particular for the logistic model, they found
this bias to depend on the true exposure-outcome associ-
ation in their numerical studies: β̂unadj is negatively biased
when βadj > 0 and positively biased for βadj < 0. Note,
this conclusion about direction of bias was strictly based
on small values of 1

4γ
′�γ , where γ consists of covariate

effects in the fully adjusted model and � is the covariate
variance-covariance matrix [15].

Generalized linearmodel
The following result generalizes the above asymptotic
sample size invariance property for generalized linear
models using asymptotic normality of maximum likeli-
hood estimates.

Result 3 For a large enough cohort, the difference of the
unadjusted and the adjusted effect estimates, β̂unadj − β̂adj,
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from a generalized linear model is asymptotically constant
(independent of the sample size).

The proof is outlined in Supplementary S4.

CIMBAL: proposed approach to adjust for confounder
imbalance
Assumptions
For the ease of exposition, we will first consider only
two cohorts and later generalize our approach for multi-
ple cohorts. CIMBAL relies on asymptotic Result 3 and
depends on a weak assumption that the cohorts are drawn
independently from populations with the same confound-
ing bias regardless of other types of heterogeneity (e.g.,
different distributions of confounders across cohorts). As
will become evident in the following sections, CIMBAL
does not depend on strong assumptions such as cohorts
drawn from the same underlying population or homo-
geneity of joint distributions [Y ,X,C] underlying each
cohort.

Imputed adjusted effect estimate
If there are two independent cohorts– cohort 1 with no
information on any confounder and is able to report only
β̂unadj, and cohort 2 with complete information to be
able to report both β̂adj and β̂unadj– the investigator can
impute the adjusted association estimate for the cohort
with missing confounder information leveraging Result 3:

β̃1,adj = β̂2,adj − β̂2,unadj+β̂1,unadj (1)

However, for meta-analysis, having the adjusted effect
estimates is not enough. The SE of the effect estimate from
the fully adjusted model is required from all the cohorts
for inverse variance weighting and for obtaining the SE
and the 95% confidence interval (CI) of the meta-analyzed
effect.

Imputed adjusted standard error estimate
From Eq. 1, the adjusted variance estimate for cohort 1
may be obtained as

s̃e21,adj = ŝe22,adj + ŝe22,unadj + ŝe21,unadj − 2Cov(β̂2,unadj, β̂2,adj)

(2)

We call our proposed correction approach for confounder
imbalance CIMBAL.

Meta-analysis using imputed estimates under confounder
imbalance
To explain meta-analysis in this context, we continue dis-
cussion with cohort 1, which has the imputed adjusted
estimates (β̃1,adj, s̃e21,adj) and cohort 2, which reported
the fully adjusted estimates (β̂2,adj, ŝe22,adj). Inverse-
variance weighted fixed-effect meta-analysis is a pop-
ular approach for pooling estimates from independent

cohorts. Although we assume cohort 1 to be independent
of cohort 2 (i.e., no sharing of samples between cohorts),
Eq. 1 indicates that the estimates β̃1,adj and β̂2,adj are no
longer uncorrelated:

Covb(β̃1,adj, β̂2,adj) = Covb(β̂2,adj − β̂2,unadj + β̂1,unadj, β̂2,adj)

= Var(β̂2,adj) − Cov(β̂2,unadj, β̂2,adj)

where Covb(.) denotes between-cohort covariance, to dif-
ferentiate from Cov(.) that captures within-cohort co-
variability. Consequently, the inverse-variance weights are
not optimal in terms of statistical efficiency of the meta-
analyzed estimate [16, 17]. The following result gives the
linear combination of exposure-outcome association esti-
mates with the smallest asymptotic variance among all
linear estimators.

Result 4 The exposure-outcome association estimate
frommeta-analyzing CIMBAL-imputed adjusted estimate
from one cohort and the fully adjusted estimate from
another cohort is given by

β̂adj = ŵ1β̃1,adj + ŵ2β̂2,adj

where the optimal weights maximizing statistical efficiency
are

ŵ1 =
Cov

(
β̂2,unadj, β̂2,adj

)

ŝe21,unadj + ŝe22,unadj
and ŵ2 = 1 − ŵ1

and the corresponding meta-analyzed adjusted SE esti-
mate is

ŝeadj =

√√√√√ŝe22,adj −
Cov

(
β̂2,unadj, β̂2,adj

)2

ŝe21,unadj + ŝe22,unadj

The proof is outlined in Supplementary S4.
The meta-analyzed SE estimate as well as the weights

depend on Cov
(
β̂2,unadj, β̂2,adj

)
which does not have a

closed form for logistic regression. We have theoretically
shown that Cov

(
β̂2,unadj, β̂2,adj

)
� 0 for linear regres-

sion (Result 2), and empirically shown that it holds for
logistic regression for a large enough number of cohorts
(Supplementary S3). If there are multiple cohorts with
full confounder information, we can use the estimated
covariance between their adjusted and unadjusted esti-
mates as an estimate for Cov

(
β̂2,unadj, β̂2,adj

)
. If there are

insufficient number of cohorts to estimate this covari-
ance, we suggest ignoring the covariance (i.e., assume
Cov

(
β̂2,unadj, β̂2,adj

)
= 0). This will only lead to overesti-

mation of the meta-analyzed SE or a larger CI and hence
a less efficient estimate of the exposure-outcome associ-
ation. The following corollary states this special case of
CIMBAL.
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Corollary 1 Ignoring Cov(β̂2,unadj, β̂2,adj) in Result 4 is
equivalent to taking ŵ1 = 0, thus ignoring the study
reporting only unadjusted estimates. Consequently, meta-
analysis using only the adjusted estimates available from
complete cohorts is a special case of CIMBAL.

Generalization of CIMBAL tomultiple cohorts with and
without confoundermeasurements
The proposed correction approach can be easily extended
to >2 independent cohorts. If there are Kc cohorts
with complete confounder information, we first meta-
analyze these cohorts (using fixed-effect inverse-variance
weighted meta-analysis) to obtain the meta-analyzed
adjusted estimates and the meta-analyzed unad-
justed estimates and their corresponding SE estimates:(
β̂

(meta)
2,adj , ŝe(meta)

2,adj

)
and

(
β̂

(meta)
2,unadj, ŝe

(meta)
2,unadj

)
. Similarly, if

there are Km cohorts with no confounder information, we
meta-analyze these cohorts to obtain the meta-analyzed
unadjusted estimate and the corresponding SE estimate:(
β̂

(meta)
1,unadj, ŝe

(meta)
1,unadj

)
. Now we can apply the imputation

approach using Eqs. 1 and 2 to obtain CIMBAL-imputed
adjusted estimates for the pooled no-confounder cohort(
β̃

(meta)
1,adj , s̃e(meta)

1,adj

)
. For the final meta-analysis, we first

estimate Cov
(
β̂2,unadj, β̂2,adj

)
from the Kc complete

cohorts and then use formulae from Result 4. We have
implemented our imputation approach and the subse-
quent meta-analysis in a R [18] program at https://github.
com/RayDebashree/cimbal.

Simulation design
To demonstrate pitfalls of meta-analysis in cohort col-
laborations in the presence of unbalanced measure-
ment of confounders, and to study the performance of
our proposed approach, CIMBAL, we conduct exten-
sive simulation experiments using a binary outcome Y, a
binary exposure X, and two binary confounding variables
C1,C2. Note, preliminary simulation analysis in support
of asymptotic relations claimed in “Linear regression” and
“Logistic regression” sections are presented in Supple-
mentary S1 and Supplementary S3.
For a given individual, we use the model logit(P(Y =

1)) = γ0 + γ1C1 + γ2C2 + βX to generate the outcome,
where C1 and C2 are Bernoulli variables with success
probabilities 0.1 and 0.6 respectively, and the exposure
X is generated using the logistic model logit(P(X =
1)) = η0 + η1C1 + η2C2. The choices of parameters
γ0, γ1, γ2,β , η0, η1, η2 are provided in Table 1. Setting I of
parameter choices involve equal confounder effects in the
same direction for both exposure and outcome (η1 = η2 =
γ1 = γ2 = 2). Keeping the confounder effect on exposure
same, Setting II involves one confounder having equal and
same effect and the other confounder having equal but

Table 1 Parameter values assumed in simulation studies. The
models used for the generation of binary exposure X and binary
outcome Y are respectively logit(P(X = 1)) = η0 + η1C1 + η2C2
and logit(P(Y = 1)) = γ0 + γ1C1 + γ2C2 + βX , where
confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6)

Exposure model Outcomemodel

Setting η0 η1 η2 γ0 γ1 γ2 β

I log 0.5
0.5 2 2 log 0.3

0.7 2 2 log(1), log(3), log(1/3)

II log 0.5
0.5 2 2 log 0.3

0.7 2 −2 log(1)

III log 0.5
0.5 2 2 log 0.3

0.7 −2 −2 log(1)

opposite effect on the outcome (η1 = η2 = γ1 = 2, γ2 =
−2). Setting III considers equal and opposite effect of both
confounders for the outcome (η1 = η2 = 2, γ1 = γ2 =
−2). For simplicity, we assume 60 independent cohorts
of equal sample size (n = 150) are available. We simu-
late 3 scenarios: (1) fewer cohorts or (2) equal number of
cohorts or (3) more cohorts with no confounder informa-
tion than with complete confounder information. For each
scenario, we simulate 2,500 replicates of 60 cohorts. We
are interested in estimating the association between the
outcome and the exposure by using cohort-level summary
statistics.
We perform a few additional experiments to see how

sensitive CIMBAL is compared to other approaches when
underlying assumptions are not satisfied. In particu-
lar, for the Sensitivity I scenario, we generate all the
cohorts without confounder information from the data
generating model described above, and the remaining
cohorts (those with complete confounder information)
from another distribution so that the underlying joint dis-
tributions [Y ,X,C1,C2] are not the same between com-
plete and incomplete cohorts. The second data generating
model is assumed to have different success probabili-
ties of confounders C1 and C2 (0.2 and 0.7 respectively).
This changes the mean vector as well as the variance-
covariance matrix of the confounder distribution and
the joint distribution [Y ,X,C1,C2]. We keep the true
exposure-outcome association fixed at 0 for both pop-
ulations. For the Sensitivity II scenario, we consider a
variation of the Sensitivity I scenario by keeping the
joint distribution same across cohorts but changing the
strength of confounding on X and Y. Briefly, the cohorts
with no confounder information are drawn from the data
generating model with strong confounding as described
before, while the remaining cohorts are drawn from a data
generating model with much weaker confounding effects.
For the Sensitivity III scenario, we consider a third con-
founder C3 ∼ N(0, 1) in the data generating model for Y
and X, where we assume γ3 = 2 and η3 = 2 are parame-
ters corresponding to the association of C3 with Y and X
respectively. For the analysis models however, we assume
C3 is an unmeasured confounder so that the models fit by

https://github.com/RayDebashree/cimbal
https://github.com/RayDebashree/cimbal
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each cohort is either adjusted for the first two confounders
(C1 and C2) or adjusted for none.
For each simulation setting and scenario, we obtain the

log-odds estimate and its SE for the combined cohort
using CIMBAL and compare it against two meta-analysis
approaches: meta-analysis of only the available adjusted
estimates, and the oracle (gold standard) meta-analysis
of adjusted estimates from all cohorts. Note, we do not
include meta-analysis of the unadjusted estimates from all
cohorts in this comparison since it is well-established to
be a biased estimate in the presence of confounders. We
visually compare all three approaches by plotting the dis-
tribution of estimated log-odds and its SE. Further, we use
the following metrics for comparison: mean squared error
(MSE), mean width of 95% CI, and type I error (only when
data are generated under β = log(OR) = 0). For a given
method, we estimate MSE as mean of the squared differ-
ence between estimated log-odds and the true log-odds;
mean width as mean of the difference between the upper
and the lower 95% confidence limits; and type I error as
the proportion of times the null hypothesis that β = 0
is rejected at 5% significance level. For all these metrics,
average or proportion is calculated over 2,500 indepen-
dent replicates.We conduct all statistical analyses in R and
create plots using R package ggplot2 [19].

Application to NCS data on low birth weight of infants
We use NCS [20, 21] data on 5,604 children enrolled
between 2009 and 2013 to evaluate all the meta-analysis
approaches including CIMBAL. For this proof-of-concept
analysis, we study if and how maternal education influ-
ences infant birth weight-for-gestational-age (BW-for-
GA). We assume the NCS dataset is our population and
we randomly sample 40 independent cohorts of equal
sample size from this population.
We define a dichotomized version of BW-for-GA z-

score as our outcome. In particular, we extract child sex,
birth weight, and gestational age from the medical records
and calculate child BW-for-GA z-score according to the
2017 US reference [22]. After excluding children with
missing sex, birth weight and/or gestational age at birth,
and those with gestational age at birth <22 or >42 weeks,
we calculate BW-for-GA z-score for 4,658 children. ‘Small’
for gestational age is typically defined as BW-for-GA z-
score<10th percentile. However, this definition would
lead to an outcome with low prevalence in our study, and
combined with small sample size in each of the 40 cohorts
may lead to unstable estimates. Hence, in this proof-of-
concept analysis we define ‘small’ for gestational age as
BW-for-GA z-score<25th percentile to mimic a relatively
common outcome.
For our exposure, we consider two categories of mater-

nal education. The reference category is ‘Some college
or below’ while the other category is ‘Bachelor’s degree

or above’. We consider 4 key maternal covariates (con-
founders) that may influence the exposure-outcome asso-
ciation: maternal age at delivery, race/ethnicity, marital
status, and annual household income. While maternal age
is a continuous variable, the others are categorical. We
consider 4 categories for race/ethnicity: Hispanic, non-
Hispanic White, non-Hispanic Black, and non-Hispanic
other; 3 categories for marital status: married or liv-
ing together with a partner, never been married, and
divorced, separated, or widowed; 4 categories for annual
household income: <$30,000, $30,000-$49,999, $50,000-
$99,999, and >$100,000. After removing observations
with missing confounders, we have 4,089 mother-infant
pairs in our final analytical dataset.
We draw a random sample of 4,080 dyads without

replacement and split them into 40 cohorts of equal sam-
ple size (n = 102). Of the 4,080 dyads, 22.6% (n = 921) of
the infants had BW-for-GA z-score<25th percentile. The
prevalence of our outcome in the 40 independent cohorts
ranged from 12.7% (n = 13) to 31.4% (n = 32). For all
cohorts, we obtain unadjusted as well as adjusted esti-
mates of exposure-outcome association along with their
SE estimates using Stata [23]. We also combine all the
cohorts and conduct a pooled analysis without and with
confounder adjustment, giving us unadjusted as well as
adjusted estimates for the combined cohort. To evalu-
ate CIMBAL in comparison to the other meta-analysis
approaches described before, we assume that either 10, 20
or 30 cohorts have no information on any confounders,
while the rest have complete information on all con-
founders. We randomly select the cohorts assumed to
have no confounder information. Before meta-analyzing
all the cohorts, we exclude any outlying cohorts. Specif-
ically, if log-odds estimate or SE estimate (unadjusted
and/or adjusted) from a cohort falls outside the 3 times
inter-quartile range, then we exclude that cohort. We
remove one such outlier, leaving 39 independent cohorts
from the NCS population.

Results
Simulated data analysis
Under confounder imbalance, distributions of estimates from
CIMBAL are closer to oracle thanwhen restricted to cohorts
with complete data
Figure 1 shows the distribution of the estimate of
exposure-outcome association (β̂) and its SE (ŝe) across
different simulation scenarios. Although meta-analysis
using adjusted estimates from cohorts with complete
information provides unbiased estimates, it has high vari-
ability due to small effective sample size, leading to
wide CIs. CIMBAL, on the other hand, provides not
only unbiased estimates but also smaller variability than
complete-only meta-analysis, leading to point estimates
and CIs that are closest to the oracle.
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Fig. 1 Comparison of CIMBAL with complete case meta-analysis approach and gold standard (oracle) approach across different simulated data

scenarios. The log-odds estimate of the exposure-outcome association (β̂ = log(ÔR)) and its SE

(
ŝe =

√
ˆVar(β̂)

)
from the combined cohort over

2500 independent replicate datasets are plotted for each scenario: (1) fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no
confounder information than with complete confounder information. The horizontal dashed line in the β̂-plots correspond to the true β = 0
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Note that the current simulation model assumes strong
confounder effects only, and that there is no association
between the exposure and the outcome (β = log(1)).
Therefore, we additionally simulate Setting I with weak
confounder effects (Figure S7), and Setting I with strong
positive (β = log(3)) or negative (β = log(1/3)) exposure-
outcome association (Figure S8). We observe that relative
behavior of the methods is the same regardless of the
true association, the strength of the confounding effects,
and whether we have fewer, equal or more cohorts with
missing confounder information (Fig. 1, S7 and S8). The
variability of the exposure-outcome estimate from each
meta-analysis method increases as the number of cohorts
with missing confounders increases. Similar behavior is
observed for other simulation settings involving varying
directions of confounder effects (Fig. 1). In other words,
meta-analysis using CIMBAL seems to provide estimates
that are closest to what one would have obtained if fully
adjusted estimates were available from all cohorts.

Meta-analysis using CIMBAL is closest to oracle across
multiple statistical metrics
Table 2 shows MSE (along with relative MSE compared
to the oracle meta-analysis), mean width of 95% CI, and
type I error performance of each method across different
simulation scenarios. Across all parameter settings and
scenarios, MSE of CIMBAL is closest to the MSE of the
oracle. Complete-only meta-analysis has the largest mean
width of 95% CI that increases with increasing number
of cohorts without complete confounder information, as
expected. Mean width of CIMBAL’s CI is only slightly
larger than the oracle. These observations continue to

hold for simulations involving weaker confounder effects
(Table S5). As for the type I error metric that one can eval-
uate only under the null (i.e., when the underlying data
have no exposure-outcome association), both CIMBAL
and complete-only meta-analysis maintains appropriate
type I error at 5% level. CIMBAL’s type I error perfor-
mance resembles that of the oracle across most scenarios
(Table 2), and this continues to be true regardless of
strength of confounder effects (Table S5).

Meta-analysis using CIMBAL coincides with complete-only
meta-analysis when there are too few cohorts with complete
confounder information
Meta-analysis of CIMBAL-imputed adjusted esti-
mates from incomplete cohorts and adjusted estimates
from complete cohorts requires an estimate of
Cov

(
β̂unadj, β̂adj

)
. This estimated covariance not only

depends on the sample sizes of the complete cohorts but
also the number of such cohorts used to estimate the
covariance, the strengths and directions of confounder
effects and exposure-outcome association (Figure S4). We
suggest that at least 20 cohorts be used for appropriately
estimating this covariance. If the estimate turns out to
be negative, our program cimbal automatically assumes
0 covariance (the theoretical lower limit we found for
linear regression case and the empirical asymptotic lower
limit we found for logistic regression). Negative covari-
ance estimate occurs when the correlation estimate is
negative, which may arise due to reasons such as insuffi-
cient number of cohorts used in the estimation process,
insufficient per-cohort sample size relative to confounder
adjustment, or skewed sample distribution of categorical

Table 2 Evaluation of CIMBAL along with complete-only meta-analysis approach and gold standard (oracle) approach using multiple
metrics across different simulated data scenarios. The metrics MSE (mean squared error), rel. MSE (relative MSE compared to oracle
meta-analysis approach), mean width of 95% CI, and type I error inflation factor at 5% significance level (ratio of type I error estimate to
0.05) are estimated using 2,500 independent replicate datasets for each scenario: (1) fewer cohorts or (2) equal number of cohorts or
(3) more cohorts with no confounder information than with complete confounder information. Ideal rel. MSE value is 1× and larger
values indicate departure from oracle. Ideal type I error inflation value is 1; larger than 1 indicates inflation, smaller than 1 indicates
conservativeness. The underlying data generative model assumes there is no exposure-outcome association (true β = 0)

Scenario 1 (fewer) Scenario 2 (equal) Scenario 3 (more)

Method MSE mean type I MSE mean type I MSE mean type I

(rel. MSE) width error IF (rel. MSE) width error IF (rel. MSE) width error IF

Setting I M: complete only 0.006 (1.5×) 0.30 0.98 0.007 (1.8×) 0.35 0.86 0.011 (2.8×) 0.43 0.91

M: CIMBAL (v0.7) 0.004 (1.0×) 0.27 1.00 0.005 (1.3×) 0.29 0.92 0.006 (1.5×) 0.32 1.00

M: fully adjusted (oracle) 0.004 (1×) 0.25 1.02 0.004 (1×) 0.25 1.02 0.004 (1×) 0.25 1.02

Setting II M: complete only 0.008 (1.6×) 0.34 0.96 0.010 (2.0×) 0.40 0.94 0.015 (3.0×) 0.49 0.91

M: CIMBAL (v0.7) 0.006 (1.2×) 0.30 1.02 0.007 (1.4×) 0.32 1.06 0.008 (1.6×) 0.35 1.02

M: fully adjusted (oracle) 0.005 (1×) 0.28 0.96 0.005 (1×) 0.28 0.96 0.005 (1×) 0.28 0.96

Setting III M: complete only 0.008 (1.6×) 0.35 0.96 0.010 (2.0×) 0.41 0.82 0.016 (3.2×) 0.50 0.89

M: CIMBAL (v0.7) 0.006 (1.2×) 0.30 1.02 0.006 (1.2×) 0.31 1.07 0.008 (1.6×) 0.34 0.98

M: fully adjusted (oracle) 0.005 (1×) 0.29 1.00 0.005 (1×) 0.29 1.00 0.005 (1×) 0.29 1.00

Abbreviations: IF, inflation factor; M, meta-analysis of 60 cohorts
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confounders between cases and controls leading to model
fit issues (Figures S5 and S6). Consistent with Corollary 1,
the CIMBAL meta-analyzed estimate boils down to
the estimate from complete-only meta-analysis when 0
covariance is assumed (Figure S9).

Sensitivity analysis
When there exists heterogeneity in the underlying joint
distributions– here, complete cohorts are from one pop-
ulation, the remaining are from another with a different
joint distribution (Sensitivity I scenario)–, CIMBAL’s esti-
mates may be slightly biased (Figure S10) but still closer
to the oracle in terms of MSE than complete-only meta-
analysis (Table S4). This appears to be true regardless of
whether fewer or more cohorts have no information on
any confounder. When the underlying joint distributions
are homogenous but the confounding bias is not the same
across cohorts– here, counfounding effects are weak in
complete cohorts but very strong in the others (Sensitivity
II scenario)–, we see massive increase in bias (Figure S11),
MSE and type I error rates (Table S4) for CIMBAL. Thus,
CIMBAL is very sensitive to heterogeneity of confound-
ing bias but not as sensitive to heterogeneity in underlying
joint distributions. When there is an unmeasured con-
founder (Sensitivity III scenario), all the meta-analysis
approaches, including the oracle, are biased as expected;
however, meta-analysis using CIMBAL is again closest to
the oracle (Figure S12).

NCS data analysis
Figure 2 shows not only the reported log-odds estimate
and its 95% CI from each cohort but also the different
meta-analyzed estimates for the pooled cohort. For most
cohorts with complete confounder information, we see
appreciable difference between their adjusted and unad-
justed estimates. As expected, meta-analysis using only
the unadjusted estimates from all the cohorts leads to
considerably biased log-odds estimate with a narrow CI
around them. On the other hand, meta-analysis only using
the adjusted estimates from the complete cohorts leads to
less bias but larger CIs compared to the oracle. When only
10 or 20 out of 39 cohorts (1 cohort removed for being
an outlier) have no confounder information, we find CIM-
BAL has similar bias as the complete-only meta-analysis
but narrower CI. When 30 cohorts have no confounder
information, we do not have enough complete cohorts to
estimate the weight CIMBAL should put on incomplete
cohorts and consequently we assign all the weight to com-
plete cohorts. We see that CIMBAL and complete-only
meta-analysis estimates and CIs coincide as expected.

Discussion
In this article, we develop a novel and practical approach
for meta-analysis of exposure-outcome association

estimates from cohorts with disparate confounder
information. Currently, there is no consensus on how
unadjusted and adjusted estimates from cohorts may
be meaningfully combined without sacrificing on sam-
ple size or unbiasedness of estimate. Our approach,
CIMBAL, mitigates this issue by borrowing information
from cohorts with complete confounder information to
impute adjusted estimates for cohorts without coun-
founder information. This borrowing of information is
grounded in asymptotic relations between adjusted and
unadjusted estimates that we have justified theoretically
for generalized linear models. We additionally derive the
meta-analysis weights for the reported and the imputed
adjusted estimates that minimizes the variance of the
meta-analyzed estimate. CIMBAL is a practical approach
for data integration if only summary statistics are avail-
able from cohorts. It is a generalization of meta-analysis
of available adjusted estimates only, which ignores contri-
bution from cohorts without full confounder information.
When compared to popular meta-analysis approaches in
the presence of confounder imbalance among cohorts,
we find the CIMBAL meta-analyzed estimate to be closer
to the gold standard (meta-analysis of fully adjusted esti-
mates from all cohorts, when available) across statistical
metrics such as type I error rate (for null data only), MSE,
and mean-width of 95% CI. As proof of principle, we
apply CIMBAL and other meta-analysis approaches to
estimate association of maternal education with low birth
weight of infants from NCS data after adjusting for four
key maternal variables (confounders). Despite having
access to individual-level data, we randomly split the
NCS data into multiple cohorts, some with the necessary
confounder information, others with all confounder infor-
mation removed. Our real data analysis results conform
with our findings from simulation experiments.
An alternative approach to circumvent missing data on

confounders will be to use individual-level data from the
cohorts with complete information to derive [C|Y ,X], the
conditional distribution of the confounders given the out-
come and the exposure of interest. Standard methods of
multiple imputation can be applied on the cohorts with
incomplete confounder information before obtaining fully
adjusted estimates from them [24]. Not only does this
require access to individual-level data from the cohorts
with complete information but also the confounders are
likely to be of large dimension making the imputation
models challenging. Yet another approach is GENMETA,
which too requires individual-level reference data repre-
sentative of the underlying population [7, 8]. Imputing
fully adjusted estimates using CIMBAL is not subjected to
those requirements, and thus is a practical meta-analysis
approach.
We describe CIMBAL using a fixed-effect meta-

analysis framework. One could alternatively consider a
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Fig. 2 Comparison of CIMBAL with complete case meta-analysis approach and gold standard (oracle) approach in a proof-of-concept analysis using
the NCS data. The log-odds estimate of the exposure-outcome association and its 95% CI are plotted
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random-effect meta-analysis framework, where hetero-
geneity among effect estimates is modeled as a variance
component reflecting between-cohort variance. Specifi-
cally, one can meta-analyze unadjusted estimates from
Km cohorts with no confounder information using the
inverse-variance weights for random-effect meta-analysis:
ωj = 1

ŝe2j,unadj+τ̂ 2
for j = 1, 2, ...,Km, where τ̂ 2 is an esti-

mate of between-cohort variance in
{
β̂j,unadj

}Km

j=1
obtained

using, for instance, DerSimonian and Laird method of
moments approach [25]. Alternative approaches, such as
restricted maximum likelihood or non-parametric Der-
Simonian and Laird methods, may be used to obtain
τ̂ 2 when method of moments gives biased estimate,
as suggested by recent comparative studies [26, 27].

Similarly, the between-cohort variances in
{
β̂j,unadj

}Kc

j=1

and
{
β̂j,adj

}Kc

j=1
may be estimated separately, and subse-

quently used to obtain the inverse-variance weights for
random-effect meta-analysis of the unadjusted and the
adjusted estimates from Kc complete cohorts. This set
of random-effect meta-analyzed estimates may then be
used to get the CIMBAL-imputed adjusted estimates for
the pooled no-confounder cohort. The final meta-analysis
step (Result 4) in CIMBAL, however, needs to use a fixed-
effect framework since the two estimates corresponding
to two groups of cohorts are correlated and the between-
group variance cannot be reliably estimated. A caveat of
this random-effect framework is potentially allowing for
heterogeneity of confounding bias between the complete
cohorts and the incomplete ones due to differences in
aspects of the underlying populations or the study designs,
and CIMBAL is very sensitive to this heterogeneity.
While we demonstrate CIMBAL on cohorts with either

full or no confounder information, it may also be applied
to cohorts with either full or partial confounder infor-
mation. Among the q possible confounders, suppose
all cohorts have the same p(< q) confounders mea-
sured. For instance, sex and race/ethnicity information
are commonly collected in epidemiologic studies. In
such a scenario, one may provide the cimbal pro-
gram with partially adjusted estimates instead of the
unadjusted estimates. Under the hood, cimbal pro-
gram first meta-analyzes all the complete cohorts to
obtain

(
β̂

(meta)
2,adj , ŝe(meta)

2,adj

)
and

(
β̂

(meta)
2,p-adj , ŝe

(meta)
2,p-adj

)
, where

suffix ‘p-adj’ denotes partial confounder adjustment. All
the cohorts with partial confounder information aremeta-
analyzed to obtain

(
β̂

(meta)
1,p-adj , ŝe

(meta)
1,p-adj

)
. Then, CIMBAL-

imputed adjusted estimates for the pooled partial-
confounder cohort are obtained as

(
β̃

(meta)
1,adj , s̃e(meta)

1,adj

)
, and

meta-analyzed with the available fully adjusted estimates
using Result 4.

CIMBAL is not without limitations. We make the sim-
plifying assumption that cohorts either have full con-
founder information or have the same partial confounder
information. By ‘full confounder information’, we mean
measurements on the minimally sufficient confounder set
are available to complete cohorts. However, multiple min-
imally sufficient adjustment sets may exist and each can
be used to obtain an unbiased estimate of the exposure-
outcome association. While each minimally sufficient
adjustment set can, in principle, adjust for confounding,
the estimands are fundamentally different. Consequently,
non-collapsible association estimator like the odds ratio
from a logistic regression can show substantial hetero-
geneity across minimally sufficient confounder sets, and
meta-analyzing cohorts using different sets may result
in an unreliable estimate [28]. We also assume there is
no model misspecification when fitting the fully adjusted
model. While heterogeneity is inevitable in meta-analysis,
CIMBAL does not have a diagnostic test for heterogene-
ity of fully adjusted estimates from all cohorts. However,
we find CIMBAL is not too sensitive to heterogeneity in
underlying joint distributions across cohorts; instead it is
extremely sensitive to heterogeneity in confounding bias.
For instance, age and sex or gender distributions can often
be different across studies, and that is not expected to
strongly influence CIMBAL as long as the confounding
bias is the same across studies. Currently, CIMBAL cannot
handle a combination of unadjusted, partially adjusted,
and fully adjusted estimates from different cohorts. If
many cohorts report partially adjusted estimates with dif-
ferent subsets of confounders, for practical purposes we
recommend that investigators choose the most commonly
occurring subset of confounder, and regard the corre-
sponding cohorts as ‘complete cohorts’ and the remaining
cohorts as those with no confounder information.We sug-
gest that this choice be influenced by not just the number
of cohorts reporting a particular set of confounders but
also by the sample sizes of such cohorts. Once we have the
two groups of cohorts, CIMBAL can be used to impute
the ‘fully adjusted’ estimates for the incomplete cohorts as
described earlier. We acknowledge this recommendation
is sub-optimal: it results in loss of information and statis-
tical efficiency of the meta-analyzed estimate when many
cohorts report partially adjusted estimates. Future work
will generalize CIMBAL in this aspect.

Conclusions
Our novel method CIMBAL provides a practical yet
valid approach for meta-analyzing independently sam-
pled cohorts with imbalance in measurement of con-
founders. It is particularly useful when investigators have
access to only summary-level data from each cohort.
As long as the confounding bias is the same across
cohorts, CIMBAL is not too sensitive to heterogeneity in
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underlying joint distributions of exposure, outcome and
confounders. Although we describe CIMBAL in the con-
text of cohort studies, it is also relevant for a meta-analysis
of randomized controlled trials.
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