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Abstract

During embryonic development, cells differentiate into a variety of distinct cell types and

subtypes with diverse transcriptional profiles. To date, transcriptomic signatures of different

cell lineages that arise during development have been only partially characterized. Here we

used single-cell RNA-seq to perform transcriptomic analysis of over 20,000 cells disaggre-

gated from the trunk region of zebrafish embryos at the 30 hpf stage. Transcriptional signa-

tures of 27 different cell types and subtypes were identified and annotated during this

analysis. This dataset will be a useful resource for many researchers in the fields of develop-

mental and cellular biology and facilitate the understanding of molecular mechanisms that

regulate cell lineage choices during development.

Introduction

The commitment of stem cells to distinct lineages is a fundamental process that underpins

embryonic development. At a molecular level, a wide array of spatiotemporally regulated sig-

naling molecules, morphogen gradients and other factors (such as physical forces) drive

changes in gene expression, which guide cells down very specific lineage trajectories. Thus,

understanding the dynamics of gene expression in cell populations over time is central to map-

ping the paths taken by cells during differentiation. Technologies such as quantitative PCR

and high throughput sequencing technologies, which have emerged over the past couple of

decades, have enabled scientists to probe some of these key questions in developmental biol-

ogy. While traditional ‘bulk’ RNA-seq analysis can efficiently reveal transcriptional variation

between different organs or organisms (e.g., wt vs. mutant), subtle changes in gene expression

levels at cellular resolution cannot be achieved using this method.

In recent years, the emergence and rapid advancement of single-cell RNA sequencing

(scRNA-seq) technology in combination with advances in machine learning have provided

unprecedented insight into global transcriptional dynamics across different cell types [1]. The

ability to capture the transcriptional information of hundreds of thousands of cells of different

identities over time makes scRNA-seq an invaluable tool for dissecting cellular heterogeneity
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during organogenesis. Analysis of cell fate transitions at a transcriptomic level has been made

possible by scRNA-seq analysis and has led to new discoveries across many fields in biomedi-

cal science. This powerful technology also has the potential to reveal transcriptomic signatures

of rare and uncharacterized cell populations in disease conditions, which could revolutionize

treatment strategies [2–4]. Additionally, the development of several free analytical software

packages like Seurat and Monocle, which have been created to mine and analyze scRNA-seq

data, has greatly facilitated research utilizing scRNA-seq [5–8].

The zebrafish (Danio rerio) embryo has emerged as an excellent model for studying verte-

brate development due to their rapid external development, optical transparency, and high

fecundity from a single mating. Furthermore, the signaling pathways that drive developmental

process in zebrafish are conserved in higher vertebrates. Recent studies have used single-cell

RNA-seq to characterize the transcriptomic and cellular diversity of selected tissue types [9–11].

A single cell transcriptome atlas for zebrafish embryos has been reported which encompass one

to five days of zebrafish development [9]. These datasets will be undoubtedly important for fur-

ther studies of cell type diversity and pathways regulating choices between different lineages.

However, currently available data cover only a limited number of zebrafish embryonic stages.

Here we performed single-cell transcriptomic analysis of cells isolated from the trunk

region of zebrafish embryos at 30 hpf (hours post fertilization). Many important developmen-

tal processes, including definitive hematopoiesis, angiogenesis, and organogenesis are taking

place at this time, and yet scRNA-seq at this developmental stage has not been previously per-

formed. We focused on the trunk region because it is expected to contain all major cell types

of different germ layers, including different subtypes of vascular endothelial and hematopoietic

cells, as well as progenitors of internal organs. At the same time, we wanted to avoid additional

complexity of cell types associated with the central nervous system and craniofacial tissues

which were not the focus of this analysis. 20,589 single cells were isolated from the zebrafish

trunk region, resulting in a higher number of cells per cluster compared with previous analy-

ses. We present a description of 27 transcriptionally distinct populations of cells, identities of

which were confirmed using previously published in situ expression data. This dataset will add

to the growing database of zebrafish single-cell transcriptome data that is being generated by

multiple labs in the zebrafish community. Together with previously published data, this

resource will provide valuable transcriptional information on different populations of cells

which could be mined and interrogated by researchers.

Methods

Embryo dissociation

Zebrafish embryo experiments were performed under animal protocol IACUC2019-0022,

approved by the Institutional Animal Care and Use Committee at the Cincinnati Children’s

Hospital Medical Center. Wild-type AB embryos at 30 hpf were anesthetized in 0.002% Tri-

caine (Sigma) and trunks of 30 embryos were dissected using a pair forceps and immediately

placed in a 1.5 ml Eppendorf tube with embryo media on ice. Trunks were then dissociated

into a single-cell suspension using a cold protease tissue dissociation protocol [12]. Approxi-

mately 20,589 cells were loaded and approximately 10,000 cells were recovered with a multiplet

rate of ~7.6%. Chromium Single Cell 3’ Reagent Kits v2 was used (10x Genomics, Pleasanton,

CA). 12 cDNA amplification cycles were used to generate cDNA. Sequencing parameters at a

minimum were as follows: Read1, 26 cycles; i7 Index, 8 cycles; i5 Index, 0 cycles and Read2, 98

cycles. The sequencing library was sequenced on the HiSeq 2500 sequencer (Illumina, San

Diego, CA) using one flow cell of paired-end 75 bp reads, generating 240–300 million total

reads at the CCHMC DNA Sequencing core.
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Single-cell cDNA library preparation and computational analysis

Single cells were captured and processed for RNA-seq using the Chromium platform (10x

Genomics) at the CCHMC Gene Expression Core facility. RNA-seq was performed at the

CCHMC DNA Sequencing core on Illumina HiSeq2500 sequencer using one flow cell of

paired-end 75 bp reads, generating 240–300 million total reads.

Cell Ranger version 2.2.0 was utilized for processing and de-multiplexing raw sequencing

data [13]. Raw basecall files were first converted to the fastq format, and subsequently the

sequences were mapped to the Danio rerio genome (version Zv11) to generate single-cell fea-

ture counts. Downstream analysis of the gene count matrix generated by CellRanger was per-

formed in R version 3.6.0, using Seurat version 3.1 [5,14]. The gene counts matrix was loaded

into Seurat and a Seurat object was created by filtering cells which only expressed more than

200 genes and filtering genes that were expressed in at least 3 cells. Additionally, as an extra

quality-control step, cells were filtered out (excluded) based on the following criteria: <400 or

>2,500 unique genes expressed, or>5% of counts mapping to the mitochondrial genome.

This resulted in 20,279 cells in the dataset. Reads were normalized by the “LogNormalize”

function that normalizes gene expression levels for each cell by the total expression, multiplies

the value by a scale factor of 104 and then log-transforms the result. The top 2000 highly vari-

able genes were calculated these genes were used for downstream analysis. Prior to dimension-

ality reduction, a linear transformation was performed on the normalized data. Unwanted

cell-cell variation driven by mitochondrial gene expression was “regressed out’ during scaling.

Dimensionality reduction was performed on the entire dataset using principal component

analysis (PCA) using the list of highly variable genes generated above. The top 40 principal

components which explained more variability (than expected by chance) were identified based

on PC heatmaps, the JackStrawPlot and PCElbowPlot. 22 cell clusters were generated (by the

default Louvain algorithm) using 40 PCs and a resolution of 0.5. UMAP dimensional reduc-

tion was utilized to visualize clusters [15]. Following clustering, genes differentially expressed

in each of the clusters were determined using a method of differential expression analysis

based on the non-parametric Wilcoxon rank sum test. Genes were then filtered based on being

detected in�25% of cells within a cluster and a Bonferroni adjusted p-value <0.05. Based on

the lists of differentially expressed genes ordered by average log fold change, clusters were

assigned specific cell identities. Visualization of specific gene expression patterns across groups

on UMAP and violin plots was performed using functions within the Seurat package.

Sub-clustering of endothelial and endodermal/pronephric clusters

To identify heterogeneity within the endothelial and endodermal/pronephric cell populations,

the two clusters were converted into separate Seurat objects and highly variable genes were cal-

culated. A linear transformation was performed again whilst removing unwanted variation

driven by mitochondrial gene expression. The top 40 significant principal components were

selected for UMAP dimensionality reduction, using a resolution of 1.0 for clustering. Based on

these parameters, there appeared to be 3 transcriptionally distinct sub-populations of endothe-

lial cells, and 4 sub-populations of endodermal/pronephric cells.

Results

To analyze the transcriptional profiles of different cell types in the zebrafish trunk region, the

trunk portion of zebrafish embryos was manually dissected at 30 hpf. The cells were dissoci-

ated using previously established protocols and subjected to single-cell RNA-seq analysis using

the Chromium (10x Genomics) platform. Cells were clustered using Seurat, which resulted in

the identification of 22 distinct cell populations (Figs 1 and 2A). Subsequently, cell identities
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were assigned based on top differentially expressed (marker) genes which were significantly

enriched in each cluster (S1 Table and Fig 2). Typically, we used 5–15 top marker genes from each

cluster to assign cell identities. As an additional resource, we have also generated a table showing

the expression of any annotated gene in the zebrafish genome in all cell clusters (S2 Table).

Ectodermal lineages

Nine different cell types which included two different epidermal lineages (annotated as epider-

mis and periderm), ionocytes, mucous cells, melanocytes, xanthophores, floor plate, spinal

Fig 1. Single-cell RNA-seq analysis of trunk region in 30 hpf wild type embryos. (a) A diagram showing trunk dissection and single cell dissociation followed by

single-cell RNA-seq analysis. (b) UMAP plot of 20,279 cells identified a total of 22 different cell clusters.

https://doi.org/10.1371/journal.pone.0254024.g001
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cord and two subsets of neurons were identified based on differential expression analysis (S1

Table and Fig 1).

Top marker genes for epidermis (cell cluster 1) include profilin 1 (pfn1), claudin i (cldni)
and keratin 4 (krt4) which all share expression in the zebrafish epidermis [16–18] (Fig 3A and

S1 Table). Top marker genes for periderm (cell cluster 14), include annexin A1c (anxa1c), krt4
and krt5, all which have reported expression patterns in the periderm or epidermis [16,17]

(Fig 3B and S1 Table). There was a significant overlap of marker genes for both populations,

such as krt4 and type I cytokeratin, enveloping layer, like (cyt1l), expressed in both cell popula-

tions. Further research will be needed to identify cell identity or functional differences between

the two epidermal subpopulations.

Top marker genes for the spinal cord (cell cluster 2) included SRY-box transcription factor 3
(sox3), hairy-related 4, tandem duplicate 2 (her4.2) and glial fibrillary acidic protein (gfap), all

of which share expression in the spinal cord [16] (Fig 4A and S1 Table).

Two different cell populations with a neuronal signature were identified. Top marker genes

for cell population 8 included stathmin 1b (stmn1b) and ELAV like neuron-specific RNA bind-
ing protein 3 (elavl3), both of which are known neuronal markers [17,19] (Fig 4B and S1

Table). Top genes for the cell population 20 included purinergic receptor P2X, ligand-gated ion
channel, 3a (p2rx3a) and stathmin 2a (stmn2a), which both label a subset of neurons (Fig 4C

and S1 Table). p2rx3a has been reported to label primary sensory neurons (including Rohon-

Beard) [17,20]. While some marker genes such as guanine nucleotide binding protein, gamma 3
(gng3) labeled both neuronal populations, many other top marker genes were distinct between

the two populations, suggesting that they represent different subtypes. It is likely that each of

these populations corresponds to a specific neuronal subtype, and further investigation will be

needed to characterize these subtypes.

A population of cells corresponding to melanocytes was identified (cell cluster 9); genes

with high expression in this group included dopachrome tautomerase (dct) and premelanosome
protein a (pmela) (Fig 5A and S1 Table). Both genes have been shown to be expressed in mela-

nocytes in zebrafish [16,21]. Top marker genes for ionocytes (cell cluster 7) included N-myc
downstream regulated 1a (ndrg1a) and ATPase Na+/K+ transporting subunit beta 1b (atp1b1b)

[16,22] (Fig 5B and S1 Table). The top marker genes for mucus secreting cells (cell cluster 18)

included anterior gradient 2 (agr2) and pvalb8, known markers for epidermal mucus secreting

cells [17,23,24] (Fig 5C and S1 Table).

The top marker genes for cell cluster 12 were cellular communication network factor 2a
(ccn2a/ctgfa) and wingless-type MMTV integration site family, member 4b (wnt4b) which are

known to be expressed in the floor plate [25,26] (Fig 5D and S1 Table). Lastly, top marker

genes for cell cluster 11 included GTP cyclohydrolase 2 (gch2) and peroxiredoxin 1 (prdx1),

which are known to mark migrating neural crest cells that largely correspond to xanthophore

precursors [17,27,28] (Fig 5E and S1 Table).

Endodermal lineage cell populations

We identified only a single cluster #17 that corresponds to the endodermal lineages. The top

genes in this cell population included claudin c (cldnc) and aldolase-b (aldob) (S1 Table and

Fig 6C). cldnc is a tight junction protein and aldob is a glycolytic enzyme involved in energy

production which are expressed in the digestive tract, and liver [17,18]. Some of the marker

genes (including cldnc and aldob) also have been reported to show expression in the

Fig 2. Expression of top marker genes in different cell clusters. (a) A heatmap showing expression of marker genes expression in different clusters.

(b) A dot plot showing the expression of selected genes in different clusters.

https://doi.org/10.1371/journal.pone.0254024.g002
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pronephric ducts [17,18]. Therefore, we cannot exclude a possibility that pronephric cells are

also included in this cluster.

We hypothesized that this cluster may include cells of different identities such as proneph-

ric, liver and intestinal progenitors, thus we attempted to subcluster this cell population further

using Seurat. Four subclusters were identified (Fig 6A and 6B and S3 Table). Two of them

included top marker genes enriched in pronephros, intestine and/or liver. Thus, subcluster 0

included dap1b, atp1b1a and selenow1 (all specific to pronephros) and gstp1, agr2, gamt
(known expression in the intestine and enteroendocrine cells). Subcluster 2 showed top

Fig 3. UMAP and violin plots showing the expression of (a) cldni and krt4, top markers for epidermis (cell cluster #1);

(b) anxa1c and krt5, top markers for periderm (cluster #14).

https://doi.org/10.1371/journal.pone.0254024.g003

Fig 4. UMAP and violin plots showing the expression of selected marker genes for spinal cord (cluster #2, a), neurons-1 (cluster #8, b) and neurons-2

(cluster #20, c).

https://doi.org/10.1371/journal.pone.0254024.g004
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marker genes vdrb, osr2, sgk1, pabpc1a, col18a1a with known expression in pronephros and

digestive system. Because of the significant overlap in marker expression, it was not possible to

unambiguously identify the identity of these cell populations. The remaining two cell

Fig 5. UMAP and violin plots showing the expression of selected marker genes for melanocytes (cluster #9, a), ionocytes (cluster

#7, b), mucus secreting cells (cluster #18, c), floor plate (cluster #12, d) and xanthophores (cluster #11, e).

https://doi.org/10.1371/journal.pone.0254024.g005
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Fig 6. Analysis of the endodermal and pronephros cluster #17. (a) UMAP and violin plots showing the expression of top marker genes, cldnc and aldob.

(b) UMAP plot showing further subclustering of this group that resulted in 4 cell subclusters. (c) A heatmap showing expression of marker genes in the

subclusters. Note that muscle subclusters #1 and 3 are also positive for endodermal/pronephros marker expression.

https://doi.org/10.1371/journal.pone.0254024.g006
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populations expressed genes ofsomite/skeletal muscle (marker genes mylz3, myl1) and slow/

smooth muscle identities (marker genes myl13, myl10), in addition to the endodermal mark-

ers. This observation is intriguing and suggests a possibility that these cells are of mixed endo-

dermal/muscle identity. It is unlikely that these cells are doublets because all subclusters show

similar gene counts (number of genes expressed) and unique molecular identifier (UMI)

counts (i.e., number of unique transcripts) per cell (data not shown). These clusters could

potentially correspond to differentiating intestinal smooth muscle cells, although further stud-

ies are needed to confirm their identities.

Mesodermal lineage cell populations

Lateral plate mesoderm. 13 different cell clusters of mesodermal origin were identified.

Several clusters corresponded to the lateral plate mesoderm derived lineages. The top genes

from cell cluster 10 included aquaporin 1a.1 (aqp1a.1) and claudin 5b (cldn5b), both expressed

in vascular endothelial cells [8,29] (Fig 7A).

Vascular endothelial cells are known to exhibit substantial diversity. Arterial, venous, lym-

phatic progenitors can be distinguished as early as 24 hpf or even earlier stages [30]. Because

only a single vascular endothelial cluster was identified during the initial clustering, we per-

formed further sub clustering of vascular endothelial cells using Seurat. Three different sub-

populations were identified, which included arterial and venous cells, based on the signature

of marker genes (aqp1.a1, aqp8a.1, cldn5b, hey2 and others for arterial cells; stab2, dab2, lyve1b
for venous cells) (Fig 7B–7D). Multiple other marker genes were identified in each population,

some of which are likely to be novel arterial and venous marker genes (S4 Table). The third

population was enriched in marker genes specific for muscle cells, including pvalb2, mylz3,

myl1 and others. Intriguingly, expression of vascular endothelial specific genes such as cdh5
was also observed within this population. Previous studies have argued that somites contribute

to vascular endothelial cells [31–34]. It is possible that this cell population corresponds to these

transitional somite-derived endothelial cells. A plausible alternative explanation would be that

some perivascular cells were tightly attached and failed to separate during cell dissociation,

resulting in doublets of mixed identity. This possibility is unlikely, though, because the

scRNA-seq data were filtered to exclude potential doublet cells. There was no significant differ-

ence in average number of expressed genes or UMIs between all four endothelial subclusters,

further suggesting that the endothelial cells with muscle marker expression (EC- muscle cells

subpopulation) are unlikely to be doublets.

We identified three different blood cell cluster groups from our analysis. Cell cluster 13 cor-

responds to red blood cells (RBCs), based on the marker gene hemoglobin, beta embryonic 1.3

(hbbe1.3) and hemoglobin alpha embryonic-3 (hbae3) expression [18,35–37] (S1 Table and Fig

8A). The top marker genes for cell cluster 16 included microfibril associated protein 4 (mfap4)
and lysozyme g-like 1 (lygl1), both known to label macrophages [17,38] (S1 Table and Fig 8B).

Lastly, cell cluster 21 appears to correspond to a distinct hematopoietic population. Expression

of top marker genes including cd59 and actin related protein 2/3 complex, subunit 1B (arpc1b)
(S1 Table and Fig 8C) has been reported in blood cells [39,40]. Further studies will be needed

to confirm the identity of this population.

Cell cluster #6 corresponds to a poorly understood cell population that is likely derived from

the lateral plate mesoderm. Its top marker genes include complement factor D (cfd), heart and neu-
ral crest derivatives expressed 2 (hand2) (S1 Table and Fig 8D), which are known to have a bilateral

expression along the yolk sac extension at this stage (30 hpf) [17,41]. At earlier somitogenesis

stages, hand2 has a prominent expression in the LPM [41]. Some additional top markers genes in

this population such as twist1a also share LPM expression during somitogenesis stages [42].
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Paraxial and axial mesoderm. Two different subsets of fast skeletal muscle were identi-

fied. The top markers in cell cluster 4 included myosin, light chain 1, alkali; skeletal, fast (myl1)
and heat shock protein, alpha-crystallin-related, 1 (hspb1), both known to in skeletal muscle

cells [43,44] (S1 Table and Fig 9A). Cluster 0 also had multiple genes expressed in the myo-

tome and skeletal muscle cells including parvalbumin 2 (pvalb2) and myosin, light polypeptide
3, skeletal muscle (mylz3) [24,45] (S1 Table and Fig 9B). There was a significant gene expres-

sion overlap between the two groups of muscle cells, and the marker genes myl1, mylz3, pvalb2
were among the top ten marker genes for both cell groups. A cell cluster 5 was characterized

Fig 7. Analysis of the vascular endothelium cluster #10. (a) UMAP and violin plots showing the expression of top marker genes,

aqp1a.1 and cldn5b. (b) UMAP plot showing further subclustering of this group. 3 subclusters which show transcriptional signature of

arterial, venous and EC—muscle were identified. (c,d) UMAP plot showing the expression of selected arterial and venous specific

markers within the vascular endothelial cluster. (e) A heatmap showing expression of marker genes in the subclusters.

https://doi.org/10.1371/journal.pone.0254024.g007

Fig 8. UMAP and violin plots showing the expression of selected marker genes for red blood cells, (cluster #13, a), macrophages (cluster #16, b),

blood cells of unknown identity (cluster #21, c) and lateral plate mesoderm (cluster #6, d).

https://doi.org/10.1371/journal.pone.0254024.g008
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by the expression of top marker genes myosin, light chain 13 (myl13) and myosin, light chain 10
(myl10), known markers of slow muscle cells [45] (S1 Table and Fig 9C). Cell cluster 19 included

marker genes titin (ttn.1 and ttn.2), and actinin alpha 3b (actn3b), known to be expressed in the

somites and skeletal muscle cells [46,47] (S1 Table and Fig 9D). Cell cluster 3 included marker

genes with a known expression in fibroblast-like cells present at the myotendinous junction

including the transforming growth factor, beta-induced (tgfbi) and collagen col1a1b (S1 Table

and Fig 10A). And lastly, a cell cluster #15 corresponded to the notochordal cells based on the

expression of top marker genes col2a1a and col9a1b [16,48] (S1 Table and Fig 10B).

Discussion

In the current study we have identified 22 distinct cell clusters two of which were subclustered

further resulting in the total of 27 cell groups with unique transcriptional signatures. Many of

Fig 9. UMAP and violin plots showing the expression of selected marker genes for two skeletal muscle groups (clusters #4 and #0, a,b), slow muscle (cluster

#5, c) and somites (cluster #19, d).

https://doi.org/10.1371/journal.pone.0254024.g009
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Fig 10. UMAP and violin plots showing the expression of selected marker genes for fibroblast like (cluster #3, a) and

notochordal cells (cluster #15, b).

https://doi.org/10.1371/journal.pone.0254024.g010

PLOS ONE Single-cell RNA-seq of the zebrafish trunk

PLOS ONE | https://doi.org/10.1371/journal.pone.0254024 July 7, 2021 15 / 19

https://doi.org/10.1371/journal.pone.0254024.g010
https://doi.org/10.1371/journal.pone.0254024


the groups had unique and easily identifiable signatures (endothelial cells, melanocytes, mac-

rophages and others). In some of the groups there was a significant overlap in marker expres-

sion. For example, skeletal muscle 1 and 2 groups (clusters 0 and 4) share expression of many

top markers, including pvalb2, mylz3, tpma and others. At the same time, many genes also

show differential expression between the two groups. Further studies will be needed to validate

biological differences between these populations. And lastly, some cell clusters had poorly

characterized identities, including lateral mesoderm and blood–unknown (clusters 6 and 21).

Many of the top markers of cluster 21 have no or poorly characterized expression in zebrafish.

Some of the marker genes, including lmo2, myb and fli1a are known to be expressed in

hematopoietic stem cells [49]. arpc1b function in mouse has been implicated in T-cell and

thrombocyte development [39]. Further in-depth analysis is required to analyze these cell

populations.

In recent years, multiple groups have reported different single-cell databases in zebrafish.

They include an atlas of neural crest lineages [50], two different studies of using whole embryo

single-cell analysis during the first day of zebrafish development [10,11], a single-cell transcrip-

tome atlas for zebrafish at 1, 2 and 5 dpf stages [9] and others. Previous studies have either

focused on specific tissues or cell populations such as neural crest or vascular endothelial pro-

genitors [31,50], or have performed analysis at embryonic stages which are different from our

study. A recent study has reported a single-cell transcriptome atlas for zebrafish at 1, 2 and 5

dpf stages [9]. In this study 220 different clusters were described based on the analysis of

44,102 cells purified from whole zebrafish embryos. In contrast, our analysis was limited to the

trunk region at 30 hpf stage which is a different stage than those previously analyzed. There-

fore, it is difficult to make direct comparisons of these datasets. Although Farnsworth et al [9]

have reported significantly more cell clusters, it is unclear if all of them represent truly distinct

cell types. Also, our analysis was limited to a single stage at the trunk region, therefore fewer

cell groups are expected. Some of the clusters identified in our study such as arterial and

venous specific transcriptomes, or the unknown blood group (cluster 21) have not been

reported in the previous study.

In summary, our results provide a unique resource for cell lineages located in the trunk

region of a developing zebrafish embryo and will complement transcriptomic datasets gener-

ated by other groups. This information will be essential in deciphering the signaling pathways

and transcriptional programs that regulate the establishment and differentiation of a variety of

cell types during vertebrate development.
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