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Background. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS path-
ogenesis is closely related to the environment, genetic, and immune system, but the underlying interactions have not been clearly
elucidated. -is study aims to unveil the genetic basis and immune landscape of MS pathogenesis with bioinformatics.Methods.
Gene matrix was retrieved from the gene expression database NCBI-GEO. -en, bioinformatics was used to standardize the
samples and obtain differentially expressed genes (DEGs).-e protein-protein interaction network was constructed with DEGs on
the STRING website. Cytohubba plug-in and MCODE plug-in were used to mine hub genes. Meanwhile, the CIBERSORTX
algorithm was used to explore the characteristics of immune cell infiltration in MS brain tissues. Spearman correlation analysis
was performed between genes and immune cells, and the correlation between genes and different types of brain tissues was also
analyzed using theWGCNAmethod. Results. A total of 90 samples from 2 datasets were included, and 882 DEGs and 10 hub genes
closely related to MS were extracted. Functional enrichment analysis suggested the role of immune response in MS. Besides,
CIBERSORTX algorithm results showed that MS brain tissues contained a variety of infiltrating immune cells. Correlation
analysis suggested that the hub genes were highly relevant to chronic active white matter lesions. Certain hub genes played a role in
the activation of immune cells such as macrophages and natural killer cells. Conclusions. Our study shall provide guidance for the
further study of the genetic basis and immune infiltration mechanism of MS.

1. Background

Multiple sclerosis (MS) is an immune-mediated demyelin-
ating disease of the central nervous system (CNS) [1], which
predominantly occurs in Caucasians and can cause severe
neurological dysfunctions in advanced stages [2, 3]. -e
current knowledge has indicated that environmental and
genetic factors jointly mediate the occurrence of MS. Al-
though genes play an important role in the pathogenesis of
MS, the concordant rate among identical twins was 30%, and
a meta-analysis estimated that genetic factors accounted for
only 50% of the risk of MS [4, 5], suggesting that nongenetic
factors also greatly influence the susceptibility to the disease.
Environmental risk factors such as vitamin D deficiency,
smoking, and Epstein-Barr virus (EB virus) infection [6] can

interact with genetic variations of MS and thus lead to
immune dysregulation. However, the researches on the
interaction between environment and gene are still in
progress.

Peripheral immune cells, especially B cells and Tcells, are
implicated in the pathogenesis of MS. In the early stages of
MS, the innate immune system dominated by macrophages
promotes the proinflammatory response of T and B cells,
leading to tissue damage. Early microglial activation may
also be one of the initial events in the development of MS.
Activated microglia contribute to disease progression by
releasing proinflammatory cytokines, free radicals, and
glutamate. In the progressive stages, pathological changes
such as axonal degeneration, focal to diffuse white matter
injury, microglial cell activation, lymphocyte diffusion,
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monocyte infiltration, and cortical involvement occur [7, 8].
On the one hand, immune cells are involved in promoting
inflammatory response, demyelination, axon damage, and
disease plaque formation. On the other hand, some immune
cells also exert anti-inflammatory effects and inhibit disease
progression by promoting tissue repair. -e alterations of
the immune system are complex in MS patients, and the
contributions of immune cells to the pathology of MS have
not been fully clarified.

Emerging studies on the subtypes of infiltrating immune
cells in the brain of MS patients or experimental autoim-
mune encephalomyelitis (EAE) have revealed that both -1
and -17 CD4+ T lymphocytes are involved in disease
initiation after in situ reactivation. However, the details of
the immune microenvironment of intracranial lesions in MS
patients remain unclear. Accumulating studies focus on the
role of certain types of immune cells and their plasticity in
the interaction with cytokines, chemokines, and brain
compartments [9].

As early as 20 years ago, sequencing technology emerged,
and gene chips contained a large number of biological in-
formation [10]. Databases of gene expression, gene poly-
morphism, protein structure, and genetic map are
expanding. Gene microarray is an emerging technology that
bears the advantage of an efficient and large-scale collection
of gene expression profile data of diseases, which has been
widely used in bioinformatics research [11]. A large amount
of gene data has aroused the demand for bioinformatics [12].
In this backdrop, we can extract, process, and analyze
microarray data more effectively with bioinformatic tools.
With the emerging technique CIBERSORT, we can analyze
the compositions of immune cells based on gene chips.

In the current study, combined with microarray data
extracted from the existing MS samples, we used R language,
STRING, and Cytoscape to calculate hub genes, annotate,
and perform gene enrichment analysis. We used the
CIBERSORTalgorithm to infer the proportion of peripheral
immune cells in brain lesions. Moreover, we calculated the
correlation between hub genes and immune cells and used
the weighted gene coexpression network (WGCNA) to
further compare the internal gene differences in the dataset
and analyze the correlation between hub genes and lesion
sites. -is study aimed to explore susceptibility genes and
immune cell infiltration in brain lesions of MS patients,
hoping to confer novel insights into MS prevention and
treatment.

2. Methods

2.1. Differentially Expressed Genes (DEGs) Screening.
Gene Expression Omnibus [13] (GEO; https://www.ncbi.
nlm.Sal) is an open genomics database. Human expression
profile datasets of MS (GSE108000 and GSE135511) were
downloaded from the GEO database.-en, the datasets were
divided into the control group and the MS group. And we
used the normalizeBetweenArrays function in the R lan-
guage “limma” package to normalize the datasets and
eliminate intragroup differences. GSE108000 and
GSE135511 were combined with “SVA” R package [14] to

remove batches. DEGs with p< 0.05 and |log2FC| >0.5 were
considered statistically significant. Based on the obtained
DEGs, we used R package “ggplot2” [15] to draw a volcano
plot to view the differences between upregulated and
downregulated genes and used a heatmap to view the dif-
ferences of genes between the disease group and control
group.

2.2. Construction of Protein-Protein Interaction (PPI)
Networks. STRING (https://string-db.org/) is a database for
the study of PPI networks.-e data are derived from published
experimental data, and genes come from computer mining,
prediction, and fusion. In our study, we used STRING 11.0 to
analyze the DEGs obtained.-e confidence score was set as 0.9.
Since the regions with more interconnections in the PPI
network have a higher probability of participating in the bi-
ological regulation, and the dissociated gene nodes seldom play
a key role in the entire network, we chose to eliminate the
dissociated gene nodes in our study. After that, we downloaded
the network file for subsequent analysis.

Cytoscape is software for network analysis, which
contains plug-ins such as Cytohubba, Molecular Complex
Detection (MCODE), and ClueGo. Cytohubba can rank
network nodes via various topological analysis methods.
Among all the topological methods, the MCC method has
the most accurate prediction value. MCODE can detect
closely related regions in the PPI network and then infer
different molecular complexes. With the Cytohubba plug-in
and MCC method, we ranked network nodes and selected
the top ten genes for further analysis. With the MCODE
plug-in, we divided the network into different subnetworks
and analyzed the first five subnetworks.

2.3. Enrichment Analysis. -e commonly used enrichment
analysis methods mainly include Gene Ontology (GO) [cel-
lular component (CC), biological process (BP), andmolecular
function (MF)] and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), which can reveal the functional tendency of
gene sets. -e commonly used enrichment tools include the
DAVID database, KOBAS database, and key R package
(clusterProfiler) [16]. -e plug-ins include Funrich, ClueGo,
Cluepedia, Metascape, etc. In our study, we used Cytoscape
GlueGo (version 2.5.7) and Cluepedia (version 1.5.7) plug-ins
to perform gene annotation analysis on the gene sets obtained
from step 2 usingMCODE and Cytohubbamethods and used
“Clusterprofiler” R package to analyze the DEGs obtained
from step 1. -e pathways with p< 0.05 and Q< 0.05 were
screened out. -e top 30 GO and KEGG enrichment results
were selected and shown as bubble plots. Upregulated and
downregulated genes of the KEGG pathways of interest were
visualized using “Pathview” R package [17].

2.4. Evaluation of Immune Infiltration of Brain Tissues.
Currently, flow cytometry is accepted as the primary way to
evaluate the infiltration of immune cells. However, it may take
a lot of time to excavate the potential immune cells and
determine the functional phenotypes of tissues in large
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samples only using flow cytometry. CIBERSORT (cell-type
identification by estimating relative subsets of RNA tran-
script) algorithm can simplify the process by deconvolution of
peripheral immune cell subtypes based on linear support
vector regression. CIBERSORT is one of the current methods
to calculate immune cell subtypes based on gene expression
profiles. In our study, we used CIBERSORT to analyze the
characteristics of immune cell infiltration in brain tissues of
MS. We input the merged dataset into the CIBERSORTX
website (https://CIBERSORTx.stanford.edu/) and set simu-
lation calculation times as 100 times to obtain the proportion
of 22 immune cells. -en, we filtered out statistically sig-
nificant data with the criterion of p< 0.05 for further analysis.
-e stacked bar chart was employed to visualize the com-
position of different immune cells. -e correlation coefficient
between different immune cells was determined and pre-
sented as a correlation heatmap. -e differences between the
MS group and the control group were compared using the
Wilcoxon rank-sum test. -e differences in immune cell
infiltration between the disease group and control group were
visualized by violin map using the “ggplot2” package in R.We
also drew a two-dimensional PCA cluster plot to visualize the
differences in immune cell infiltration between the MS group
and control group using the “gggplot2” package in R.

2.5. Correlation Analysis between Hub Genes and Immune
Cells. We obtained the proportion of 22 immune cells in the
brain tissues of MS patients using the CIBERSORT
deconvolution method in Step 4. Spearman correlation
analysis was performed on the first 5 hub genes of Cyto-
hubba and the infiltrating immune cells in the samples,
which were presented as correlation maps using the
“ggplot2” package in R.

2.6. Construction of Weighted Gene Coexpression Network.
WGCNA [18] is an open-source R package that can be
used to construct gene coexpression networks based on
the following two points. One is that genes with similar
expression patterns may be functionally related or have a
coregulatory network; the other is that the connection
between genes conforms to scale-free distribution [18]. In
our study, we used the step-by-step method to analyze the
combined gene set. Firstly, the best soft threshold β was
calculated. -en, a hierarchical clustering tree was con-
structed based on the genetic correlation coefficient, and
genes were assigned into different modules according to
gene expression patterns. Afterward, we set the appro-
priate minimum quantity of gene modules and shear
height threshold to further merge similar genes. -e
absolute value of Pearson correlation was used to measure
the connectivity of genes in modules. Genes with high
connectivity within the module were considered the hub
genes of the module. -e hub genes within a specific
module often had a strong correlation with a specific trait.
After obtaining the gene module of the specific trait we
aimed to analyze, we used the “ggplot2” package to acquire
the intersection of gene sets including MCODE Cluster 1
gene set, Cytohubba Top 10 gene set, and specific gene

module from the WGCNA to observe the relationships
between genes clusters.

3. Result

3.1. DEG Screening. We included GSE108000 and
GSE135511 for analysis. -e description of the datasets is
shown in Table 1. GSE108000 dataset collected gene ex-
pression profiles of pathological specimens of brain motor
cortex from 20 MS patients (specimens with or without
meningeal infiltration were collected) and motor cortex
specimens from 10 patients without neurological diseases.
GSE135511 dataset collected gene expression profiles of 30
white matter lesions from MS patients (7 patients with
chronic active lesions and 8 patients with inactive lesions)
and 10 white matter samples from controls. All specimens
were nonliving specimens.

We downloaded the gene matrix from GSE108000 and
GSE135511. GSE108000 contained gene expression profiles
of white matter specimens from 30 MS patients and 10
controls. GSE135511 dataset contained gene expression data
of gray matter specimens from 40 MS patients and 10
controls. We combined and normalized the two datasets,
removed the batch effect between groups, and got the
merged dataset.We set the threshold of significant difference
of DEGs as p< 0.05 and | log2FC | > 0.5 to obtain more
DEGs. Finally, we got 882 DEGs between the MS group and
control group, including 399 upregulated genes and 483
downregulated genes (Figures 1(a), 1(b)).

3.2. Construction of PPI Network. We input 882 DEGs into
the STRING website, set the confidence score as 0.9, and
removed the isolated genes. -en, we obtained a PPI net-
work containing 872 nodes and 1265 edges. We downloaded
network information and used Cytohubba plug-in MCC
method to get the top 10 hub genes, as shown in Table 2.-e
genes were displayed in different color levels according to
the critical degree of genes in the network, as shown in
Figure 2(a). -e PPI network of 872 nodes was analyzed
using the MCODE plug-in, and 24 subnetworks were ob-
tained. -e first 5 subnetworks (as shown in Table 2 and
Figures 2(b)–2(f)) were selected for further gene enrichment
analysis.

3.3. Functional EnrichmentAnalysis of DEGs,HubGenes, and
Subnetwork Genes. GO and KEGG enrichment analysis of
the first 10 hub genes was conducted using Cytoscape plug-
ins ClueGo and Cluepedia. As shown in Figure 3(a), the
highest GO enrichment intensity suggested that the mo-
lecular functions of the 10 hub genes were closely related to
the activity of MHC class II receptors, polypeptide antigens,
polysaccharides binding, ER-phagosome pathway, and cy-
tokine signal transduction in the immune system. -e top 5
hub genes with the highest KEGG enrichment intensity were
closely related to allograft rejection, graft-versus-host dis-
ease, type 1 diabetes, asthma, and autoimmune thyroid
disease, as shown in Figure 3(b). -e enrichment results of
Cluster 1 obtained fromMCODEwere similar to those of the
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Table 1: Basic information of data from GSE108000 and GSE135511.

Dataset ID Sample source Data platform Sample grouping Disease subtypes Sample number Published date
GSE108000 Brain tissue GPL13497 (agilent) Multiple sclerosis and control SPMS 40 (7M/18F) Jan-18
GSE135511 Brain tissue GPL6883 (illumina) Multiple sclerosis and control No specific 50 (14F/16M) Dec-19
SPMS, secondary progressive multiple sclerosis; M, male; F, female.

Type
MS
N5

Geo
GSE108000
GSE1355110

Type
Geo

-5

(a)

Figure 1: Continued.
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first 10 genes obtained from Cytohubba. GO analysis sug-
gested that the gene set was related to MHC-II, MHC-I,
glycation, growth factor binding, and amyloidosis. Cluster 2
was associated with the ubiquitin-mediated proteolysis
pathway. Cluster 3 was related to spliceosome and mRNA
surveillance pathway, and Cluster 4 was related to ROS and
RNS production and collagen degradation by phagocytes.
Cluster 5 was associated with the regulation and signal
transduction of TRP pathways by inflammatory mediators.

GO (BP, CC, and MF) enrichment analysis was per-
formed on the DEGs obtained in step 1 using “Cluster-
profiler” in the R package. -e most significant pathways
are displayed in Figure 4(a).-emost significant BPs in GO
showed negative immunoregulation, myeloid differentia-
tion, antigen and positive regulation of cytokines pro-
duction, control of protein catabolism, glial cell activity,
and response to the IFNc pathway, etc. -e CCs were
mainly related to collagen fibers, extracellular matrix,

adhesion plaques, endocytic vesicles, endocytic vesicle
membrane, secretory granular membrane, MHC protein
complex, etc. MFs were related to amide binding, protein
serine/threonine kinase activity, polypeptide binding,
carboxylic acid-binding, organic acid-binding, cytokine
binding, immune receptor activity, cell adhesion mediator
activity, and MHC class II receptor activity. -e results of
the KEGG enrichment analysis are shown in Figure 4(b).
Enrichment pathways can be classified into virus infection
(such as human papillomavirus, swine flu, cytomegalovi-
rus, EB virus, etc.), bacterial infection (such as salmonella,
Staphylococcus aureus, etc.), autoimmune diseases (in-
cluding inflammatory bowel disease, type 1 diabetes, au-
toimmune thyroid disease, asthma, etc.), and others
(including atherosclerosis, endogenous ligand, and other
related pathways).

GO and KEGG enrichment results of the first 10 hub
genes obtained by Cytoscape and Cytohubba plug-ins and

0 2 4 6 8 10
–log10 (adj.P.Val)

2

1

0

-1

-2
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gF
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Volcano

(b)

Figure 1: Volcano map and heat map of differentially expressed genes (DEGs). (a) -e distributions of DEGs in a merged dataset of
GSE108000 and GSE135511. MS refers to the multiple sclerosis group, and N refers to the control group. (b)-e distribution of upregulated
DEGs and downregulated DEGs in the multiple sclerosis group and control group. Color green represents downregulated DEGs and color
red represents upregulated DEGs.

Table 2: -e first 10 core genes obtained from Cytohubba plug-in and genes of 5 gene sets from the MCODE plug-in.

Gene sets Gene lists
Top 10 hub
genes HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DQB2, HLA-DPA1, HLA-DQB1, HLA-E, HLA-C, GBP2, CD44

Cluster 1

ACTR1B, HLA-DRB5, HLA-DQB2, HLA-DPA1, HLA-DMB, B2M, HLA-DRA, HLA-DMA, HLA-DRB1, HLA-DQB1,
IRF8, KLC2, DYNLL2, DYNC1I1, GBP2, GBP1, DNAJC3, HLA-C, HLA-E, IFI30, CD44, IRF3, TMEM132A, LGALS1,
PRKCSH, FSTL1, LTBP1, IGFBP7, CHGB, ADCY1, CALU, DRD4, HSP90B1, GNB4, HTR5A, CXCL16, CP, GNG3,

CCR1, SPP1, C5AR1, ANXA1, GNG12, ADORA1, GNAI3, APOE, TIMP1
Cluster 2 WWP1, FBXO30, KLHL22, FBXO44, FBXL4, UBE2S, DTX3L, MGRN1, RNF126
Cluster 3 CD2BP2, PAPOLA, SYMPK, FUS, U2AF1L4, POLR2G, ELAVL2, PLRG1, PRPF31

Cluster 4 OLR1, CD300A, TMEM63A, ITGAV, COL8A1, ATP6V0C, P4HA1, PLOD2, COL1A2, COL9A3, COL8A2, P4HA2,
COL4A2, CYBA, COL4A1, CD33, SERPINH1, CD53

Cluster 5 GPR65, GNRH1, P2RY2, CCKBR, TAC3, CCK, PIK3CA
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the first subgene set Cluster 1 obtained by MCODE plug-in
were consistent with the enrichment results of DEGs, which
mainly focused on immune regulatory pathways and im-
mune-related disease pathways. However, the enrichment
results of DEGs were more comprehensive, suggesting that
in addition to immune response, the response of glial cells to
antigens in brain tissues also played an essential role in the
pathological mechanisms.

In our study, we also selected the Epstein-Barr virus
pathway to explore the interaction between specific envi-
ronmental factors and susceptibility genes of MS. -e
pathways were visualized using the “PathView” package in
R. As shown in Figure 5, the Epstein-Barr virus mainly acted
on B cells through B cell receptors such as MHC-II and
TLR2. After entering B cells, Epstein-Barr virus further
affected the immune activation pathway and upregulated
genes related to antigen presentation of MHC-I, which
further activated cytotoxic T cells. In addition, the Epstein-
Barr virus might indirectly activate the PI3K pathway and
affect cell proliferation and cell cycle.

3.4. Characteristics of Immune Infiltration in Brain Tissues of
MS Patients. To explore the characteristics of immune in-
filtration in brain tissues of MS at the cellular level, we
uploaded the merged dataset through the CIBERSORTX
website, calculated 100 times using the CIBERSORT
deconvolution method, and finally obtained the proportion

of 22 immune cells in different samples. A total of 70 samples
with a relatively stable proportion of immune cells (in-
cluding 12 control samples and 58 MS samples) were
screened out by p< 0.05, as shown in Figure 6. -e pro-
portion of resting mast cells, macrophage M2, neutrophils,
plasma cells, Tcells CD8, and macrophage M0 was relatively
high in MS brain tissues.

-e correlation heatmap of immune cells between the MS
group and control group is shown in Figure 7(a). -e cor-
relation between follicular helper T cells and eosinophils
showed a correlation coefficient with the highest absolute
value (R� 0.5), suggesting that there was a certain positive
correlation between follicular helper T cells and eosinophils.
-e correlation coefficient of macrophage M0 and neutro-
phils (R� −0.41) was followed, suggesting the negative cor-
relation between macrophage M0 and neutrophils. Overall,
the correlation between immune cells in the specimens was
weak to moderate. -e differentiation of immune cells in MS
and control samples was analyzed and shown in the violin
diagram. As shown in Figure 7(b), the naive CD4+ Tcells were
significantly reduced (P� 0.013), but the resting synaptic cells
were significantly increased (P� 0.003) in the MS sample
compared with those in the healthy control samples.-e PCA
cluster diagram showed that there were differences in the level
of immune cell infiltration between MS and healthy control
samples (Figure 7(c)).

(a)

FBXL4

FBXO44
KLHL22

UBE2S
MGRN1

DTX3L

WWP1

FBXO30
RNF126

(b)

SYMPKFUS

PAPOLA

CD2BP2

PRPF31

PLRG1

ELAVL2

U2AF1L4 POLR2G

(c)

(d)

GPR65

GNRH1

CCKBR

PIK3CA

P2RY2
TAC3

CCK

(e)

HLA-C HLA-DPA1

HLA-DQB2

HLA-DRB1

HLA-DRB5

HLA-E HLA-DRA

HLA-DQB1

GBP2

CD44

(f )

Figure 2: Protein-protein interaction networks of hub genes and subnetwork genes. (a)–(e)-e top 5 protein-protein interaction networks
obtained from the MCODE algorithm. In (a)–(e), color green represents downregulated genes and color red represents upregulated genes.
-e connection lines indicate the correlations between genes. (f ) -e interaction network of the first 10 genes obtained from the Cytohubba
algorithm. -e 10 genes are all upregulated genes and the color levels indicate the degree of genes in the network.
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(a)

(b)

Figure 3: GO KEGG enrichment pathway network of the first 10 hub genes (p< 0.05). (a) -e enrichment network of GO pathway
(including BP, CC and MF) and (b) the enrichment network of KEGG pathway. -e connection of the enrichment pathway suggests that
there are connections between pathways and genes and between pathways. -e darker the color and the larger the volume of the circle, the
greater the significance of the pathway.
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Figure 4: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DEGs. (a) GO enrichment analysis of
DEGs, the top 10 enrichment pathways of biological process (BP), cellular component (CC) and molecular function (MF). Bubble size
represents the number of genes related to the specific pathway. -e larger the quantity of genes, the larger the bubble. And the color of the
bubble represents the size of Q value.-e smaller the q value, the redder the bubble. (b)-e top 30 enrichment pathways in KEGG analysis.
-e bubble size represents the number of genes related to the pathway, and the more the number of genes, the larger the bubble. While the
color of the bubble represents the size of the Q value. -e smaller the q value, the redder the bubble.
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3.5. Construction of Weighted Gene Coexpression Network.
To further observe the differences in gene expression in
different brain regions, we also performed WGCNA on the
merged dataset to observe the differences in gene expression
in white matter lesions, normal white matter tissues, gray
matter lesions, and normal gray matter tissues of MS pa-
tients. -e variance of all genes was extracted and the top
25% of the variance was extracted to obtain the expression
profiles of 3709 genes as the input dataset ofWGCNA. Based
on the parameters of R2, slope, and mean k, the optimal soft
threshold β value was calculated to be 4. In this study,

R2� 0.95, which meant that the connectivity degree of the
scaling-free network construction was optimal (Figure 8).
-e network was constructed using the step-by-stepmethod,
and the minimum number of genes in the module was set as
30. -en, the modules with a similarity above 0.75 were
merged, and finally, 11 different modules were obtained
(Figure 9). We further draw the correlation heatmap be-
tween gene modules and tissue characteristics (Figure 10).
Among the modules obtained, the one with the most genes
and the highest correlation with traits was the turquoise
module (946 genes). -e correlation analysis between gene

Figure 5: Signaling pathways associated with EB virus infection and differential gene expression in multiple sclerosis. In the figure,
upregulated genes are indicated in red and downregulated genes are in green.
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modules and tissue traits showed that there were significant
differences in gene expression between the white matter of
the MS group and the control group and between the gray
matter of the MS group and the control group. -e module
with the greatest correlation with traits (turquoise module)
may well distinguish the control group and disease group.
-ere was also a certain degree of differentiation between the
chronic active white matter lesions and the adjacent tissues
of chronic active lesions in the disease group, but there was
no effective gene module to clearly distinguish the gray
matter lesions from the normal gray matter tissues. In our
study, we further compared the turquoise gene module with

the hub genes obtained in Step 2 and found that all the hub
genes were in the turquoise module (Figure 11), suggesting a
strong correlation between the hub genes and chronic active
white matter lesions. -ere was no significant difference
between normal gray matter and pathological gray matter in
MS samples, but significant differences could be observed
between the two gray matters and the control samples.
However, in the correlation diagram between gene modules
and traits, the modules with the greatest difference corre-
lation fell in the gray module, which belonged to the un-
classified gene module. In brief, compared with the control
population without neurological diseases, MS patients
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Figure 6: Heat map and stacking bar chart of proportions of infiltrating immune cells in the samples. (a) -e expression level of immune
cells in brain tissue.-e darker the color, the larger the proportion. CON group represents the brain tissue samples of the control group, and
the MS group represents the brain tissue samples of the multiple sclerosis group. (b)-e proportion of immune cells in different tissues.-e
longer the bar chart, the higher the proportion of infiltrating immune cells in the tissues.
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Figure 7: Continued.
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generally had abnormal gene expression profiles in both gray
matter and white matter of brain tissues. -e turquoise
module gene set could further distinguish chronic active
lesions from the adjacent tissues of chronic active lesions in
MS patients. Further information on genes belonging to
eleven modules was listed in Supplementary Table S1.

3.6. Correlation Test between Hub Genes and Immune Cells.
Spearman correlation analysis was performed between the first
5 hub genes of Cytohubba (HLA-DRA, HLA-DRB1, HLA-
DRA5, HLA-DRA, and HLA-DPA1) and the 22 immune cells
in the samples obtained from CIBERSORT. It was found that
the expressions of the 5 hub genes were all negatively cor-
related with the number of M0, and positively correlated with
the number of M1/M2 and the number of gamma delta in
T cells. In neuroinflammatory diseases, macrophages play a
dual role in the process of tissue damage according to their
activation state (M1/M2). Macrophage M1 can damage
neurons, while M2 macrophages are believed to facilitate the
regeneration and repair of neurons, and M0 is at the resting
state. -e correlation diagrams of the analyzed gene corre-
lations (p< 0.05) are shown as scatter plots in Figure 12.

4. Discussion

Multiple sclerosis is characterized by complex immune
mechanisms. Specific genomic alterations drive the for-
mation of heterogeneity in prognosis. Although there are

some single genes and risk models linked to multiple
sclerosis patients’ prognosis, few studies were reported for
analysis on the relationships of genes and immune infil-
tration in multiple sclerosis.-e initial objective of our study
was to identify the relationships between hub genes in
different brain lesions and the infiltrating immune cells in
brain tissues of multiple sclerosis patients.

Most hub genes identified are located in HLA-DR loci in
the MHC region and are associated with immunity. -e
screening of the functions of hub genes also confirms that
the 10 genes are susceptibility genes to MS [19–29]. How-
ever, due to the lack of previous treatment information of
included patients in the original literature, we failed to
determine whether the mutation is germline or influenced
by treatment. WGCNA algorithm in our study also dem-
onstrated that the 10 genes were closely related to chronic
active white matter lesions. We hypothesized that the hub
genes obtained in this study were significantly expressed in
chronic active white matter lesions, but we could not clarify
whether these genes also affected the nonlesional regions. At
present, there are relatively few studies on the relationship
between genes and brain regions. Some studies have eval-
uated the pathogenicity of NF-κB signaling pathway-related
genes in different brain regions of MS patients and found
that genes differentially expressed in specific brain regions
regulate each other [30]. -e comparison of miRNAs in
different brain regions of MS patients [30] has revealed that
active and chronic inactive white matter lesions share reg-
ulatory miRNAs, which are mainly involved in astrocyte

2
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Figure 7: Evaluation and visualization of immune cell infiltration. (a) -e correlation heat map of 22 types of immune cells. -e darker the
color, the stronger the correlation; color red indicates a positive correlation, while blue indicates a negative correlation. (b) -e violin
diagram of proportion of 22 types of immune cells between multiple sclerosis group and control group. Color red represents the multiple
sclerosis group, while the color blue represents the control group. p< 0.05 indicates a significant difference. (c) -e PCA cluster plot of
infiltrating immune cells between the multiple sclerosis group and the control group.
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proliferation, microglial proliferation, and demyelination.
However, microglia activation and inflammatory infiltration
are not obvious in chronic inactive white matter lesions.
miRNA overlap in chronic inactive white matter lesions and
gray matter lesions is related to the response of astrocytes to
inflammatory stimulation, maintenance of inflammatory
cytokines, and apoptosis and regeneration of glial cells.
Exploring gene expression in different brain tissues probably
contributes to uncovering the pathological proinflammatory
and anti-inflammatory mechanisms in brain tissues of MS
patients.

GO analysis indicated that the hub genes were signifi-
cantly enriched in immune pathways including antigen

presentation, antibody production, and T cell activation,
proliferation, and differentiation. GO analysis of DEGs also
suggested that glial cell proliferation contributed to the
pathogenesis of MS.-e overall pathogenesis of MS involves
peripheral immune cells and a cascade of brain glial cell
activation, which is consistent with the review of Bhise [31].
Previous studies have shown that glial cells have bidirec-
tional interactions with components of the immune system,
which not only mediate tissue damage and immunity repair
but also directly participate in inflammatory processes,
thereby further aggravating inflammation and axon injury
[32–34]. Signal transduction between inflammatory cells
and target tissues may also be bidirectional. -e toxic
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microenvironment mediated by immune cells (peripheral or
central nerve cell compartmentalization) and resident cells
of CNS (microglia and astrocytes) can produce inflamma-
tory mediators, reactive oxygen species, and iron deposition,
leading to chronic demyelination and axonal lesions. -e
structural damage of myelin oligodendrocytes and the loss of
nutritional support lead to the increase of energy demand for
nerve impulse transmission, while mitochondrial damage
and disruption of ion homeostasis further impair normal
electrical activity. -e above processes jointly promote brain
atrophy and explain the pathological mechanism of brain
atrophy in patients with advanced MS [35, 36]. KEGG
enrichment analysis in this study suggested that MS was
closely related to environmental risk factors including viral
infection, bacterial infection, and certain autoimmune dis-
eases. -e Epstein-Barr virus is regarded as the leading
environmental risk factor [37]. -e cross-reactivity of CD4+
T cells also partly explained the synergistic effect between
EBV infection and genetic susceptibility to MS [38].
However, the pathway interaction between EB virus and
DEGs of MS in our study remained to be verified. KEGG
pathway analysis also suggested that MS was associated with
other acquired autoimmune diseases such as inflammatory
bowel disease, type 1 diabetes, autoimmune thyroid disease,
and rheumatoid arthritis. MHC gene mutation is a signif-
icant contributor to the pathogenesis of most autoimmune
diseases, affecting the immune cell response, T cell differ-
entiation, cytokine secretion, and so on. Most of these au-
toimmune diseases are characterized by recurrent attacks
and chronic progression [39].

To further explore the role of immune cells in the brain
tissues of MS, we used the CIBERSORTX algorithm to
analyze the brain tissue samples from MS patients. In
general, the number of CD4+ T cells in MS samples is more
than that in control samples. Our results showed a decrease
in initial CD4+ T cells, suggesting that the proportion of
CD4+ T cells in brain tissues of MS patients may vary with
cell subtypes [40]. CD8+ T lymphocytes are resident cells of
the brain and spinal cord tissues and transmit neuro-
inflammation locally when the cells encounter homologous
antigens [41]. MS has long been viewed as a disease mediated
by T cells, but in recent years, accumulating studies have
focused on other important components including B cells,
endothelial cells, complements, autoantibodies, cytokines,
and chemokines [42]. B cells and myeloid cells are equally
important in the inflammatory response of CNS. At present,
anti-CD20 monoclonal antibodies (such as rituximab) are
clinically used to deplete B cells, which can reduce the re-
currence and retard the progression of the disease, further
verifying the important roles of B cells and antibodies in MS
progression [43]. Macrophages and microglia have similar
inflammatory effects, and the infiltration of macrophages is
strongly correlated with the model of advanced EAE [44],
suggesting the role of macrophages in the advanced stage of
the disease. EAE-related studies have found that the inac-
tivation of macrophages can improve the severity of the
disease [45]. Permanent myeloid cells can be found in all
tissues and organs. In the case of infection or tissue injury,
monocytes or granulocytes (especially neutrophils) can be
recruited from the circulation to participate in the
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promotion of inflammatory response at the beginning and
play the roles in tissue repair and regeneration at the later
stage [46, 47].-e previous study on immune cell patterns of
gene expression has suggested that the development of MS is
caused by a wide subset of cells [42]. Patients may have a
dysregulated proportion of immune cells, which results in
differences in treatment responses. Susceptibility genes for
major cell subsets are responsible for transcription factors,
chemokines, receptors, intracellular enzymes, and signal
transduction factors that control cell proportion, cell dif-
ferentiation, and cell status [42]. Identifying the target an-
tigens by tissue-hosting CD8+ T cells and B cells and
recognizing the molecular properties and corresponding
gene targets of soluble inflammatory mediators that may
cause tissue damage are conducive to the treatment of MS
[41]. Some hub genes were found negatively correlated with
immune cells at the resting state and positively correlated
with immune cells at the active state, suggesting that certain
hub genes were related to the activation of peripheral
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immune cells such as macrophages. However, the role of
genes in the regulation of immune cells in MS patients
remained to be further investigated.

-e 2019 International Multiple Sclerosis Genetics
Consortium (IMSGC) explores the expression of MS
genomewide immune cells and immune organs [8]. IMSGC
annotates genomewide gene fragments of interest using gene
expression profiles and epigenetic signature information and
demonstrates that MS susceptibility loci are significantly
enriched in many different immune cell types and tissues,
including natural killer cells, dendritic cells, and thymus.
Different from the IMSGC study, our study intuitively shows
the changes of the pathological microenvironment of brain
tissues.

However, our study has the following limitations, similar
to most bioinformatics studies. Firstly, the sample size and
patient information are limited, and we can not eliminate the
bias of gender, comorbidity, disease stage, and medications.
Secondly, although the merged data increase the sample size,
the systematic error caused by different research methods
and experimental conditions still cannot be eliminated.
-irdly, the samples in this study are from cadavers, and the
gene expression profiles of these samples may be affected by
the sample storage time and processing methods, which are
somewhat different from living tissues. Althoughmost of the
results obtained in our study are consistent with previous
studies, more studies are needed for further verification.

Given the fact that MS is not a simple genetic disease,
and there are complex interactions among genetics, envi-
ronment, and immunity, it is difficult to realize the appli-
cation of genes in the clinical diagnosis and treatment of MS.
Currently, more and more studies focus on the interaction
between genes and the environment and the underlying
immune mechanism. However, future studies should con-
sider more information including clinical phenotypes,
prognosis and treatment response, genetic (including epi-
genetic), and pathology characteristics. Moreover, it is
necessary to expand the sample size to further explore the
molecular mechanism of clinical phenotype and therapeutic
prognosis heterogeneity, which will contribute to further
clarifying the molecular classifications of the disease and
guiding disease prevention and medication development of
MS.

5. Conclusion

In this study, 10 key genes of MS including HLA-DRA,
HLA-DRB1, HLA-DRB5, HLA-DQB2, HLA-DPA1, HLA-
DQB1, HLA-E, HLA-C, GBP2, and CD44 are obtained using
the algorithm. Enrichment pathways are associated with
T cell activation, proliferation and differentiation, antigen
presentation, autoantibody production, and glial cell pro-
liferation, suggesting that the pathogenesis of MS was
correlated with the involvement of the peripheral immune
system and a cascade of brain glial cell activation. -e in-
filtrating immune cells in brain tissues are diverse and are
not only related to T cells but also B cells, macrophages,
granulocytes, and other peripheral immune cells. -e key
genes are correlated with some immune cells, indicating the

role of susceptibility genes in promoting the activation of
macrophages and natural killer cells. -e gene expression
profiles in MS brain tissues (including gray matter and white
matter) are significantly different from those in the control
samples, with the chronic active white matter lesions
showing the most significant differences, followed by the
tissues adjacent to chronic active white matter lesions. -e
10 key genes are closely related to chronic active white
matter lesions. -e analysis of DEG pathway enrichment
and peripheral immune cell infiltration can confer novel
insights into the etiological and pathological mechanisms of
MS. -e gene expression profiles and underlying mecha-
nisms of immune infiltration in MS and their correlations
with environment and disease stage need further
exploration.
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