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Dynamic Causal Modeling (DCM) has been extended for the analysis of electroencephalography (EEG) based on a specific
biophysical and neurobiological generative model for EEG. Comparing to methods that summarize neural activities with linear
relationships, the generative model enables DCM to better describe how signals are generated and better reveal the underlying
mechanism of the activities occurring in human brains. Since DCM provides us with an approach to the effective connectivity
between brain areas, with exponential ranking, the abnormality of the observed signals can be further located to a specific brain
region. In this paper, a combination of DCM and exponential ranking is proposed as a new method aiming at searching for the
abnormal brain regions which are associated with chronic tinnitus.

1. Introduction

Subjective tinnitus as a common clinical symptom is defined
as a perceived sound in the absence of a corresponding
internal or external sound source [1]. According to the dura-
tion of occurrence, tinnitus is classified into acute tinnitus
and chronic tinnitus. People with acute tinnitus experience
a transient and reversible perception of a phantom sound
within 3 months, which has rather little impact on the
life of people. And chronic tinnitus can last more than 3
months [2],making patients with chronic tinnitus suffer from
insomnia, poor concentration, depression, and cognitive
dysfunction. It is said that 10-15 % of the adult popula-
tion suffers from chronic tinnitus and about 1-2% of the
adult population is affected by the phantom sound severely
[3].

Till now, the main clinical treatments of tinnitus include
counseling, sound therapy, cognitive behavioral therapy, and
tinnitus retraining therapy. These treatments vary greatly in
the therapeutic effect and there is still a lack of medical,

neurological, or neuropsychological therapy that has been
proved as the universal treatment [4].The effective treatment
of tinnitus is based on the comprehensive understanding of
the underlying mechanism of tinnitus. Therefore, to treat
tinnitus, there is urgent need of understanding the generation
and development of tinnitus.

Tinnitus has traditionally been considered as problems
with the cochlea and the auditory nerves. Tinnitus patients
are always accompanied by peripheral hearing loss [5], sug-
gesting that the decreased signal output from the cochlea is
associated with the generation of tinnitus. However, tinnitus
still exists after cutting off the auditory nerve [6, 7], which
indicates that tinnitus is not only caused by peripheral
hearing loss, but also the result of aberrant neural activity of
central nervous system. It is widely accepted that abnormal-
ities in the central nervous system (CNS) play an important
role in the development of tinnitus. In other words, it is the
abnormal activation of brain regions, not just the auditory
system that relate to tinnitus, which is the theoretical basis
of this research.

Hindawi
BioMed Research International
Volume 2018, Article ID 8656975, 10 pages
https://doi.org/10.1155/2018/8656975

http://orcid.org/0000-0002-2434-9747
http://orcid.org/0000-0002-3641-1640
https://doi.org/10.1155/2018/8656975


2 BioMed Research International

A variety of methods for exploring brain activity exist
and could provide different kinds of signals that sketch the
brain activities, i.e., fMRI, EEG, and MEG. Many of the
previous researches are based on the resting-state fMRI. The
resting-state fMRI has been proved to be a useful noninvasive
technique for determining how structurally segregated and
functionally specialized cerebral centers are interconnected
for subjective tinnitus [9]. However, due to the constant emis-
sion of detrimental scanner noise and other uncomfortable
aspects of scanning environment, many patients refuse to
participate in fMRI studies. In addition, EEG signals contain
more information of the underlying dynamics than fMRI.
Moreover, spectral power and connectivity analysis of the
resting-state EEG have been turned out as advantageous tools
because EEG parameters obtained from patients generally
differ from EEG patterns of people without chronic tinnitus
symptoms [10]. So EEG is considered as a more suitable
technique to explore the functional signature of tinnitus [11].

Efforts have been made to generate brain connectivity
from biological signals, with which they use current com-
munity detection and clustering algorithms [12–15] to reach
their goal, such as research on Alzheimer’s disease [16]. For
tinnitus, several models have been proposed suggesting that
abnormalities within nonauditory and between nonauditory
and auditory brain regions and networks are associated with
tinnitus [17–19]. These studies take the similarities of the sig-
nals observed as the connectivity between sensors. However,
signals detected by the sensors are generated by wide-spread
brain sources, which often contain lots of noise and greatly
differ between two individuals, in spite of their conditions.
Besides, the calculation of the similarity does not solve the
“spatiotemporal inverse problem”, i.e., which brain regions
caused the observed spatial and temporal pattern in the sen-
sors [20]. In fact, for EEG analysis, classical methods usually
try to reduce the temporal details and ignore the underly-
ing generators. For instance, many researches characterize
participants by the average of EEG over temporal windows,
such as the power spectral estimation [21], the autoregressive
(AR) model [22], and the power spectral entropy [23]. They
may have good performance on nonlinear dynamic states
but ignore the sequences of time and the causalities of brain
sources. Dynamic causal modeling (DCM) is a candidate
designed to solve this problem and to make inferences about
key neuronal parameters based on spatiotemporal models
[8]. It not only combines the dynamics and nonlinearity of
the nervous system, but also organically combines the actual
observation of the different brain signals (e.g., fMRI, MEG,
and EEG) and the nerve level dynamics. In particular, the
present study aims to find the abnormal brain regions that
are associated with tinnitus. And abnormal brain regions
are needed for the special treatment of tinnitus. To this
end, we ought to find the abnormal brain regions that
significantly distinguish tinnitus patients from the normal
controls. Given the connectivity matrices gained from the
previous DCM process, the task can be transferred into
ranking each brain region and then investigating the ranking
differences between the tinnitus patients and the normal
controls. One suitable technique for achieving this task uses
a PageRank-like method, which estimates the ranking values
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Figure 1: The process of PageRank-like algorithms.
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Figure 2: The main flowchart of the proposed method.

according to the weighted linkage structure (i.e., a weighted
connectivity matrix) [24]. In the ranking algorithms, trust
probabilities of the nodes are focused. By iteratively multi-
plying the adjacency matrix and the nodes’ trust probabilities
till convergence, the nodes in a network represented by its
adjacency matrix can be ranked, as illustrated in Figure 1. In
the sorting algorithm, we focus on the trust probability of the
node, which is equivalent to the importance of brain regions
in the brain network in this article, meaning that the higher
a node ranks, the more activated it is. However, the original
PageRank algorithm [24] is only applicable to the positive
weighted links and therefore is not suitable for the case.
Hence, the variant of PageRank, termed exponential ranking
[25], is utilized, which is able to find the ranking of each
brain region in the brain network. By further investigating
the ranking differences between the tinnitus patients and
the normal controls, the underlying tinnitus abnormal brain
regions can be discovered, which is helpful for finding the
therapeutic targets of chronic tinnitus.

To this end, we study the steady-state EEG signals in the
delta band (0.5-3.5Hz), theta band (3.5-7.5Hz), alpha band
(7.5-12.5Hz), beta band (12.5-30Hz), and the gamma band
(30Hz-45Hz) of 14 chronic tinnitus patients and 14 control
individuals. By combining the dynamic causal modeling
(DCM) and the exponential ranking algorithm, the insight
of the abnormal brain regions of tinnitus can be gained, and
the differences between tinnitus patients and the controls in
neuronal aspects can be analyzed. For clarity, Figure 2 shows
the main flowchart of our method.

2. Methods and Materials

2.1. Participants. Participants with chronic subjective tin-
nitus were recruited from the Ear, Nose and Throat
(ENT) clinic, Sun Yat-sen Memorial Hospital, Sun Yat-sen
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University. Detailed selection criteria for inclusion in this
study are as follows:

(1) They had sought clinical help for their tinnitus prob-
lem, which had lasted more than 3 months.

(2) They had no history of head trauma or central
nervous system disorders.

(3) They hadmild sensorineural hearing loss. All tinnitus
patients with either current conductive hearing loss
or previous middle ear surgery (e.g., mastoidectomy)
were excluded [26].

(4) The tinnitus patients with pulsatile tinnitus due to
aberrant vascularmalformation andMenieres disease
were also excluded.

This study included 14 patients (8 male and 6 female;
age M=38.57 years, SD=13.91 years) with chronic tinnitus
and 14 age and gender matched control subjects (6 male and
8 female; age M=38.71 years, SD=11.78 years). Only right-
handed individuals were accepted for the study. All partici-
pants were comprehensively informed about the background
and the aim of this study. And they all gave written informed
consent. This study was approved by the ethics committee of
Sun Yat-sen Memorial Hospital, Sun Yat-sen University.

2.2. EEG Recordings. All participants were required to calm
down and sat on a comfortable chair in a completely silent
room. They were instructed to open their eyes and fixate
a cross mark on the computer screen. The recordings were
made utilizing a dense array EEG system with 128 channels
and were saved electronically with Electrical Geodesics, Inc.
The sampling rate was set to 1000 Hz and impedances were
kept below 50 k𝜔. The CZ electrode was used as reference for
online recording. The resting EEG was recorded for about 5
minutes.

2.3. Preprocessing of EEG Data. Firstly, the raw data files
from EGI were transformed into mat file format in order to
preprocess them with EEGLAB for v13.0.0 toolbox of Matlab.
Secondly, the sampling rate of the data was reduced to 250
Hz.The notch filter in ERPLABwas used to remove the 50Hz
power line interference. The data were band-pass-filtered to
0.5-80 Hz. Next, the reference electrode was removed and the
bilateralmastoid 56th and 107th electrodeswere rereferenced.
Then, the 8th, 14th, 17th, 21st, 25th, 125th, 126th, 127th, and
128th electrodes were excluded from the EEG date, for they
are either greatly affected by the eye movement or simply
having too much noise in the detected data. Furthermore,
all episodic artifacts including eye blinks, eye movements,
teeth clenching, body movement, or ECG artifact were
removed from the EEG waves via manual artifact rejection.
Finally, independent component analysis (ICA) was applied
to remove noise fragments.

2.4. Dynamic Causal Modeling. In the past several decades,
many methods have been developed or adopted to extract
information from biological signals. Biological signals like
EEG andMEG are generated by biological systems and there-
fore are reflections of the nonlinear underlying activities.

Inhibitory
interneurons

Spiny
stellate cells

Pyramidal
cells

Forward and input
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Backward

Figure 3: The neural mass model of a single source consists of
3 neuronal subpopulations, connected by 4 intrinsic connections
(displayed by the grey spotted arrows) and 3 types of extrinsic
connections [8].

Classic feature extracting methods such as spectral analysis
are only reasonable and explainable under assumptions that
the system is stable, which means that the dynamics of the
systems cannot be represented by the extracted features. So
for systems like human brain, the classic feature extraction
methods may not be suitable because they can neglect the
hidden dynamics or causal effects. Dynamic causal modeling
is a method to infer the causal architecture of distributed
dynamic systems.

Notice that the statement that EEG data directly displays
the cerebral neuronal activities of a subject is incorrect. In
fact, it is the electromagnetic activity that are detected and
named as EEG signals. The macrobiological meaning of EEG
signals is that it is the electromagnetic responses to the
neuronal activities caused by the wide-spread brain sources.
So, the brain can be seen as a system that takes stimuli as input
and outputs signals at a neuronal level and eventually follows
the electromagnetic principles detected by sensors. Here,
we are interested in the underlying neuronal dynamics. The
dynamic causal modeling for M/EEG is a measure designed
for such purpose. It is considered one of the best methods
that could be applied to brain signals due to the following five
reasons [27].

(1) DCM is dynamic.
(2) It is causal in the sense of control theory.
(3) It makes efforts to interpret neurophysiology.
(4) It uses a biophysically motivated and parameterized

forward model to link the modeled neuronal dynam-
ics to specific features of the measured data.

(5) It is Bayesian in all aspects, which means that each
parameter is constrained by a prior distribution.

Neuronal activities in a brain source are realized by three
neuronal subpopulations as shown in Figure 3, namely, spiny



4 BioMed Research International

Table 1: Electromagnetic parameters.

Parameter Description Standard prior mean
𝐻(𝑒/𝑖) Maximum post synaptic potentials 4 mV, 32 mV
𝜏(𝑒/𝑖) = 1/𝜅(𝑒/𝑖) Average dendritic and membrane rate constant 4 ms, 16 ms
𝜏(𝑒/𝑖) = 1/𝜅𝑎 Adaption rate constant 512 ms
𝛾(1,2,3,4) Average number of synaptic contacts among populations 128, 128, 64, 64, 16
𝜌1, 𝜌2 Parameterized gain function 𝑔 2, 1

stellate cells, pyramidal cells, and inhibitory interneurons.
DCM for M/EEG adopts a neural mass model [28] to
explain source activity in terms of the ensemble dynamics
of interacting inhibitory and excitatory subpopulations of
neurons. One can regard a brain source as a representative of
the collective effects of its three subpopulations of neurons.

As shown in Figure 3, within a source, there are four
intrinsic connections that transfer signals to each layer. And
among these sources, there are three types of connections,
namely, forward, lateral, and backward. Forward connections
originate from the pyramidal cell subpopulation and end in
spiny stellate cell subpopulation, while backward connections
connect inhibitory interneuron subpopulation and pyrami-
dal cell subpopulation, and lateral connections originate
from the pyramid cell subpopulation and target at all three
subpopulations. The input arrives at each subpopulation as
mean firing rates through connections, while the output of
each subpopulation is its membrane potential.

The values of the mean firing rates and membrane
potential are parameterized by neuronal parameters listed in
Table 1. Here we give a brief introduction of them. Readers
can refer to the previous work [28] for more biological details
of the neuronal mass model. 𝐻𝑒, 𝐻𝑖, 𝜅𝑒, 𝜅𝑖, 𝜅𝑎 are synaptic
parameters, while 𝛾1, 𝛾2, 𝛾3, 𝛾4 are the intrinsic strengths and
𝜌1 and 𝜌2 are the sensitivity of the neural population to
input and adaptation [29]. 𝜅 = 1/(𝜏) is a lumped rate
constant of passive membrane and 𝐻 represents the maxi-
mum postsynaptic potential. Inhibitory interneurons receive
inputs from the pyramidal cells, which leads to excitatory
postsynaptic potentials𝐻𝑒mediated by the coupling strength
between pyramid cells and inhibitory interneurons, 𝛾3. The
pyramidal cells also produce excitatory postsynaptic poten-
tials mediated by coupling strength 𝛾2, driven by excitatory
spiny cells. The pyramidal cells provide inhibitory postsy-
naptic potentials mediated through parameter 𝛾4, driven by
the interneurons. Since the synaptic dynamics are linear,
subpopulations are modeled with linearly separable synaptic
responses to excitatory and inhibitory inputs.

A brain source is modeled by the aforementioned struc-
ture that explains the nonlinear behaviors. Since signals
generated by a brain can be seen as amixture of the responses
to the inputs on these sources, we can then apply the general
theory of linear system to the dynamics of EEG in forms of
the neuronal mass model.

Take a study of two brain sources as an example, the
underlying mechanism is shown in Figure 4:

(i) Deterministic inputs 𝑢(𝑡), which can be seen as a
function about time 𝑡, are added to the brain system.

(ii) The pyramidal cells depolarize and cause responses
in the brain sources. These responses are described
as differential equations, as will be described in detail
soon.

(iii) The dynamic in each source can cause a signal in the
sensors, at every moment in time. From the sensor
perspective, the responses to neuronal activities are
expressed in a lead-field function. A lead-field func-
tion is a function defining how responses on sources
are measured in sensors, taking neuronal states 𝑥
and neuronal parameters 𝜃 as parameters, as will be
described in detail soon.

2.4.1. Neuronal State Equations. The coupling relation of
brain activity in different brain regions can be expressed as
the neuronal state equations:

�̇� = 𝑓 (𝑥, 𝑢, 𝜃) (1)

where �̇� represents the changes in neural activities, 𝑓 is
the nonlinear function describing the neurophysiological
influences that activity 𝑥 in all 𝑙 brain regions, inputs 𝑢 exert
upon changes in the others, and 𝜃 are the parameters of
the model whose posterior density is what we require for
inference.

The bilinear approximation of (1) provides a set of
equations in forms of the effective connectivity that can be
calculated directly as follows:

�̇� = 𝐴𝑥 +∑𝑢𝑗𝐵
𝑗𝑥 + 𝐶𝑢 = (𝐴 +∑𝑢𝑗𝐵

𝑗) 𝑥 + 𝐶𝑢 (2)

𝐴 =
𝜕𝑓
𝜕𝑥

= 𝜕�̇�
𝜕𝑥

(3)

𝐵𝑗 = (𝜕)2 𝑓
𝜕𝑥𝜕𝑢𝑗

= 𝜕
𝜕𝑢𝑗

𝜕�̇�
𝜕𝑥 (4)

𝐶 =
𝜕𝑓
𝜕𝑢

. (5)

where matrix 𝐴 is the effective connectivity representing the
lateral connectivity among brain regions without input, 𝐵𝑗
is the change in the coupling induced by the 𝑗-th input 𝑢𝑗,
and matrix 𝐶 represents the extrinsic influences of inputs on
neuronal activities.

Parameters 𝜃𝑐 are defined as 𝜃𝑐 = {𝐴, 𝐵𝑗, 𝐶}, which are the
connectivitywewish to achieve to define the functional archi-
tecture and the interactions among brain regions of interest.

To spatially model the response, an equivalent current
dipole for each source is specified. There are 16 regions
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Figure 4: Illustration of a brain described by 2 sources, A and B, respectively. Inputs 𝑢, defined as a function of time 𝑡, are added to the brain
system.The perturbation of the inputs at each source is described as a differential equations �̇� = 𝑓(𝑥, 𝑢, 𝜃), where 𝑢 is the input and 𝜃 are the
source parameters that vary along with experimental settings. How a source will bemeasured in the sensors is then described by the lead-field
function 𝑦 = 𝑔(𝑥, 𝜃) [8].

of interest selected by visual inspection according to the
previous work [30], as shown in Table 2.The 16 brain regions
that we are interested in include two sides of superior and
transverse temporal gyrus, two sides of cuneus/precuneus,
middle occipital gyrus, precentral gyrus, superior frontal
gyrus, prefrontal cortex, superior parietal cortex, basal gan-
glia/NAc, isthmus of cingulate gyrus, two sides of thalamus,
brainstem, and Parahippocampal gyrus. Maudoux et al. [30]
applied ICA to make sure the analyzed fMRI signal corre-
sponds to the auditory spontaneous activity. The selection of
the components of interest was based on another previous
research which also takes advantage of ICA to decompose the
signals in neuronal sources while preserving the concept of
connectivity in a defined network of ROIs [31]. During the
selection, to ensure that the components selected represent
the auditory activity, they employed ROIs that were men-
tioned in a few papers on the auditory resting-state network.

2.4.2. Electromagnetic Model. The neuronal activity affects
the electromagnetic signals and causes the underlying
changes. According to David et al. [32], the medical variables
have nonlinear relationship between each other, i.e.,

𝑦 = 𝑔 (𝑥, 𝜃) = 𝐿𝐾𝑥0. (6)

where 𝐿 is a lead-field matrix representing the passive
conduction of the electromagnetic field, and 𝐾 is a matrix of
𝜃 that controls the contribution of pyramidal depolarization
to the 𝑖-th source density.

According to the previous study [29], how responses of
sources aremeasured in sensors can be expressed as functions
of the neuronal parameters. After obtaining the equations of
the two models, the EEG data can therefore be applied to the
Bayesian estimation for inferences of the parameters.

2.4.3. Estimation. For a given DCM model 𝑚, parameter
estimation corresponds to approximating themoments of the
posterior distribution given by Bayes rule as follows:

𝑝 (𝜃 | 𝑦,𝑚) =
𝑝 (𝑦 | 𝜃,𝑚) 𝑝 (𝜃,𝑚)

𝑝 (𝑦 | 𝑚)
. (7)

Bayesian inference proceeds using the conditional or poste-
rior density estimated by iterating (7). This is an expectation
maximization method, which solves the special maximum
likelihood problems in an iterative way.

The posterior moments including the mean 𝜇 and covari-
ance ∑ are estimated iteratively using Gaussian approxima-
tion to the conditional density 𝑞(𝜃) = 𝑁(𝜇,∑). The basic
idea behind expectation maximization is that we calculate
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Table 2: The 16 regions of interest.

Brain region (area) x y z
1. Superior & transverse temporal gyrus (R) 62 -18 23
2. Superior & transverse temporal gyrus (L) -50 -15 11
3. Cuneus/Precuneus (19/31) (R) 9 -64 25
4. Cuneus/Precuneus (19/31) (L) -15 -64 25
5. Middle occipital gyrus (L) -45 -52 7
6. Precentral gyrus (L) -33 -19 46
7. Superior frontal gyrus (R) 6 5 46
8. Prefrontal cortex (L) 3 47 16
9. Superior parietal cortex (R) 54 -22 52
10. Basal ganglia/NAc (R) 15 -1 -5
11. Isthmus of Cingulate Gyrus (L) -9 -40 1
12. Thalamus (R) 9 -13 10
13. Thalamus (L) -15 -19 -2
14. Brainstem (R) 6 -19 -23
15. Parahippocampal gyrus (L) -21 -28 -27
16. Parahippocampal gyrus (R) 27 -25 -14

the expectation of the posterior probability and then use
the maximum likelihood method to infer the parameters.
Chen et al. [33] have summarized the estimation scheme as
follows.

while (unconvergence)
E-step 𝑞 ← max𝑞(𝐹(𝑞, 𝜆,𝑚))
M-step 𝜆 ← max𝜆(𝐹(𝑞, 𝜆,𝑚)
𝐹(𝑞, 𝜆,𝑚) = ⟨ln𝑝(𝑦 | 𝜃, 𝜆,𝑚) − ln𝑝(𝜃 | 𝑚)⟩𝑞
𝐹 is the variational free energy approximating to the

posterior density 𝑝(𝜃 | 𝑦,𝑚) which we require. And 𝜆 are
the precision parameters that are updated to estimate the
maximum likelihood in the previous step.The expression ⟨⋅⟩𝑞
means the expectation under the density 𝑞.

For implementation of DCM, the open-source software
within the Statistical Parametric Mapping (SPM) software is
used (http://www.fil.ion.ucl.ac.uk/spm/).

2.5. Exponential Ranking. Since there are two groups of
subjects (i.e., the tinnitus group and the control group) to
be compared, the dynamic causal models described in the
previous section should be the same. This leads to a negative
connectivity meaning that the estimation is far smaller than
the prior 1. In order to get the “reputation” (i.e., the ranking) of
a brain source in the network, we need to choose a PageRank-
like algorithm applicable to signed networks.The exponential
ranking [25] designed in 2010meets this need, which is based
on the discrete choice theory. The basic idea is that if a
node has negative reputation, his links should be trusted less
instead of not trusted.Most of the existing algorithms dealing
with negative links do not apply distrust in such recursive
manner and if so, they simply take away nodes that have
negative links. In this section, we will give a brief description
of the exponential ranking algorithm.

Let 𝐺 = (𝑉, 𝐸) be a directed graph with 𝑛 nodes in 𝑉 and
𝑚 edges in 𝐸. The edges are represented as an 𝑛×𝑛 adjacency
matrix, where 𝐴 𝑖𝑗 is 0, 1 or -1, meaning the edge linked from

node 𝑖 to node 𝑗. In particular, a negative link between node
𝑖 and 𝑗means that 𝑖 distrusts 𝑗.

The reputation of node 𝑖, denoted as 𝑘𝑖, is calculated as
follows:

𝑘𝑖 = ∑
𝑗

𝐴𝑗𝑖𝑝𝑗 (8)

where 𝑝𝑖 is the trust probability of node 𝑖 and is calculated
as follows:

𝑝𝑖 =
exp (𝑘𝑖/𝜇)

∑𝑗 exp (𝑘𝑗/𝜇)
(9)

where 𝜇 characterizes the amount of noise. In the matrix
notation, (8) can be rewritten as

𝑘 = 𝐴𝑇𝑝 (10)

Intuitively, if one has to choose a node to trust, hemay choose
the one with the highest reputation 𝑘. However, there might
be some errors while just considering the reputation. To this
end, the error caused by noise should be considered and
denoted by 𝜇. Please refer to the related paper [25] for more
detail.

Combining the two equations, we obtain the recursive
formulation as follows:

𝑝 (𝑡 + 1) =
exp (1/𝜇)𝐴𝑇𝑝 (𝑡)

exp (1/𝜇)𝐴𝑇𝑝 (𝑡)
1
. (11)

For clarity, Algorithm 1 summarizes the main procedure
of the exponential ranking algorithm.

3. Results

To investigate the performance of different response time,
we repeated the experiment by setting the response time as

http://www.fil.ion.ucl.ac.uk/spm/
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Input:The adjacency matrix of given network 𝐴. The parameter influencing
variance of error 𝜇. The number of nodes 𝑛. The number of edges𝑚.
Output:The final reputation 𝑘.
1: Initialize the entries in 𝑘 to 1/𝑚.
2: Initialize 𝑝 according to Eq. (9).
3: repeat
4: Update 𝑝 according to Eq. (11).
5: until Convergent
6: 𝑘 = 𝐴𝑇𝑝.

Algorithm 1: Exponential ranking.

Table 3: The average variance of the meaning ranking between the
tinnitus group and the control groupwhen setting different response
time.

Response time Average variance
60ms 0.0582
100ms 0.0407
2000ms 0.0485

delta
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Figure 5: The ranking values calculated from the functional con-
nectivity in the delta band of controls (yellow) and tinnitus (blue)
patients by setting the response time as 60ms.

100ms and 2000ms. It turns out that the largest difference
between the mean rankings of the tinnitus group and the
control group can be obtained when setting the response
time as 60ms, which can be further confirmed by Table 3.
In Table 3, for each type of response time (e.g., 60ms), the
variance of the absolute differences between the two mean
ranking values of the tinnitus group and the control group
is calculated for each frequency band, respectively, and then
the mean value of the five variances is reported in the table.

In order to find the common characteristics within each
group, we consider the average ranking values among all
the participants within the same group in all the cases of
the delta, theta, alpha, beta, and gamma bands. By setting
the response time as 60ms, the exponential ranking of the
tinnitus group and the control group obtained from the
functional connectivities in delta, theta, alpha, beta, and
gammabands is shown in Figures 5, 6, 7, 8, and 9, respectively.
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Figure 6: The ranking values calculated from the functional
connectivity in the theta band of controls (yellow) and tinnitus
(blue) patients by setting the response time as 60ms.
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Figure 7: The ranking values calculated from the functional con-
nectivity in the alpha band of controls (yellow) and tinnitus (blue)
patients by setting the response time as 60ms.

All the ranking results range from 0 to 1, with the value
representing the reputation of the very brain source among all
the 16 brain regions. The order of ROIs does not necessarily
have any meaning, and we focus on the relative differences of
the two groups rather than the absolute differences.
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Figure 8: The ranking values calculated from the functional
connectivity in the beta band of controls (yellow) and tinnitus (blue)
patients by setting the response time as 60ms.
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Figure 9: The ranking values calculated from the functional
connectivity in the gamma band of controls (yellow) and tinnitus
(blue) patients by setting the response time as 60ms.

Overall, the chronic tinnitus patients, compared to the
normal controls, have shown increased functional connec-
tivity in the right superior and transverse temporal gyrus
(the 1st ROI) and left cuneus/precuneus (the 4th ROI) in all
frequency bands, and in the right cuneus/precuneus (the 3rd)
and brainstem (the 14th ROI) in all frequency brands except
the theta band, and in middle occipital gyrus (the 5th ROI)
in all frequency brands except the gamma band.

Another interesting finding is that the importance of the
two sides of superior and transverse temporal gyrus (the 1st
and 2nd ROI) is greatly different in tinnitus patients, with the
right side showing an increased connectivity. And the right
side of cuneus/precuneus (the 3rd ROI) is also having more
activated signals comparing to the left side.

4. Discussion

In this study, we combined DCM and exponential ranking to
detect the abnormal brain regions in tinnitus patients com-
paring with healthy controls. Present study found increased

intrinsic connectivity in the parietal and prefrontal cortices,
nucleus accumbens (NAc), isthmus of cingulate gyrus, thala-
mus, and brainstem.

The intrinsic connectivity in the parietal and prefrontal
cortices was significantly increased in tinnitus patients.
Kleinjung et al. [34] found that repetitive transcranial mag-
netic stimulation (rTMS) of the temporal and prefrontal cor-
tices showed a better long-term effect in the tinnitus patients
than rTMS of the temporal cortex. It indicated that the pre-
frontal cortex was involved in the pathophysiology of tinni-
tus.Moreover, the prefrontal cortex was considered as an area
to integrate the cognitive and emotional aspects of tinnitus
[35, 36]. The prefrontal cortex was involved in attention
control and the increase of the intrinsic connectivity in the
prefrontal cortex was in line with the hypothesis that tinnitus
might be related to the excessive allocation of attention [30].
In addition, according to the study of Vanneste et al. [37],
the dorsolateral prefrontal cortex was related to the distress
of tinnitus patients. Therefore, as the increase of attention
and emotion to the tinnitus, the intrinsic connectivity in the
parietal and prefrontal cortices was raised.

The activation of nucleus accumbens (NAc) in this study
was consistent with the study of Leaver et al. [38]. According
to the model proposed by Rauschecker et al. [17], the tinnitus
signals could be tuned out at the level of the thalamus by
the feedback connection from limbic system, which prevents
the tinnitus signals from reaching the auditory cortex. The
nucleus accumbens as a part of the limbic system was abnor-
mal in tinnitus patients, which influenced the cancellation of
tinnitus signals and led to the perception of tinnitus.

The isthmus of cingulate gyrus had the function of con-
tacting the left and right hemispheres. The increased con-
nection of the isthmus of cingulate gyrus in tinnitus patients
indicated the increased relationship between the left and right
brain hemispheres.

The auditory system includes the auditory cortex, the
inferior colliculus in the thalamus, and the cochlear nucleus
in the brainstem. Tinnitus patients with peripheral hearing
loss showed decreased signal output from the cochlea, which
led to the loss of some auditory information. As a result of
deafferentation, activity in some specific brain areas of the
auditory pathway declines and the regions near the specific
brain areas show increased activity due to the decrease
of lateral inhibition. So the missing auditory information
is retrieved from the adjacent auditory pathway [39, 40].
Therefore, the deficit might be compensated for at the level
of the thalamus or brainstem to maintain homeostatic state
and reduce the uncertainty, which may be the reason why
the intrinsic connectivity in the thalamus and brainstem was
significantly increased.

Additionally, the tinnitus patients are found to have an
increased extrinsic connectivity in cuneus/precuneus,middle
occipital gyrus, and precentral gyrus. It represented the
increased extrinsic connections of the visual and somatomo-
tor networks. Cacace [41] suggested that tinnitus was trig-
gered or modulated by inputs from somatomotor and visual
systems in a proportion of individuals.

The cuneus/precuneus have a higher lateral connectivity
in this study. Some fMRI studies showed that there is a
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negative correlation between auditory and visual resting-state
networks in tinnitus patients [30, 42]. It may decrease the
activity in visual network due to the increase of attention to
the tinnitus perception. Therefore, tinnitus may be consid-
ered as a result of a multisensory interaction between the
auditory and visual networks [43].

Furthermore, tinnitus patients showed a stronger connec-
tion in the right side than the left side of superior and trans-
verse temporal gyrus.The right side of cuneus/precuneus was
also having more activated signals comparing to the left side.
It suggested that the right side of the auditory and visual
cortices was more active than the left side.This result implied
the difference of the connectivity between the left and right
sides of the auditory and visual systems in tinnitus patients.

5. Conclusions

In conclusion, this is the first study to explore the abnormal
brain regions by the combination of DCM and exponen-
tial ranking. Tinnitus patients showed increased intrinsic
connectivity in the parietal and prefrontal cortices, nucleus
accumbens (NAc), isthmus of cingulate gyrus, thalamus, and
brainstem, which associated with the perception, emotion,
and attention of tinnitus. In addition, the extrinsic connectiv-
ity to the visual and somatomotor systems was improved in
tinnitus patients, which suggested the important role of the
visual and somatomotor systems in tinnitus. Furthermore,
this study indicated that DCM, combined with exponential
ranking, was a helpful approach to detect the abnormal brain
regions and was beneficial for the diagnosis and treatment of
tinnitus.
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