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Abstract: Diverse phylogenetic methods require a substitution model of evolution that should mimic,
as accurately as possible, the real substitution process. At the protein level, empirical substitution
models have traditionally been based on a large number of different proteins from particular taxo-
nomic levels. However, these models assume that all of the proteins of a taxonomic level evolve under
the same substitution patterns. We believe that this assumption is highly unrealistic and should be
relaxed by considering protein-specific substitution models that account for protein-specific selection
processes. In order to test this hypothesis, we inferred and evaluated four new empirical substitution
models for the protease and integrase of HIV and other viruses. We found that these models more
accurately fit, compared with any of the currently available empirical substitution models, the evolu-
tionary process of these proteins. We conclude that evolutionary inferences from protein sequences
are more accurate if they are based on protein-specific substitution models rather than taxonomic-
specific (generalist) substitution models. We also present four new empirical substitution models of
protein evolution that could be useful for phylogenetic inferences of viral protease and integrase.

Keywords: substitution model of protein evolution; protein evolution; phylogenetic reconstruction;
viral protease; viral integrase; HIV

1. Introduction

Substitution models of molecular evolution are well established in a variety of phylo-
genetic methods to obtain accurate inferences of past evolutionary processes [1]. At the
protein level, substitution models are frequently applied in evolutionary biology to infer
phylogenetic trees [2,3], ancestral sequences [4,5] and selection [6,7], among other applica-
tions [1,8]. The current substitution models of protein evolution can be classified roughly
into two categories. First, there are parametric or structure-based substitution models
that consider structural constraints to model selection on the protein folding stability and
function [9–13]. These models provided accurate inferences of protein evolution [10,12];
however, although some of them have been implemented in useful evolutionary frame-
works [14,15], their mathematical complexity (i.e., most of them account for site-dependent
evolution) and large computational requirements prevented (for the moment) their estab-
lishment in phylogenetics. The other category includes empirical substitution models of
protein evolution [1,8,16]. These substitution models consist of a 20 × 20 matrix of relative
rates of change among amino acids (hereafter, an exchangeability matrix) and 20 amino
acid frequencies, which are estimated from large protein databases. These models assume
that all of the protein sites evolve under the same substitution process, despite the fact that
this is often unrealistic (i.e., it is likely that sites located in the catalytic region of an en-
zyme evolve under different evolutionary patterns compared to sites located at the protein
surface due to selection on the protein function [13,15], and these models also ignore the
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protein folding stability, leading to unrealistically unstable proteins [17]). However, the
mathematical simplicity and rapid computation of empirical substitution models favored
their establishment in protein phylogenetics, including their implementation in most of
the frameworks for phylogenetic tree reconstructions, e.g., [18], and ancestral sequence
reconstructions, e.g., [19,20].

Next, most of the empirical substitution models of protein evolution are based on
general nuclear (i.e., JTT [21] and WAG [22]) or mitochondrial (i.e., MtMam [16] and
mtREV [23]) proteins, and others were developed from proteins of particular taxonomic
levels, including viruses like the human immunodeficiency virus (HIV) [24], influenza
virus [25], dengue virus [26] and flavivirus [27], among others. Still, the currently available
set of empirical substitution models of protein evolution is very limited, with less than
100 substitution models [1]. Next, it is known that the accuracy of phylogenetic inferences
depends on the applied substitution model [28–32]; consequently, the selection of the
best-fitting substitution model of evolution currently constitutes a fundamental step in
phylogenetics [33]. The limited number of currently available empirical substitution models
of protein evolution means that, for a particular dataset of protein sequences, one could not
find an appropriate substitution model. For example, using a framework for substitution
model selection, the authors of [34] found that the best-fitting empirical substitution model
for datasets from proteobacteria and archaea was a model inferred from retroviral Pol
proteins, which is likely to improperly describe the evolutionary processes of the cited
datasets. Therefore, there is a need for more empirical substitution models of protein
evolution, at least while realistic structure-based substitution models are not yet established
in phylogenetics. Regarding this concern, as noted previously, most of currently available
empirical substitution models of protein evolution are largely generalist (i.e., a single
substitution model is based on all of the different proteins existing in a taxonomic level).
Regarding this concern, we believe that empirical substitution models that are specific for
protein families could more accurately mimic the evolution of a protein dataset belonging
to the underlying protein family. For example, at present, phylogenetic inferences from
a dataset of HIV protease (PR) or integrase (IN) sequences can be performed under the
HIVw or HIVb substitution models [24], which are the only currently available empirical
substitution models based on HIV proteins. However, these two empirical substitution
models are based on all of the different proteins present in this virus, and thus we consider
them to be generalist. As a consequence, we believe that these models can be highly
unrealistic when modeling a dataset of a specific HIV protein (i.e., PR or IN). This intuitive
reasoning motivated us to investigate whether a protein-specific empirical substitution
model of evolution could outperform the currently available set of generalist empirical
substitution models of evolution that are commonly used in phylogenetics. In order to
test this hypothesis, and also to provide new empirical substitution models that can be
useful for certain viral phylogenetic inferences, we developed and evaluated four novel
protein-specific empirical substitution models of evolution. In particular, we developed
two models for viral PR (one for the HIV PR and another one for the PR of multiple viruses;
hereafter, HIVpr and VIRpr, respectively) and two models for viral IN (one for the HIV IN
and another one for the IN of multiple viruses; hereafter, HIVin and VIRin, respectively).
Next, we evaluated the fitting of these models with other models (including HIVb and
HIVw) using independent test data.

2. Materials and Methods

In this section, we describe the data collection, the development of the empirical
substitution models of PR and IN evolution, and the evaluation of the developed models
by likelihood-based comparisons with currently available empirical substitution models.
All of these methodological steps are illustrated in Figure 1.
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Figure 1. Pipeline for the inference and evaluation of the empirical substitution models of PR and IN
evolution. The input protein sequences were aligned and cleaned (removing duplicate sequences
and uninformative sites). Next, the resulting multiple-sequence alignment (MSA) was split into
two datasets: a method dataset (for the inference of the substitution model, including most of the
sequences) and a test dataset (for the evaluation of the substitution model). Indeed, the method
dataset was split into 10 local method datasets (due to computational limitations), and we inferred
a local (partition) substitution model for each one. The resulting local substitution models were
averaged to obtain a global substitution model. Finally, we calculated the AIC and BIC scores for the
global substitution model and other currently available empirical substitution models in order to
evaluate them, considering the likelihood of every model with the test dataset.

2.1. Study Data of HIV-1 and General Virus Protease and Integrase

We collected all of the protein sequences of HIV PR and IN available in GenBank
to develop the substitution models of HIV PR and IN, respectively. We only considered
sequences with a length similar to the natural length of HIV PR (99 amino acids) and IN
(163 amino acids) in order to avoid uninformative sequences with multiple indels. We
obtained a total of 55,000 and 23,000 sequences for HIV PR and IN, respectively. Next,
for each dataset, we obtained a multiple-sequence alignment (MSA) using MAFFT [35].
The resulting MSAs were further refined by removing sequences with multiple gaps (we
only allowed sequences with less than 30% gaps) with TrimAl [36], following previous
studies, e.g., [25,37]. The final MSAs included 16,900 and 14,764 sequences with lengths of
99 and 163 amino acids for the HIV PR and IN, respectively. Concerning the development
of substitution models based on PR and IN from multiple viruses, we collected sequences
of viral PR and IN from the PFAM database (codes PF00077 and PF00665 for the PR and IN,
respectively). We also applied the previously indicated filtering to obtain the final MSAs,
which included a total of 1605 and 34,282 sequences for the viral PR and IN, respectively.
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2.2. Inference of Novel Empirical Substitution Models for HIV and General Virus Protease
and Integrase

We split every dataset in two datasets: (i) the method dataset, which includes 90% of
the sequences, and was used to infer the substitution model, and (ii) the test dataset, which
includes 10% of the sequences, and was used to evaluate the developed substitution model.
The inference of an empirical substitution model requires a large number of sequences [38],
and therefore we incorporated most of them into this group. However, we note that
10% of the sequences provided to the test datasets include a large number of sequences
(1700 and 1500 for HIV PR and IN, respectively; 144 and 3400 for general viral PR and
IN, respectively). Actually, we benefited from the large number of sequences that are
available for these proteins. Note that they have been frequently sequenced due to their
relevant role as common antiretroviral drug targets [39–42]. Next, we found that the large
number of sequences present in some method datasets (in particular, those with more than
10,000 sequences, which are 3 of the 4 method datasets) caused computational limitations
that forced us to split them into 10 partitions with the same size (Figure 1). For each
partitioned method dataset, we inferred an empirical substitution model (in particular, the
exchangeability matrix and amino acid frequencies) under the maximum-likelihood (ML)
method implemented in PAML [19], using an ML phylogenetic tree previously reconstructed
with RAxML-NG [18] under the best-fitting substitution model selected by ProtTest [43].
We allowed PAML to internally optimize the model and phylogenetic tree according to
the input data [19]. Using the ML method implemented in PAML, we obtained 10 local
exchangeability matrices and sets of amino acid frequencies that we applied to calculate
(by their average) the global exchangeability matrix and amino acid frequencies (Figure 1).

2.3. Evaluation of the Novel Empirical Substitution Models of HIV-1 and General Virus Protease
and Integrase

We evaluated the inferred empirical substitution models using the test datasets. First,
we applied ProtTest to every test dataset in order to identify the best-fitting empirical
substitution model among the currently available empirical substitution models. Next,
we obtained the likelihood and the Akaike Information Criterion (AIC) [44] and Bayesian
Information Criterion (BIC) [45] scores of the fitting of every substitution model (including
the corresponding empirical substitution model developed in this study and the top 5 of
the currently available empirical substitution models that best fit with the studied test
dataset and were selected by ProtTest) with the test dataset using RAxML-NG (Figure 1).
Additionally, we applied a statistical t-test to compare the AIC and BIC scores obtained
from the empirical substitution models developed in this study with the scores obtained
from other currently available empirical substitution models (the top 5 best-fitting empirical
substitution models among the set of currently available empirical substitution models)
with the test datasets.

3. Results and Discussion
3.1. Novel Empirical Substitution Models for HIV and General Virus Protease and Integrase

We developed protein-specific empirical substitution models of evolution for the
viral PR (one for the HIV PR and another one for the PR of multiple viruses; HIVpr and
VIRpr, respectively) and for the viral IN (one for the HIV IN and another one for the IN of
multiple viruses; HIVin and VIRin, respectively). These four new empirical substitution
models of protein evolution are presented in Tables S1–S4 (Supplementary Material). The
developed substitution models are based on symmetric exchangeability matrices (Q), which
despite potentially being more unrealistic than asymmetric exchangeability matrices, are
well-established in phylogenetics due to the more simple calculation of the probability
matrix (P) for a given period of time (t), P(t) = exp(Qt). Therefore, the development
of symmetric exchangeability matrices allows a wider implementation of the models in
phylogenetic frameworks.
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We found that, among the currently available empirical substitution models (excluding
the models developed in the present study), the HIVb substitution model produced the best
fitting with all of the test datasets, except for the viral IN test dataset, for which the selected
model was WAG. Next, we present qualitative comparisons (quantitative comparisons
are shown in the next section) between the substitution models developed in this study
and the currently available best-fitting substitution models (Figure 2 and Figures S1–S3,
Supplementary Material). In general, we found that the HIVpr and VIRpr substitution
models decreased (compared with the HIVb model) most of relative rates of change among
the amino acids considering the PR function, which suggests a higher specificity. For
example, the PR presents a catalytic aspartic acid (Asp-25) that is usually conserved due to
selection to maintain the protein function [46,47]. Consequently, if it is not conserved, it
could only change to glutamic acid (also a potent acidic nucleophile) in order to conserve the
physicochemical properties and functionality of the catalytic region. In agreement with the
consequences of this selection pressure, the HIVpr and VIRpr substitution models presented
a lower substitution rate from aspartic acid to any other amino acid (compared with
HIVb), except for its substitution to glutamic acid that presents physicochemical properties
similar to aspartic acid (Figure 2 and Figure S1). We only found some amino acid changes
where the HIVpr or VIRpr substitution models displayed a higher relative substitution
rate than the HIVb substitution model, such as the substitutions serine/threonine and
serine/asparagine (in HIVpr), which involve amino acids with similar physicochemical
properties. Less-intuitive cases involved the substitutions serine/histidine (in HIVpr) or
lysine/tyrosine (in VIRpr), which imply a physicochemical change between polar and basic
amino acids, and can occur at the protein surface involved in the protein solubility [46,47].
Concerning comparisons between the HIVin and HIVb substitution models, and between
the VIRin and WAG substitution models (note that HIVb and WAG were selected as the
best-fitting substitution models among the currently available set of empirical substitution
models, excluding the models developed in this study), we found again that the HIVin
and VIRin models present more restrictive relative rates of change for the aspartic and
glutamic acids than the selected models (HIVb and WAG) (Figures S3 and S4). Again,
note that the main catalytic sites of the integrase are aspartic and glutamic acids (Asp-64,
Asp-116 and Glu-152) [48,49]. Comparing HIVin and HIVb, or VIRin and WAG, we also
observed a few amino acid changes with an increase in their relative rate of change, such as
isoleucine/methionine, isoleucine/leucine, leucine/methionine and serine/threonine (in
HIVin) or cysteine/tyrosine (in VIRin), where the amino acids involved presented similar
physicochemical properties, agreeing with selection pressure for the maintenance of the
protein function [40,50,51].
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Figure 2. Comparison of HIVpr and HIVb empirical substitution models concerning their relative
substitution rates. The plot displays the exchangeability matrix of the relative substitution rates
among amino acids for the HIVpr (developed in this study, black circles) and HIVb (the best-
fitting substitution model in the set of currently available substitution models, red circles) empirical
substitution models of evolution. This plot provides an illustrative comparison between the cited
models; the specific parameter values of the HIVpr substitution model are presented in Table S1.

3.2. Likelihood-Based Comparisons Indicate That the Novel Empirical Substitution Models
Outperform the Currently Available Empirical Substitution Models

For every test dataset, we found that the novel substitution model that we inferred
for every corresponding protein family outperforms the currently available best-fitting
substitution models in terms of likelihood. In particular, we found that the currently
available best-fitting substitution models (excluding the substitution models developed in
this study) for the test datasets of HIV PR, viral PR, HIV IN and viral IN were HIVb, HIVb,
HIVb and WAG, respectively. Next, all of the models developed in this study (HIVpr, VIRpr,
HIVin and VIRin) provided lower AIC and BIC scores than the cited currently available
best-fitting substitution models, and also than the top five currently available best-fitting
substitution models (p-values < 0.05; Figure 3 and Figure S4; Supplementary Material).
These results indicate that phylogenetic analyses of viral PR and IN are more accurate if they
are based on a substitution model of evolution developed from the corresponding studied
protein family (such as the substitution models developed in the present study) than if they
are based on a generalist substitution model such as those which are currently available.
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Figure 3. Likelihood-based evaluation of the HIVpr, VIRpr and currently available best-fitting
substitution models. For the HIV PR (left plots) and viral PR (right plots) test datasets, the plots show
the AIC (top plots) and BIC (bottom plots) scores obtained with the HIVpr and VIRpr substitution
models inferred in this study and the top five currently available best-fitting substitution models with
the corresponding test dataset. In all of the cases, the models developed in this study produced AIC
and BIC scores (black bars) significantly lower than the currently available best-fitting substitution
models (p-values = 0.00013 and 0.00014 for HIVpr and VIRpr, respectively and illustrated with * in
the plots).

4. Conclusions

Substitution models of protein evolution are required for the most accurate phyloge-
netic reconstruction methods. However, the currently available set of empirical substitution
models is highly limited, and mostly includes generalist models that are based on huge
protein groups (i.e., nuclear or mitochondrial proteins) or on all of the proteins of a particu-
lar taxonomic level; they thus lack specificity when studying a particular protein family.
Here, we show that there is a need for protein-specific empirical substitution models of
evolution because they can provide accurate likelihood-based phylogenetic inferences,
and we demonstrate this with the development and evaluation of four new empirical
substitution models that mimic the substitution process of the PR and IN of HIV and
other viruses. Of course, the accurate inference of protein-specific empirical substitution
models of evolution requires a large number of protein sequences, but we believe that with
the current exponential increase of protein sequences being deposited in databases, this
limitation will be greatly reduced with time. Altogether, we conclude that, in order to
obtain more accurate phylogenetic inferences for protein families, protein-specific empirical
substitution models should be developed and applied. Indeed, we believe that the new
empirical substitution models that we present in this study could be useful for evolutionary
studies of viral PR and IN, which are some of the main targets of current antiretroviral
drug-based treatments.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes13010061/s1, Table S1: Empirical substitution model of
HIV PR evolution (HIVpr); Table S2: Empirical substitution model of viral PR evolution (VIRpr);
Table S3: Empirical substitution model of HIV IN evolution (HIVin); Table S4: Empirical substitution
model of viral IN evolution (VIRin); Figure S1. Comparison of VIRpr and HIVb empirical substitution
models concerning their relative substitution rates among amino acids; Figure S2: Comparison of
HIVin and HIVb empirical substitution models concerning their relative substitution rates among
amino acids; Figure S3: Comparison of VIRin and WAG empirical substitution models concerning
their relative substitution rates among amino acids; Figure S4: Likelihood-based evaluation of the
HIVin, VIRin and the currently available best-fitting substitution models.
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