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Deep learning-based image-analysis algorithm for classification and 
quantification of multiple histopathological lesions in rat liver
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Abstract: Artificial intelligence (AI)-based image analysis is increasingly being used for preclinical safety-assessment studies in the 
pharmaceutical industry. In this paper, we present an AI-based solution for preclinical toxicology studies. We trained a set of algo-
rithms to learn and quantify multiple typical histopathological findings in whole slide images (WSIs) of the livers of young Sprague 
Dawley rats by using a U-Net-based deep learning network. The trained algorithms were validated using 255 liver WSIs to detect, 
classify, and quantify seven types of histopathological findings (including vacuolation, bile duct hyperplasia, and single-cell necrosis) 
in the liver. The algorithms showed consistently good performance in detecting abnormal areas. Approximately 75% of all specimens 
could be classified as true positive or true negative. In general, findings with clear boundaries with the surrounding normal structures, 
such as vacuolation and single-cell necrosis, were accurately detected with high statistical scores. The results of quantitative analyses 
and classification of the diagnosis based on the threshold values between “no findings” and “abnormal findings” correlated well with 
diagnoses made by professional pathologists. However, the scores for findings ambiguous boundaries, such as hepatocellular hypertro-
phy, were poor. These results suggest that deep learning-based algorithms can detect, classify, and quantify multiple findings simulta-
neously on rat liver WSIs. Thus, it can be a useful supportive tool for a histopathological evaluation, especially for primary screening 
in rat toxicity studies. (DOI: 10.1293/tox.2021-0053; J Toxicol Pathol 2022; 35: 135–147)
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Introduction

Toxicity studies, including the histopathological ex-
amination of tissues from experimental animals, play an 
important role in the risk assessment of chemicals. The reli-
ability of evaluation results is dependent on the level of ex-
perience, expertise, and diagnostic skill of the pathologist. 
In addition, because most areas of the specimen are within 
normal limits and without any abnormal features, the man-
ual reading of histopathological slides is time consuming 
and labor intensive. Moreover, hundreds of glass slides must 
be evaluated in a single toxicity study. Accurately detecting 
and evaluating a few abnormal findings from vast areas of 

normal histology without committing errors of omission is 
difficult. Inter-pathologist variability is inevitable between 
individual pathologists or study sites owing to the inherent 
qualitative/semi-quantitative nature of histopathological 
evaluations. Although a pathology peer review can reduce 
bias, such reviews can be augmented through quantitative 
results of specific histopathological findings. Moreover, 
highlighting and quantifying abnormal areas in a pathologi-
cal image, an easy comparison using the reference values, 
summary tables, and graphs makes the evaluation evidence-
based and adds to the level of confidence during the evalu-
ation process. This is also useful in explaining the findings 
to researchers and team members who are unfamiliar with 
pathology.

In recent years, the digitization of glass slides has en-
abled the application of digital pathology in diverse areas 
such as human surgical pathology, cancer diagnosis, and 
preclinical toxicity studies. The use of machine learning 
and deep learning networks for recognizing and quantifying 
histopathological features has recently been increasingly 
applied in these areas1–4. Particularly in the field of human 
clinical medicine, several cancer tissues can be diagnosed 
with high accuracy using an AI-based pathological image 
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analysis5, 6. In addition, diagnostic techniques used to detect 
subtle changes in digital images acquired through endos-
copy and computed tomography have been established7, 8. In 
the field of human hepatology, AI-based diagnostic imaging 
technology has been used in a variety of tests, such as the 
diagnosis and prediction of hepatobiliary cancers, screen-
ing for nonalcoholic fatty liver disease, and accurate hepatic 
steatosis quantification of liver biopsies9–11.

Such techniques are gradually being used in preclini-
cal toxicity studies for pharmaceuticals. However, develop-
ing AI-based pathological image-analysis methods for pre-
clinical toxicity studies using laboratory animals has proved 
challenging12. The diversity of histology due to the wide va-
riety of animal species used in toxicity studies (such as rats, 
mice, dogs, monkeys, and mini pigs) and the large number 
of organs and tissues to be evaluated in a single study are 
major hurdles in training algorithms. Some AI-based im-
age-analysis algorithms for laboratory animals using his-
topathological digital images have recently been reported, 
such as for detecting and quantifying testicular stage clas-
sification in rats13, of rodent cardiomyopathy14 and hypertro-
phy and vacuolation of rat liver15, 16. These reports showed 
that, for abnormal findings, the algorithms could detect and 
quantify only a single type of finding in each case, and none 
could immediately detect or classify multiple types of find-
ings simultaneously on a WSI.

In this study, we trained a U-Net-based deep learning 
network17 to segment and quantify seven typical histopatho-
logical findings in rat livers. Our algorithm can detect, clas-
sify, and quantify multiple findings simultaneously using a 
WSI. To train the algorithm, digitized liver WSIs scanned 
from glass slide specimens of young Sprague Dawley (SD) 
rats (male, 8 weeks old) treated with various compounds 
during toxicity studies were used. We optimized the mod-
el by testing and retraining using 92 WSIs in the training 
dataset and 59 WSIs in the test dataset. After training, the 
algorithm was validated on 255 liver WSIs to detect, clas-
sify, and quantify seven types of histopathological findings: 
vacuolation of hepatocytes (spontaneous and drug-induced), 
single-cell necrosis, bile duct hyperplasia, hepatocellular 
hypertrophy, microgranuloma, and extramedullary hema-
topoiesis in the liver. The classification and quantification 
performance of the model for the histopathological findings 
was evaluated. The quantitative values computed by the al-
gorithm were then compared with the information on the 
histopathological grade labels, as diagnosed by in-house 
board-certified pathologists (diplomates of the Japanese 
Society of Toxicologic Pathology). Subsequently, thresh-
olds were calculated to discriminate between “no findings 
(within normal limits)” and “abnormal findings” based on 
the quantitative results.

Materials and Methods

For training the deep learning-based analysis model, 
we selected seven histopathological findings that have been 
observed in toxicity studies in SD rat livers: vacuolation of 

hepatocytes (spontaneous and drug-induced), single cell 
necrosis, bile duct hyperplasia, hepatocellular hypertrophy, 
microgranuloma, and extramedullary hematopoiesis (here-
after referred to as lesions). Vacuolation is often observed 
in toxicity studies as a drug-induced lesion; however, be-
cause some degree of vacuolation is also spontaneously ob-
served in normal rats, we distinguished spontaneous vacu-
olation from drug-induced vacuolation in this study. Whole 
slide images (WSIs) of hematoxylin and eosin (HE) stained 
specimens of rat liver were used for the development of the 
algorithm. A subset of the total data was used for training 
the algorithm, and the remaining data were used for testing, 
finetuning, and validation of the model to establish the per-
formance metrics. Progressive improvements of the algo-
rithm were introduced until acceptable degrees of accuracy 
and precision were achieved between the algorithm and the 
pathologist. Figure 1 summarizes the algorithm develop-
ment process.
• Animals

All SD rats were housed individually in a climate-con-
trolled room with a temperature of 23 ± 1 °C, humidity of 55 
± 15%, and a 12 h lighting cycle. A pelleted diet (CR-LPF, 
Oriental Yeast Co., Ltd., Tokyo, Japan) was provided ad libi-
tum. All animal protocols used in this study were in compli-
ance with our laboratory guidelines for animal experimen-
tation and were approved by the Institutional Animal Care 
and Use Committee of the Central Pharmaceutical Research 
Institute, Japan Tobacco, Inc. Before necropsy, the animals 
were fasted overnight on the last day of the dosing period. 
The animals were euthanized by exsanguination from the 
abdominal aorta under isoflurane anesthesia and examined 
in detail for gross lesions. The livers were collected, fixed in 
10% neutral buffered formalin, and prepared for histopatho-
logical examination by embedding in paraffin wax, section-
ing, and staining with HE.
• Generation of WSIs

We prepared the WSIs for the training data for model 
construction, as described in Table 1. A total of 406 HE-
stained glass slides of pathological liver specimens from 
8 week-old male SD rats, which were treated with several 
compounds in toxicity studies conducted at Japan Tobacco, 
Inc., were scanned using a NanoZoomer S360 (Hamamatsu 
Photonics K.K., Shizuoka, Japan) at 20× magnification and 
converted into WSI.
• Datasets

Collecting extensive and high-quality data is essential 
for the development of a deep-learning-based algorithm. 
For this study, we used 406 WSIs for the algorithm develop-
ment, including training and validation. The total dataset, 
made up of 406 WSIs, was divided into two mutually ex-
clusive groups, namely, a development dataset containing 
151 WSIs for training, testing, and finetuning of the mod-
els and a validation dataset of 255 WSIs for validation by 
the pathologists. A total of 92 WSIs from the development 
dataset were used to train the deep learning models for the 
seven lesions. Data from 15 WSIs without histopathological 
findings and 77 WSIs with histopathological findings were 
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used. The models were tested and progressively finetuned 
based on two rounds of feedback from the pathologists on 
two different test datasets comprising 41 and 18 WSIs. Table 
1 summarizes the data distributions.
• Tile extraction

The digital images were read as tiles of chosen sizes 
and magnifications using the OpenSlide software library, 
which is a vendor-neutral software for digital pathology. We 
extracted 512 × 512 × 3 dimensional colored tiles at magni-
fications of 10× and 20×.
• Ground truth generation

Ground truth annotations for the seven lesions were 
generated by data-marking experts under the guidance of 
pathologists, who further verified the annotated data after 
marking. Annotated tiles at appropriate magnifications (10× 
or 20×) were then used to train the models to detect indi-

vidual lesions. Table 2 lists the magnification and number of 
tiles used to develop the algorithms for each lesion.

Fig. 1.	 Workflow of algorithm development. Black dotted lines are used to connect the process steps after the model development is com-
pleted. Red dotted lines are used to highlight the process steps connected with a validation by the pathologists.

Table 1.	 Number of WSIs Used for Training and Validation of the Algorithm

Findings

Required number of WSI
Development  

dataset
Validation 

dataset
Training 1st test 2nd test Validation

Vacuolation (spontaneous) of hepatocytes 8 4 18 205
Vacuolation (drug-induced) of hepatocytes 10 5 18 255
Bile duct hyperplasia 13 9 18 255
Single cell necrosis of hepatocytes 13 6 18 255
Microgranuloma 15 8 18 255
Extramedullary hematopoiesis 8 4 18 255
Hepatocellular  hypertrophy 10 5 18 255
WSIs with no histopathological findings 15 - -

Total number of WSIs 92 41 18 255*

*: Vacuolation (spontaneous) was validated with 205 WSIs.

Table 2.	 Magnification and Number of Tiles Used to Develop the Al-
gorithm for Each Lesion

Findings Magnification Number of tiles
Vacuolation (spontaneous) of 
hepatocytes 20× 185
Vacuolation (drug-induced) of 
hepatocytes 20× 185
Bile duct hyperplasia 10× 648
Single cell necrosis of hepatocytes 20× 543
Microgranuloma 20× 577
Extramedullary hematopoiesis 20× 302
Hepatocellular  hypertrophy 20× 308
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• Data preparation
The training dataset for a lesion consisted of tiles with 

annotated foci of the lesion (hereafter referred to as posi-
tive tiles) along with some (8–10%) tiles without any focus 
(hereafter referred to as negative tiles). The latter were used 
to define the contextual information for the background of 
a lesion.

The rationale behind adding the negative samples is to 
help the models better learn the contrast between the posi-
tive and negative classes, thereby improving the decision 
boundary and in turn resulting in a smaller number of false 
cases (particularly false positives). The performance of the 
model depends upon the optimum ratio of the positive and 
negative samples. However, there is no general rule regard-
ing this optimization. In practice, the optimum ratio is de-
termined empirically for a given model based on the avail-
ability of positive data. In our study, 8–10% of the negative 
data was observed to be the ideal ratio.
• Data augmentation

Both color and geometric augmentations were applied 
to the training set. Color augmentation was conducted by 
varying the saturation and hue of the colored tiles. Rotating 

a tile at multiple angles of 90° and flipping a tile horizontally 
and vertically are examples of geometric augmentations.
• Algorithm development

For each lesion, except for the hepatocellular hypertro-
phy, an accurate binary segmentation was achieved using a 
deep learning model based on a customized U-Net architec-
ture13 as shown in Fig. 2. The annotated tiles from the train-
ing dataset were used to train the models. The models were 
then tested, and were gradually altered and improved to 
ensure that the algorithm and pathologists achieved agree-
ment.

A customized U-Net architecture was utilized to sepa-
rate the hepatic nuclei to locate hypertrophic lesions. In 
addition, the nuclei per unit area and nucleo–cytoplasmic 
ratio for areas around the central vein and portal triads in 
the WSIs of liver tissue were calculated. Hypertrophic he-
patocytes can be recognized by comparing the mean values 
of these quantitative measurements obtained from a series 
of control images with those obtained from the test image.
• Training, testing, and finetuning

The deep learning model was trained on a GeForce 
GTX TITAN X with 12 GB of memory (NVIDIA Co., Santa 

Fig. 2.	 Network architecture used for segmentation of various parameters. An encoder–decoder convolutional neural network (CNN) was 
trained to segment the lesions using annotated training datasets. The network architecture is similar to the U-Net architecture, which 
has skip connections from the encoding layers to the decoding layers. This helps in eliminating the vanishing gradient problem and 
thereby simplifies the optimization during the backpropagation of the gradients. In the architecture, E [M]-[N] denotes the Mth encod-
ing layer with N convolutional filters incorporating an inception-like module, whereas D [M]-[N] denotes the Mth decoding layer with 
N convolutional filters followed by a transposed convolution. Inception modules possess the ability to extract features at multiple scales 
by employing convolution filters of varying sizes. After each encoding block, the feature map is downsampled by a factor of 2 using a 
max pool operation on a 2 × 2 receptive field with a stride of 2. This reduces the number of learnable parameters, which in turn reduces 
the computational cost. At each decoder block (D[M]-[N]), outputs from both the previous decoding layer and the encoding layer are 
concatenated; they are further convolved with convolution filters followed by a transposed convolution of 2 × 2 with a stride of 2. Unlike 
the plane upsampling layer, a transposed convolution has learnable parameters that help in the better reconstruction of a segmentation 
map. Each decoding block increases the feature map size by a factor of 2. A softmax layer is used after the last decoding block to obtain a 
probability map that determines the probability of each pixel belonging to each class. An argmax operation is performed in the last layer 
to obtain the segmentation output.
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Clara, CA, USA). For each lesion, separate training was con-
ducted using the convolutional neural network (CNN) archi-
tecture, as previously mentioned. Approximately 20% of the 
training tiles (along with annotations) were used for model 
validation (differing from the pathologist validation). Before 
feeding to the CNN, all training and validation tiles were 
normalized using the channel-wise (red, green, and blue) 
mean and standard deviation. This helped achieve a faster 
convergence and invariance of the training data against pos-
sible local variations. The training was conducted in batches 
of 12 tiles. The focal Tversky Loss function18 was used to 
reduce the impact of class imbalance. An Adam optimizer19 
was used with a learning rate scheduler with an initial value 
of 1e−3 and a stepwise reduction by a factor of 10 after every 
50 epochs. Necessary postprocessing using morphological 
operations was applied to the segmented outputs.

The initial models were tested on test dataset-1, which 
consisted of 36 WSIs after training. The training labels were 
adjusted in response to the pathologist’s feedback on indi-
vidual lesions. The revised labels were then used to retrain 
the model. To establish agreement between the algorithm 
and the pathologists, the models were finetuned based on a 
second round of testing and pre-validation of all lesions on a 
separate test dataset-2 with 18 WSIs.
• Testing and validation

The trained models for each lesion were tested on 255 
WSIs of the validation dataset. The testing was conducted 
on the tiles extracted from the dataset at the same magni-
fication as that of the training. The bile duct hyperplasia 
model was tested on the 10× magnified tiles, whereas the 
models for vacuolation of hepatocytes (spontaneous and 
drug-induced), single cell necrosis of hepatocytes, hepato-
cellular hypertrophy, microgranuloma, and extramedullary 
hematopoiesis were tested on the 20× magnified tiles. The 
lesions were quantified in terms of the count or percentage 
area for the given tissue sections in each WSI, as described 
in Table 3 below.
• Validation of the algorithm

From the analysis of the 255 WSIs of the liver (vali-
dation set) by the trained algorithm, 2 categories of infor-
mation were gathered. The first shows abnormal results (at 
the image level) and offers a diagnosis based on the WSIs 
discovered by the algorithm, whereas the second includes 
a quantification for each of the findings. First, a group of 
pathologists double-checked the annotated data to ensure 
that the true lesion locations were marked. Then, histo-

pathological data (“no findings (−)” or “abnormal findings 
(+)”) diagnosed by the pathologists were concatenated with 
the quantitative values obtained from the algorithm for each 
specimen. Histopathological data were obtained as follows. 
A pathologist first observed the HE-stained specimens and 
provided draft data. A peer review pathologist double-
checked both the data and specimens. After the peer review, 
five of the pathologists, including the original and peer-re-
view pathologists, discussed the validity of the draft data 
using the specimens and finalized the results.

The most reliable thresholds were calculated for each 
finding based on a receiver operating characteristic (ROC) 
curve using JMP software (version 13.0.0, SAS Institute, 
Inc., Cary, NC, USA). The ROC curves were drawn by plot-
ting (1 − Specificity) on the x-axis and Recall on the y-axis 
for all possible thresholds. The best threshold value was cal-
culated by maximizing Youden’s index (Recall + Specificity 
− 1) in the ROC curve. The discriminative performance was 
evaluated based on the area under the ROC curve (AUC-
ROC).

Based on the threshold value from the ROC curve, bi-
nary diagnostic results by the pathologists were classified 
into four classes: true positive, false positive, false negative, 
or true negative for each finding. The following values were 
calculated.
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• Comparison of quantitative values between the “no find-
ings (−)” and “abnormal finding (+)” groups

The quantitative values of each finding by the algo-
rithm were classified into two groups: those with no find-
ings (−) or those with abnormal findings (+), based on the 
diagnosis by pathologists. For all the learned findings, it 

Table 3.	 Measurement Parameters for Each Finding

Findings Measurement parameters
Vacuolation (spontaneous) of hepatocytes Percentage of area of vacuoles
Vacuolation (drug-induced) of hepatocytes Percentage of area of vacuoles
Bile duct hyperplasia Percentage of area of bile ducts
Single cell necrosis of hepatocytes Number of necrotic hepatocytes
Microgranuloma Number of lesional foci
Extramedullary hematopoiesis Number of lesional foci
Hepatocellular  hypertrophy No quantitative parameter
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was confirmed that the populations were equally distributed 
through an F-test, and thus a comparison of the mean values 
between the two groups was conducted using an unpaired 
t-test (Student’s t-test).

Results

The analysis of WSIs by the algorithm generated two 
types of data: a) image dataset annotating the areas of each 
histopathological finding detected on WSI and b) a dataset 
quantifying the lesion areas.

Image data annotation
Figures 3–8 show the results of the detection and anno-

tation of the abnormal areas of each histopathological find-
ing by the algorithm.
• Vacuolation of hepatocytes

In this study, spontaneous vacuolation and drug-in-
duced vacuolation were separately trained and evaluated. 
Spontaneous vacuolation refers to vacuoles observed in 
the periportal area of the liver of the control group. Speci-
mens with few or no vacuolated areas in the hepatocytes 
were classified as “no findings” of spontaneous vacuolation. 
By contrast, if vacuolated areas were observed to be larger 

than the areas of spontaneous vacuolation, these specimens 
were classified as drug-induced vacuolation. Therefore, the 
“no finding” group for drug-induced vacuolation consisted 
of specimens with no vacuoles and specimens with spon-
taneous vacuolation. Drug-induced small vacuoles in the 
hepatocytes in the periportal area to the midzonal region 
were observed (Fig. 3A and 3C), and vacuoles were detected 
and annotated (filled) as vacuolation in yellow by the algo-
rithm (Fig. 3B and 3D). The normal bile ducts within the 
Glisson’s sheath were annotated with black lines (Fig. 3B). 
Drug-induced vacuolation or spontaneous vacuolation was 
classified based on the threshold (6.23%).
• Bile duct hyperplasia

The bile ducts proliferated in the periportal area 
(Fig. 4A and 4C), and the structure of the bile ducts was 
detected and annotated with black lines by the algorithm 
(Fig. 4B and 4D). Normal bile ducts observed in the con-
trol group or drug-induced bile duct hyperplasia were de-
termined based on whether the percentage of bile duct 
positive areas (black annotated areas) on the WSI exceeded 
the threshold. If the percentage of such areas exceeded the 
threshold, the lesion was considered to be drug-induced hy-
perplasia.

Fig. 3.	 A: (Original WSI): Vacuolation (drug-induced) at the periportal area to the midzonal and normal bile ducts within the Glisson’s sheath 
were observed. B: (Annotation by the algorithm): The abnormal area (vacuolation) in Fig. 3A was annotated (filled) with yellow. (Bar=200 
μm). C: Higher magnification of the dashed area in Fig. 3A. D: Higher magnification of the dashed area in Fig. 3B. The abnormal area 
(vacuolation) in Fig. 3C is annotated (filled) with yellow (Bar=100 μm).
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• Single cell necrosis of hepatocytes
Single-cell necrosis of hepatocytes is annotated with 

light blue lines. Slightly vacuolated hepatocytes were ob-
served in the same area and were also detected and anno-

tated as vacuolated using yellow lines (Fig. 5A and 5B).
• Hepatocellular hypertrophy

In the case of hepatocellular hypertrophy, no quantita-
tive values were generated by this model because the algo-

Fig. 4.	 A: (Original WSI): Bile duct hyperplasia (drug-induced) at the periportal areas was observed. B: (Annotation by the algorithm): The 
abnormal areas in Fig. 4A (bile duct hyperplasia and vacuolation) were annotated with black and yellow, respectively (Bar=500 μm). C: 
Higher magnification of the dashed area in Fig. 4A, showing bile duct hyperplasia and vacuolation of hepatocytes in the periportal area. 
D: Higher magnification of the dashed area in Fig. 4B, annotating the abnormal areas (bile duct hyperplasia and vacuolation) in Fig. 4C 
with black and yellow, respectively (Bar=100 μm).

Fig. 5.	 A: (Original WSI): Single cell necrosis (arrowheads) and slightly vacuolated hepatocytes were found at the periportal area (drug-in-
duced). B: (Annotation by the algorithm): Abnormal areas (single cell necrosis and vacuolation) in Fig. 5A were annotated with light blue 
and yellow, respectively (Bar=100 μm).
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rithm detects this finding based on a variety of parameters, 
not just a single parameter. Therefore, qualitative data (nor-
mal or abnormal) and annotation results were generated. 
Hepatocellular hypertrophy was not observed in the non-
treated liver and was not annotated as “abnormal findings” 
(Fig. 6A and 6B). By contrast, in the treated liver, drug-in-
duced hepatocellular hypertrophy was observed in the cen-
tral area and annotated with blue (Fig. 6C and 6D).
• Microgranuloma and extramedullary hematopoiesis

Microgranuloma (Fig. 7A) and extramedullary hema-
topoiesis (erythrocytic islands, Fig. 7C), which were also 
observed as spontaneous lesions in the control group, were 
detected and annotated with gray and green, respectively 
(Fig. 7B and 7D).

Discriminate performance
The algorithm quantifies the areas or numbers of an-

notated lesions for each finding described above. The best 
threshold values for the quantitative value from the algo-
rithm were calculated through an ROC analysis with the pa-
thologist’s qualitative diagnosis of “no findings” or “abnor-
mal findings” (Table 4). Based on the best threshold values, 
each quantitative value of the findings below or above the 
thresholds was judged as “no findings” or “abnormal find-
ings”, respectively (Fig. 8). Figure 8 shows box-and-whisker 

diagrams based on each quantitative value and the binary 
classification diagnosed by the pathologists; in addition, the 
threshold calculated by the ROC curve was found to sepa-
rate the binary classes well regarding the five findings (two 
types of vacuolation, bile duct hyperplasia, single cell ne-
crosis, and microgranuloma). This indicates that approxi-
mately 75% of the total sample could be classified as a true 
positive or true negative. By contrast, for extramedullary 
hematopoiesis, the binary class was not separated well by 
the threshold, leading to a possible over-detection.

The performance of the algorithm for histopathologi-
cal findings was examined statistically using the measures 
indicated in Table 4. Based on the trend of the results of the 
five assessment indices, the detection performance of the al-
gorithm for each lesion was divided into four groups.
1) A high recall, specificity, precision, balanced accuracy, 
and F1-score group for vacuolation (spontaneous), vacuola-
tion (drug-induced), and single-cell necrosis had few false 
positives and false negatives.
2) A high specificity and precision and low recall group for 
microgranuloma showed a number of false negatives.
3) A high recall and low precision group for bile duct hyper-
plasia and extramedullary hematopoiesis showed numerous 
false positives.
4) A high specificity and low recall and precision group for 

Fig. 6.	 A: (Original WSI): Non-treated liver (control animal). B: (Annotation by the algorithm): The areas of vacuolation (spontaneous) and bile 
ducts in Fig. 6A were annotated with yellow and black, respectively. (Bar=200 μm). C: Hepatocellular hypertrophy (drug-induced) is 
observed in the central area. D: The abnormal area (hypertrophy) in Fig. 6C is annotated with blue.
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hepatocellular hypertrophy showed numerous false posi-
tives and false negatives.

Discussion

In this paper, we present a U-Net-based deep learning 
algorithm for the classification and quantification of seven 
histopathological findings in the livers of SD rats. The algo-
rithm detects and quantifies different histopathological find-
ings simultaneously in WSIs. These features are difficult to 

analyze using conventional image-analysis models.
Table 4 shows that six findings, except for hepatocel-

lular hypertrophy, indicated a high AUC on the ROC curve 
and the F-score, which is a comprehensive evaluation index 
of accuracy and comprehensiveness. Figure 8 shows that the 
bodies of the box for the “no findings” group and “abnormal 
findings” group were almost neatly divided into two parts at 
the threshold, indicating that approximately 75% of the total 
sample could be classified as a true positive or true negative. 
Although several false positives were reported for some 

Fig. 7.	 A: (Original WSI): Microgranuloma (spontaneous) near central veins were observed. B: (Annotation by the algorithm): The abnormal 
area (microgranuloma) in Fig. 7A was annotated with gray (Bar=100 μm). C: An erythroblastic island (spontaneous) was observed in the 
sinusoids. D: The abnormal area (extramedullary hematopoiesis) in Fig. 7C is annotated as green (Bar=50 μm).

Table 4.	 Statistical Parameters Derived as Indices for Performance of Lesion Detection for Each Finding

Findings AUC-ROC Threshold Recall Specificity Precision Balanced 
accuracy F1 score

Vacuolation (spontaneous) 0.91 1.72* 0.84 0.86 0.81 0.85 0.82 
Vacuolation (drug-induced) 0.97 6.23* 0.96 0.92 0.75 0.94 0.84 
Bile duct hyperplasia 0.97 0.5* 0.96 0.87 0.42 0.91 0.59 
Single cell necrosis of hepatocytes 0.93 455** 0.84 0.93 0.80 0.89 0.82 
Microgranuloma 0.84 13** 0.67 0.88 0.93 0.78 0.78 
Extramedullary hematopoiesis 0.74 1** 0.98 0.41 0.66 0.69 0.79 
Hepatocellular  hypertrophy NA NA 0.68 0.86 0.30 0.77 0.42 

*: Percentage of lesional area in a WSI.
**: Number of foci in a WSI.
NA (Not applicable): No quantitative values because only qualitative data (normal or abnormal) are generated by the algorithm.
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findings, indicating a low precision, the number of false 
positives was high presumably because we tried to mini-
mize the number of oversights during training. Because the 
primary purpose of this algorithm is to screen for abnormal 
findings, the advantage of fewer false negatives was given 
priority over the disadvantage of more false positives.

In the detection of abnormal areas, findings with clear 
boundaries with the surrounding normal structures, such as 
vacuolation and single-cell necrosis, were accurately detect-
ed and the statistical scores were high; however, ambiguous 
boundaries such as hepatocellular hypertrophy were not ac-
curately detected and false positives were frequently found.

Vacuolation and single cell necrosis were well classi-
fied and quantified by the algorithm and correlated well with 
the diagnosis of the pathologist. For vacuolation, we set the 
quantitative threshold values for the following groups: the 
no-vacuolation group with almost no vacuolated areas, the 
vacuolation group with vacuolated areas up to the level of 
the control group (spontaneous vacuolation), and the vacu-

olation group with vacuolated areas larger than the areas 
of spontaneous lesions in the control group (drug-induced 
vacuolation). The performance of the annotation was high, 
and vacuoles with a diameter of approximately 2 μm (ap-
proximately one-third of the diameter of the nucleus) can 
be accurately detected even in the 20× scanned WSIs. As 
a drawback, in addition to the vacuole area, the cytoplasm 
area of hepatocytes with vacuoles of a certain extent was 
also detected and quantified, which was higher than the ac-
tual vacuolated area. This may be attributed to the insuf-
ficient resolution of the scanned image (20× magnification). 
If scanning at 40× magnification or higher becomes the 
mainstream in the future, the detection performance will be 
improved. At present, the algorithm can adequately detect 
differences among the groups with no findings, spontaneous 
vacuolation, and drug-induced vacuolation, which is suffi-
cient for toxicity screening studies. In this study, we did not 
consider the lack of grading of the lesions within the drug-
induced group because the first purpose of this study was to 

Fig. 8.	 Comparison of the quantitative values between binary classifications by the pathologists. The horizontal axis shows binary classification 
judged as “no findings (−)” or “abnormal findings (+)” by pathologists, and the vertical axis shows the quantitative values calculated 
by the algorithm. Here, [%] indicates the ratio and [No.] indicates the number of annotated areas of abnormal findings in the WSI. The 
red line crosses the vertical axis and its numerical value indicates the threshold value of the finding calculated from the ROC curve. In 
the “no findings (−)” group, plotted samples above the threshold value indicate false positives, and plotted samples below the threshold 
value indicate true negatives. By contrast, in the “abnormal finding (+)” group, plotted samples above the threshold value indicate true 
positives, and plotted samples below the threshold value indicate false negatives. Vacuolation (spontaneous): n=120 (−), 85 (+). Vacuola-
tion (drug-induced): n=205 (−), 50 (+). Bile duct hyperplasia: n=222 (−), 23 (+). Single cell necrosis: n=192 (−), 63 (+). Microgranuloma: 
n=76 (−), 179 (+). Extramedullary hematopoiesis: n=118 (−), 137 (+). As for the five findings other than extramedullary hematopoiesis, 
the thresholds bisected the body of the box, indicating that approximately 75% of the total sample could be classified as a true positive or 
true negative. However, for extramedullary hematopoiesis, the thresholds intersect the body of the box in both groups.
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detect and classify the abnormalities. To further subdivide 
the histopathological grade or classify drug-induced “mac-
rovesicular” or “microvesicular” lesions based on the quan-
titative values, it is necessary to train the algorithm using 
specimens with more variation in the degree of vacuolation.

For single-cell necrosis, the algorithm can accurately 
detect areas with lesions in the WSIs. Because a certain 
number of necrotic cells are usually observed even in the 
control group (group of “no findings”), setting a thresh-
old and quantifying necrotic cells as above and below the 
threshold, is an extremely useful way to objectively clas-
sify areas “within normal limits” and those showing “drug-
induced single cell necrosis”. As the drawback of this 
algorithm, normal hepatocytes in the control group are oc-
casionally detected as single cell necrosis. The detection 
algorithm for this finding is based on indicators such as ir-
regularly shaped nuclei (pyknotic nuclei), more eosinophilic 
cytoplasm, and a change in cytoplasmic morphology from 
polygonal to round. However, normal hepatocytes may be 
judged as necrotic cells depending on the variation of the 
cut surface derived from the specimen preparation process 
(artifact). In addition, the basic premise of the application of 
this algorithm is to prevent an overlooking of abnormal find-
ings (false negatives) as much as possible, while allowing 
the detection of a certain number of false positives. Because 
this model must be operated in anticipation of a certain 
number of false positives, it is beneficial to set a threshold to 
reduce the subsequent noise.

With microgranuloma, the majority of lesions in the 
WSIs were accurately detected by the algorithm, although 
the detection accuracy was not equal to that for vacuolation 
and single-cell necrosis. The specimens were occasionally 
classified as false negatives based on the threshold. One-
fourth of the specimens were classified as false negative 
because there was a relatively large difference in the cut-off 
criteria used by pathologists. In the future, this problem can 
be solved using graded data that correct the differences in 
criteria among the pathologists. In this study, because the 
number of microgranuloma rarely increases with drug treat-
ment in rat toxicity studies, as based on our experience, and 
specimens with drug-induced lesions are sparingly avail-
able, only spontaneous microgranuloma were used for train-
ing and validating the algorithm. However, we were able 
to collect values for the background levels of spontaneous 
microgranuloma. Therefore, in the pathological evaluation, 
specimens that showed quantitative values exceeding the 
background level of spontaneous microgranuloma should 
be carefully examined by pathologists.

Regarding bile duct hyperplasia, the algorithm could 
detect and classify a wide range of bile duct morphologies 
from normal to abnormally proliferated bile ducts. In addi-
tion, false detection of other structures, such as veins and 
arteries, as bile ducts is extremely rare. However, large bile 
duct structures are occasionally found in a specimen, and 
may be reflected in a higher area percentage of bile ducts. 
As a result, the number of specimens classified as false posi-
tives may occasionally be higher. The noise in this problem 

can be minimized through the careful examination of each 
group for dose dependency by the pathologists and setting 
study-specific threshold values based on the control speci-
mens. In the future, it will be necessary to include training 
for variations in the grade of lesions of bile duct hyperpla-
sia as well as vacuolation to enable an accurate quantitative 
grading.

For extramedullary hematopoiesis, the algorithm could 
detect erythroblast islands on the specimen, with occasional 
false-positive detection of mononuclear cell infiltration and 
microgranuloma. Further training is needed to improve the 
accuracy of this parameter because the livers of 8 week-old 
male rats show a small number of extramedullary hemato-
poiesis foci, and even a few false positives can greatly affect 
the accuracy of the diagnosis.

Typical areas of hepatocellular hypertrophy can be de-
tected. However, even in the control group, normal areas that 
appeared to be hypertrophic were occasionally judged as 
abnormal (false positive) depending on artificial variations 
in the specimen preparation, such as a poor fixation, defor-
mation during fixation, and section extension by hot water. 
Conversely, the true hypertrophic areas were occasionally 
overlooked. Overall, the accuracy is insufficient. We need 
to investigate the parameters necessary for the algorithm to 
determine normal/abnormal (such as the area ratio of hepa-
tocytes at the periportal and central regions) cases and con-
duct training to increase the accuracy of these parameters. 
Certain algorithms have been reported to achieve a high ac-
curacy in detecting hepatocellular hypertrophy12; therefore, 
we would like to improve our algorithm further by using a 
variety of samples in the future.

Previous toxicity assessment algorithms in nonclini-
cal studies using AI image-analysis technology focused on 
detecting and quantifying only a single type of finding in 
each case. Focusing on and detecting only one specific find-
ing is an extremely useful approach. However, the previous 
algorithms could neither detect nor classify multiple types 
of findings simultaneously on a WSI. By contrast, our al-
gorithm can detect, classify, and quantify multiple changes 
simultaneously on a WSI and supports a wide variety of 
typical findings for detection. We believe that our algorithm 
is more useful than others for screening a wide variety of 
findings in the early stages of drug development.

Importantly, our algorithm can generate accurate 
analysis results by using WSIs scanned at 20×; therefore, 
it significantly reduces the data size and duration of digital 
scanning by 25% compared to WSIs scanned at 40×, which 
is commonly used in this field.

It is challenging to speed up the selection of candidate 
compounds for drug development, particularly in the early 
stages of development. In preclinical toxicity studies dur-
ing the early stage of drug development, this deep-learning-
based algorithm can be a useful tool to optimize the time 
needed for data generation to evaluate the development fea-
sibility after necropsy. The algorithm can reduce the time 
and effort pathologists expend in screening normal areas in 
images, as well as prevent fatigue-induced errors of omis-
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sion owing to cumbersome work processes. In addition, such 
solutions can set an objective and quantifiable threshold be-
tween cases “within normal limits” and “findings present” 
to improve the consistency among pathologists.

In actual situations, liver specimens can be scanned at 
20× magnification and stored on a server during working 
hours, with the algorithm batch analysis of the images tak-
ing place during non-working hours. The results will then be 
ready the next working day. The pathologist can then review 
the analyzed WSIs, and if necessary, cross-check them with 
glass slides of the histopathology. This allows pathologists 
to quickly screen areas that the algorithm judges as “non-
abnormalities”, and to focus more time on the areas that the 
algorithm annotates as “abnormal findings”. Therefore, this 
can be a useful and supportive tool for a histopathological 
evaluation, particularly for the primary early screening in 
rat toxicity studies when the speed of a go or no-go decision 
is critical. This is expected to greatly improve the work ef-
ficiency and prevent errors owing to an oversight.

In conclusion, we trained efficient algorithms for the 
classification and quantification of seven specific histo-
pathological findings in the liver of young SD rats, which, 
with the exception of hepatocellular hypertrophy, exhibited 
a high correlation with the diagnoses of pathologists. We 
believe that this algorithm will contribute to the improve-
ment of the objectivity, accuracy, and reproducibility of 
histopathological evaluations in toxicity studies. Moreover, 
the quantification of morphological changes adds a novel di-
mension to this evaluation method. In addition to the seven 
findings described above, as well as findings that require 
further improvement, we are training algorithms to classify 
and quantify additional findings in the liver that are often 
encountered in toxicity studies, such as degenerative le-
sions, in addition to lesions occurring in other organs such 
as the kidney.

Regarding the detection of drug-induced findings other 
than the seven findings examined in this study, an unsuper-
vised approach can be adopted to detect them as anoma-
lies/outliers in otherwise normal/known data. The cur-
rent algorithm for identifying the seven lesions described 
in this study is based on a supervised approach. However, 
the learning in terms of normal histology and the specific 
abnormalities combined with the training data provided 
us with a strong footing to develop an anomaly detection 
algorithm based on unsupervised methods. Although this 
function was not well developed during this study because 
such findings are rare in young SD rat specimens, we would 
like to verify and develop this function further in the future. 
The goal is to develop a versatile and innovative tool for 
a faster and more efficient pathological evaluation, which 
will play an auxiliary role for pathologists in future toxicity 
studies. We will continue to expand this application to other 
organs to ultimately develop a solution that will accelerate 
the speed of pharmaceutical drug development.
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