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1  |  INTRODUC TION

Skeletal muscle is a particular structure that induces functional and 
structural alternation in answer to amounts of activity and mechan-
ical load, and it carries out the vital work of strength development.1 
As a rule, muscle atrophy is readily triggered by load decline. For 
instance, microgravity exposure, plaster fixing for treating a frac-
ture, hind limb suspension of the rat and long- term lying down cause 
static atrophy.2– 4 With diseases or ageing of the nervous system, 
muscle atrophy can be observed as well.5 Regrettably, our under-
standing of this process remains unclear, and it is vital to understand 

the molecular mechanisms of muscle atrophy from the viewpoint of 
muscular atrophy prevention.

Skeletal muscle atrophy, irrespective of the original cause, re-
sults in typical cascades of events regulated by cells from the im-
mune system.6 Therefore, a particularly important and unstudied 
aspect of muscle atrophy is the role of immune cells in aggravating 
damage and probably guiding muscle repair.7 Pathologic injury re-
cruits cells (polymorphonuclear leukocytes and monocytes/macro-
phages) from the innate immune system that primarily clear cellular 
debris and also release noxious molecules.8 Moreover, infiltrating 
immune cells remain alive and are continuously activated, inducing 
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Abstract
Homeostasis in skeletal muscle is sustained by the balance of functional and physical 
interactions between muscle and myofibre microenvironment. Various factors, such 
as ageing, disuse and denervation, tip the balance and induce skeletal muscle atro-
phy. Skeletal muscle atrophy, which involves complex physiological and biochemical 
changes, is accompanied by adverse outcomes and even increased mortality. Multiple 
studies have investigated the role of neutrophils in atrophied skeletal muscles; how-
ever, neutrophil intrusion in muscle is still a polemical knot. As technical obstacles 
have been overcome, people have gradually discovered new functions of neutrophils. 
The classical view of neutrophils is no longer applicable to their biological character-
istics. To date, no clear association between the hidden injurious effect of neutrophil 
intrusion and muscle atrophy has been convincingly proven. Throughout this review, 
we have discussed the neutrophil activities that mediate muscle atrophy for distinct 
disease occurrences. Hopefully, this review will help both clinicians and researchers 
of skeletal muscle atrophy with relevant targets to further explore efficient medical 
interventions and treatments.
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tissue inflammation.9 The inflammatory reaction may generate some 
injury in situ and result in fat accumulation and deposition of colla-
gen with interstitial fibrosis, despite representing a reaction to in-
jury and necrosis.10 Similar events probably occur during consistent 
muscle injury which progresses to atrophy. Over the past few years, 
researchers have started to pay attention to the complex crosstalk 
between skeletal muscle and neutrophils in acute injury or chronic 
diseases.9,11,12

Neutrophils are the most abundant leukocytes in circulation, 
depending on steady supply from the bone marrow.13 Furthermore, 
they are the shortest- living cells in mammals and are terminally dif-
ferentiated with limited transcriptional activity. Under physiologi-
cal conditions, they are the immune system's first line of defence 
against fungal and bacterial infection and employ rich antimicrobial 
elements (containing hydrolytic enzymes and reactive oxygen spe-
cies [ROS]), capable of combating invasive pathogens. Additionally, 
neutrophils play a crucial part in the coordination of the inflamma-
tory response and overall immunity. The diversity of their individ-
ual activities and the way they engage in biological processes (such 
as neutrophil extracellular traps [NETs]: the extrusion of their ge-
nomic DNA), render neutrophils unique.14 Neutrophils not only lead 
to tissue injury in inflammatory diseases and various autoimmune 
diseases but also play significant roles in disease development.15 
Therefore, the neutrophils seem to be exciting targets for thera-
peutic intervention; nevertheless, we need to distinguish conducive 
responses from potentially detrimental side effects despite their 
crucial but complicated involvement in diverse diseases.

The abnormal chemotaxis of neutrophils in response to changes 
in environmental homeostasis may result in widespread cell injury. 
Notably, the mechanistic connections and interplay between skel-
etal muscle atrophy and neutrophils have raised considerable re-
search interest. Multiple studies demonstrate that neutrophils and 
their migratory infiltration may cause predominant signalling events 
in skeletal muscle atrophy.16,17 Therefore, elucidating the relation-
ship between skeletal muscle atrophy and neutrophils is also a criti-
cal key to exploring therapeutic intervention for potential biological 
targets in skeletal muscle atrophy.

In this review, we provide a comprehensive summarization of 
neutrophil biology and discuss the established pathogenic roles of 
neutrophils in muscle atrophy. Distinct challenges and limitations, 
specific therapeutic strategies, and integral conceptual framework 
faced in targeting neutrophils are then evaluated. These findings en-
able us to distinguish between inflammatory processes that disrupt 
muscle homeostasis and the processes that promote muscle repair 
and regeneration during muscle atrophy. Additionally, we discuss 
the most recent studies describing muscle- derived mediators which 
may promote or suppress the invasion of neutrophils. So far, investi-
gations have revealed that neutrophils promote muscle injury after 
infiltration; however, the mechanism of neutrophils' role in muscle 
repairment has not been elucidated yet. Limiting certain aspects of 
inflammation may theoretically ameliorate and decrease signals for 
muscle atrophy. Considering muscle atrophy to be the result of im-
mune cells competing with different components of the muscular 

microenvironment helps explain what makes neutrophils fascinating 
as they may be indispensable to the process of muscle atrophy.

2  |  OVERVIE W OF NEUTROPHIL S

Neutrophils are evolutionarily old cells that acquired the tendency 
to phagocytize targets.18 These phagocytizing cells are present all 
over the faunal kingdom from invertebrates to mammals. In hu-
mans, neutrophils compose approximately 60%– 70% of the total 
leukocytes and are the most abundant innate immune cells in the 
peripheral blood.19 While they are generated in the bone marrow, 
they spend limited time in circulation and are considered short- lived 
cells. Generally, neutrophils have a transient circulating half- life of 
about 6– 8 h in mice and humans.13 Nevertheless, they perform di-
verse roles in inflammatory and immune processes.

The classical view of neutrophils is that they are the first line 
of cellular defence against invading microorganisms by rapidly 
crossing the blood endothelial cell barrier and performing effector 
cell functions.20 The basic defence functions of neutrophils con-
tain invading microorganisms and phagocytosis of cellular debris, 
production of oxygen- derived reactants, and release of protein 
hydrolases (Figure 1).21 As per the suggested mechanism, the dam-
aged host cells raise alarm signals that activate antigen- presenting 
cells (APCs).19 Moreover, the neutrophils, which act as a vital 
component of the immune response, play a significant role in the 
recruitment, activation and programming of APCs.22 These cells 
respond rapidly to inflammatory signals deriving from infected 
or injured regions outside the circulatory system. Several recep-
tors expressed by them sense a variety of soluble inflammatory 
mediators ranging from cytokines to bioactive lipids, to increase 
the aggregation of immune cells.23 On a per- cell basis, neutrophils 
deliver lesser cytokine molecules than macrophages and lympho-
cytes. However, neutrophils at the site of inflammation are usually 
one to two orders of magnitude higher in number than mononu-
clear leukocytes; therefore, they can act as an important source of 
cytokines, such as tumour necrosis factor (TNF), at key moments 
in the decision to initiate an immune response.24 Finally, neutro-
phils begin to implement a regime of microbial killing, executing 
programs of phagocytosis, degranulation and NETosis.25

The recruitment of neutrophils in most tissues in small post- 
capillary venules usually follows a multi- step pathway during in-
flammation: tethering, rolling, arresting, crawling and eventual 
transmigration (Figure 1).26 The neutrophil recruitment cascade 
is initiated by changes in the surface of endothelial cells caused 
by inflammatory mediators (such as histamine, leukotrienes and 
cytokines) delivered by leukocytes in the tissue upon encounter-
ing pathogens.27 Additionally, endothelial cells can be activated 
directly by detecting the pattern recognition receptor (PRR) of 
pathogens.28 Once activated, endothelial cells can upregulate ad-
hesion molecules within minutes and maximize the recruitment 
of neutrophils through overlapping functions.28 Both E- selectin 
and P- selectin can capture neutrophils in circulation to bind to 
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endothelial cells and cause neutrophils to start rolling towards 
the endothelial surface in the direction of blood flow. On the 
contrary, L- selectin promotes secondary tethering of circulating 
neutrophils that are already rolling.29 At the site of inflammation, 
neutrophils perform different effector functions that lead to the 
clearance of invading microorganisms or promote an inflammatory 
response. Moreover, neutrophils are capable of producing che-
motactic signals that attract monocytes and dendritic cells (DCs) 
and affect macrophage differentiation into predominantly pro-  or 
anti- inflammatory conditions.30 The rich and varied influence of 
neutrophils during this final stage of the inflammatory process is 
complex, and the exact effect, injury or repair, on tissues is not 
completely understood.

3  |  NEUTROPHIL S MAY PROMOTE 
MUSCLE ATROPHY

Previous studies have shown that neutrophils account for over 90% 
of the circulating granulocytes and in many pathological states are 
usually the first cell types to invade the skeletal muscle.31 Frequent 
and severe infections in neutrophil- deficient patients have further 
confirmed the importance of these immune cells in the host's de-
fence against infection.32 However, muscle injury can be reduced 
when functionally normal neutrophils do not migrate to the injured 
tissues.33 Additionally, the pattern of leukocyte response to tissue 
damage shows that neutrophils infiltrate the damaged tissue and 
exacerbate the original damage as they assist in the removal of the 
damaged tissue.34 Thus, neutrophils can be greatly destructive and 
lead to severe tissue injury and can cause exacerbation of skeletal 
muscle damage in hours to days after damage. Neutrophil recruit-
ment varies in number and type depending on the pathogeny in 
the skeletal muscle.7 In certain types of controlled inflammatory 

responses, the precise role of neutrophils is currently unclear; it 
includes the prevailing inflammatory conditions in skeletal muscle: 
sterile, nonhypoxic and nonchronic inflammatory conditions.

In recent years, several morphological observations in vivo 
and in vitro suggested that neutrophils could indeed exacerbate 
muscle injury and atrophy through the release of free radicals and 
protein hydrolases.33,35 An in vitro study of myotubular injury and 
tension revealed that both types of damage could lead to the re-
lease of factors that affected neutrophil chemotaxis and initiation, 
but only injured myotubes released factors that activated neu-
trophil production of free radicals.21 It suggests that muscle cells 
release inflammatory molecules that can activate neutrophils to 
varying degrees, and that such molecules vary with the type and 
intensity of the injury.36 Relevant scholars suggested that neutro-
phils impaired cultured skeletal muscle cells (myotubes) through 
CD18- mediated neutrophil adhesion and production of ROS.37,38 
The skeletal muscle atrophy induced by the loading of atrophic 
muscle,31,39 eccentric contractions40 or muscle trauma,41,42 is as-
sociated with increased muscle neutrophil concentrations. Thus, 
neutrophils are considered to promote skeletal muscle injury in 
hours to days following damage and aggravate muscle atrophy for 
longer durations, mainly due to the temporal relationship between 
muscle neutrophil concentrations and secondary damage, and also 
because neutrophils can deliver potentially harmful lysosomal en-
zymes as well as reactive nitrogen intermediates (RNIs) and reac-
tive oxygen intermediates (ROIs) (Figure 2).43,44 It is established 
that both RNIs and ROIs exert important roles in homeostasis 
and inflammation.45 Thereinto, the successive 1- electron reduc-
tion products of O2 on the way to producing water are known as 
ROIs. Specifically, oxygen with a reduction state that is halfway 
between that of oxygen (O2) and water (H2O) is referred as the 
term ‘intermediate’ in ROIs.13 As a rule, the ROIs mainly consist of 
hydroxyl radical (●OH), hydrogen peroxide (H2O2) and superoxide 

F I G U R E  1  Overview of neutrophil development and function. Initially, neutrophils occur generation and maturation in the bone marrow. 
On sensing environmental microbial or inflammatory stimuli, neutrophils undergo a special recruitment cascade including tethering, rolling, 
arrest, crawling and eventually transmigrate into the target tissues. At the site of tissues, neutrophils exert their different effector functions, 
mainly consisted of phagocytosis, superoxide production and net formation.
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anion radical (O2
− or O2

●−). Further, the ROS covers ROIs plus sin-
glet oxygen (1O2) and ozone (O3).46 Sometimes, the terms ROS and 
ROIs are utilized interchangeably and may also contain hypoio-
dous acids (HOI) and hypochlorous (HOCI). Correspondently, the 
RNIs that make marked impacts on ROIs levels are nitrite (NO2

−), 
nitric oxide radical (NO), peroxynitrite (ONOO−) and nitrogen di-
oxide radical (●NO2).47 The subset of atoms that are shared by 
various microbial molecules with RNIs and ROIs would generate 
covalent chemical reactions, and they are proven to be toxic when 
at high levels in immune microenvironment.48

Additionally, a previous study has shown that within 2 h after 
injury, the concentration of neutrophils in muscle increased and 
remained for at least 48 h above the normal concentrations.31,39,42 
During this time, the muscles would degenerate further (secondary 
damage).41 Moreover, one interesting study indicated that neutro-
phils could extremely amplify muscle injury led by the use of modified 
muscles, accelerating muscle atrophy and fibrosis.49 The addition of 
myeloperoxidase (MPO)- rich neutrophils to muscle with increased 
load in the presence of elevated superoxide dismutase (SOD) activ-
ity and reduced peroxidase activity will promote sarcolemma lysis.50 
MPO by itself is not lethal but can effectively enhance the lethality 
of ROIs; lack of MPO or addition of MPO inhibitors can reduce the 
lethality of neutrophils.51 In non- stressed neutrophils, MPO is stored 
in islamophilic granules. Once the neutrophils are bound, however, 
the enzyme is delivered into the phagocytic vesicles or extracellular 
space.18 Also, in MPO knockout mice, membrane lysis of flounder 
muscle after exercise was significantly reduced by 52% compared to 
wild- type mice,49 demonstrating that MPO- containing neutrophils 

and their activators, such as proinflammatory cytokines, promote 
muscle injury and atrophy.

In addition, infiltrating neutrophils can release chemical signals 
to attract phagocytes, such as macrophages and monocytes, to the 
damaged region.52 ROS originating from these phagocytes increases 
gene expression of inflammatory cytokines in the skeletal muscle 
which results in increased aggregation of phagocytes to the injured 
muscle tissues.7,53,54 Many inflammatory cells release inflammatory 
cytokines (e.g. interleukin [IL]- 6, IL- 1 and TNF- α) and ROS, and this 
microenvironment may be a key driver of the downstream effects 
of inflammation and myofibrillar lysis.7 These findings are novel and 
provide evidence for the mechanism by which neutrophils can mod-
ulate inflammation by inducing macrophage infiltration, leading to 
muscle atrophy in the long term.

Neutrophil infiltration have been shown to occur in the following 
exercised- injured muscles: plantaris,55 rectus femoris,56 soleus,57 tib-
ialis anterior,58 white vastus57 and vastus lateralis.59 Among different 
muscle types, however, the concentration of macrophages or neu-
trophils appears to be vary in motorial and sedentary control mus-
cles.57,60 These findings may be related to those areas of the muscle 
that are dominated by fast fibres. In the hindlimb suspension (HS) 
model, significant increases in myoneutrophil and macrophage con-
centrations occurred during exacerbation of ultrastructural signs of 
injury and fibrous necrosis, indirectly supporting the possibility that 
invasive inflammatory cells are involved in muscle injury.61,62 McArdle 
et al.63 informed that muscle contraction caused no significant dam-
age and increased the production of muscle- derived superoxide an-
ions. The superoxide anion and the downstream reaction product, 

F I G U R E  2  Neutrophils in muscle 
atrophy and repair. Neutrophils are 
believed to play a key role in muscle 
atrophy, where they can have either 
pro- atrophy or pro- repair activities. 
They can exert adverse effects in 
the degeneration phases by release 
proinflammatory cytokines or ROIs or 
proteases accelerating the muscle atrophy 
and fibrosis. However, macrophages 
could be attracted to the injured area by 
neutrophil signal and actively promote 
fibre regeneration.
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hydrogen peroxide, have been reported to cause oxidative modifi-
cation of plasma proteins which led to neutrophil chemotaxis64 and 
enhanced neutrophil activation (i.e. production and degranulation of 
ROS).65 In- depth research demonstrated that oxidation products and 
hypochlorite produced by neutrophils mediated phagocytosis and 
destruction by neutrophils.66 Additionally, inhibiting neutrophil adhe-
sion and ROIs production with anti- CD18 and intracellular adhesion 
molecule- 1 antibodies has been reported to attenuate neutrophil- 
mediated damage to endothelial cells and myocardial myogenic 
cells.67,68 Moreover, CD18 knockout mice revealed a more direct link 
between neutrophil infiltration and muscle atrophy.50

In response to fibre injury, restorative progenitor cell activation 
competes with the ongoing fibrotic process and ultimately inhibits 
the recovery of atrophic muscle function. Repeated cycles of injury, 
repair and fibrosis can result in satellite cell depletion and fibre de-
generation.70 Therefore, neutrophils, one of the main cellular com-
ponents of microbial destruction in the human body, also play a vital 
role in muscle atrophy.

4  |  DO NEUTROPHIL S PARTICIPATE IN 
MUSCLE REPAIR?

To date, the role of neutrophils in muscle atrophy has not been elu-
cidated for several pathological conditions. Some scholars showed 
that the aggregation of neutrophils and macrophages was not con-
sistent with the rapid power reduction seen 2 h after reloading in 
an HS model. This observation supported the assumption that the 
original mechanism by which reloading leads to damage is a mechan-
ically modulated activity in which neutrophils play a minor role.70 
Thus, from the studies in the HS model, it was concluded that: (1) 
an increase in neutrophil concentration was not associated with any 
decrease in muscle strength and (2) the inability to activate the con-
tractile machinery was the primary mechanism for the loss of early 
strength production after reloading.71 These results suggested that 
neutrophil infiltration is highly regulated and is effectively eliminated 
during modified mechanical loading, and that no significant damage 
is caused to myofibres unless the activation state of neutrophils is al-
tered by the presence of lipopolysaccharide (LPS).17 Meanwhile, pre-
vious studies have demonstrated that despite the presence of large 
numbers of neutrophils, reloading after hindlimb unloading caused 
minimal damage to muscle fibres (1%– 2%).49 Additionally, functional 
and immunohistological analyses in vitro also revealed that the loss 
of muscle strength linked to hindlimb unloading and reloading did 
not correlate with the time course of neutrophil aggregation.71 In 
reality, the muscle atrophy and recovery modulated by physiologi-
cal processes in unloaded and reloaded muscles are distinct from 
chemical and ischaemic damage or muscle crush, and they could 
accordingly result in different neutrophil responses. In the former 
case, there is essentially no muscle damage, and the goal is maximum 
muscle recovery, while the latter requires myofibrillar breakdown, 
phagocytosis, satellite cell proliferation, myotube formation and 
eventually tissue remodelling to re- establish homeostasis in vivo. 
The mechanism of neutrophil infiltration is unclear, but the resulting 

sustained inflammatory injury is thought to be an important factor in 
initiating the repair process.17

Some preliminary results have demonstrated that inhibiting the 
infiltration of neutrophils impairs regenerative response in muscles 
while having little influence on non- muscle cellular proliferation.72 
By clearing tissue fragments from damaged areas through phagocy-
tosis41 and activating satellite cells, alternatively, neutrophils could 
promote muscle regeneration.73,74 In an elaborate study of a crush- 
injury model, TNF- α was initially released by mast cell degranulation, 
after which neutrophils started accumulating in the muscle bed and 
released more TNF- α, and this was followed by macrophage infil-
tration.75,76 Resident macrophages surrounding the epimysium and 
perimysium of the whole muscle and fascicles, respectively, also play 
a key role in the early stages of various acute muscle injuries by pro-
ducing chemokines that attract neutrophils from the bone marrow 
that migrate outwards into the tissues.77 Moreover, infiltrated neu-
trophils can further promote macrophage inflammatory secretion 
and result in macrophage phenotype conversion, possibly activate 
satellite cells, and accelerate muscle repair (Figure 2).78 The study 
showed that low- density lipoproteins (LDLs) together with CD68 
could reinforce the inflammatory secretion and phagocytosis by 
macrophages79,80; during this stage, particularly, the release of MPO 
from neutrophils promoted these bindings by oxidative modification 
for LDLs81 and these interactions may exert a crucial role in mus-
cle repair. Similarly, MPO was also an important ligand for CD206,82 
which could regulate the macrophage functions by reducing mus-
cular injury and inflammation.83 More importantly, it is well- known 
that the transition between macrophage phenotypes is essential for 
muscle regeneration and neutrophils seem vital for the phenotype 
shift of macrophages from M1 to M2 during muscle repair.84 Several 
experimental evidences strongly suggested that the time course of 
neutrophil apoptosis coincides with macrophage phenotypes shift in 
the HS model of muscle injury and repair.84 Further, the increased 
expression of TGF- β also represented the shift towards the M2 phe-
notype by phagocytizing apoptotic neutrophils.85 As previous re-
search reported, within a few days of muscle toxin- induced injury, 
macrophages and immature dendritic cells became the main immune 
cell type at the site of injury, aiding tissue repair.86 Arnold L et al., 
as well, supported the fact that necrotic fibres are phagocytosed 
by macrophages in these models. Then, the macrophages energet-
ically promote re- myogenesis via the impacts on satellite cells.87 
Additionally, human satellite cells in vitro were proven to directly at-
tract macrophages by releasing factors release,88 which may provide 
further help during muscle repair. To date, despite various immune 
cells invasion after muscle injury,89- 91 only neutrophils and macro-
phages are reported to be conducive to muscle regeneration. These 
findings suggest that the neutrophils together with macrophages 
promote muscle differentiation and growth after muscle injury.

5  |  CONCLUSIONS

Several myopathies, mainly due to their muscle atrophy and fibro-
sis events, involve an immune cellular inflammatory response which 
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probably influences the outcome. Throughout this review, we have 
presented both physiological and pathological findings that reveal a 
close connection between neutrophils and muscle atrophy. Despite 
some encouraging findings as evident from changes in neutrophil 
numbers or effects in atrophied muscles in the examples that have 
been highlighted, challenges and controversies in the field remain. 
There remains a large knowledge gap between our current under-
standing of specific molecular mechanisms that mediate muscle 
atrophy and fibrosis, and the influence of neutrophil infiltration in 
atrophied muscles. Furthermore, even with in- depth knowledge, 
achieving accurate targeting and appropriate intervention for neu-
trophils in atrophied muscles will certainly be a major challenge 
while developing effective treatments. Given the damage caused 
by neutrophils in atrophied muscles and the prominent role of neu-
trophils in muscle repair, the interaction between neutrophils and 
muscle needs to be improved understood.
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