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Abstract: Chronic inflammation promotes cancer progression by affecting the tumor cells and
their microenvironment. Here, we demonstrate that a continuous stimulation (~6 weeks) of triple-
negative breast tumor cells (TNBC) by the proinflammatory cytokines tumor necrosis factor α

(TNFα) + interleukin 1β (IL-1β) changed the expression of hundreds of genes, skewing the cells
towards a proinflammatory phenotype. While not affecting stemness, the continuous TNFα + IL-1β
stimulation has increased tumor cell dispersion and has induced a hybrid metabolic phenotype in
TNBC cells; this phenotype was indicated by a transcription-independent elevation in glycolytic
activity and by increased mitochondrial respiratory potential (OXPHOS) of TNBC cells, accompanied
by elevated transcription of mitochondria-encoded OXPHOS genes and of active mitochondria area.
The continuous TNFα + IL-1β stimulation has promoted in a glycolysis-dependent manner the
activation of p65 (NF-κB), and the transcription and protein expression of the prometastatic and
proinflammatory mediators sICAM-1, CCL2, CXCL8 and CXCL1. Moreover, when TNBC cells were
stimulated continuously by TNFα + IL-1β in the presence of a glycolysis inhibitor, their conditioned
media had reduced ability to recruit monocytes and neutrophils in vivo. Such inflammation-induced
metabolic plasticity, which promotes prometastatic cascades in TNBC, may have important clinical
implications in treatment of TNBC patients.

Keywords: glycolysis; inflammation; interleukin 1β; leukocyte migration; metabolism; oxidative
phosphorylation; triple-negative breast cancer; tumor necrosis factor α

1. Introduction

Cancer-related inflammation has been identified as a key process controlling tumor
progression. Whereas typical Th1-related/inflammatory mediators such as interferon γ can
have essential roles in potentiating acquired antitumor immune activities at initial stages
of tumor development, inflammation often turns into a chronic condition that promotes
tumor growth and metastasis [1–4]. Many malignancies are enriched with inflammatory
elements that include myeloid cells with inflammatory or immune-suppressive functions,
as well as proinflammatory cytokines and inflammatory chemokines. Due to the proma-
lignancy activities of these different proinflammatory constituents, the establishment of
primary tumors and the metastatic spread are potentiated, leading eventually to poor
patient survival [3–5].

In breast cancer, inflammatory cells and inflammatory soluble mediators have been
clearly connected with a highly metastatic phenotype. For example, potent proinflamma-
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tory cytokines such as tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) have
been connected with increased aggressiveness in breast cancer [6–11]: their expression
levels were significantly associated with tumor progression and poor clinical outcome
of breast cancer patients [12–17] and they were both found to express a large variety of
tumor-promoting activities in culture systems and in animal model systems [6–11].

A closer look at the expression of TNFα and IL-1β in biopsies of breast cancer patients
revealed that in many breast cancer patient tumors the two proinflammatory cytokines
were expressed in a chronic manner, starting in low tumor grades and from the stage of
ductal carcinoma in situ and on, eventually being expressed in tumors of ~90% of patients
with advanced disease [13,14,18]. Moreover, in most patient tumors TNFα and IL-1β were
concomitantly expressed at the tumor site and in patient materials [13,14,18].

In view of these observations, in this study we determined the impact of continuous
proinflammatory stimulation by both TNFα + IL-1β together on the malignancy phenotype
of breast cancer cells. Particularly, we focused on triple-negative breast cancer (TNBC),
which is the most aggressive subtype of breast cancer [19–21], requiring much improved
understanding of basic processes taking place during disease progression. So far, TNBC
cells were found to respond to short-term TNFα or IL-1β stimulation (up to 72 h) by
increased proliferation and migration, as well as the release of angiogenic factors, MMP-9,
osteopontin and proinflammatory chemokines [22–28]. However, the impacts of consistent
proinflammatory stimulation by TNFα + IL-1β—reflecting chronic inflammatory processes
that take place at the tumor site—were not investigated in TNBC.

Thus, in this study we exposed TNBC cells to a persistent stimulation by TNFα + IL-1β
together and determined the effects of this stimulatory setup on tumor cell phenotypes and
activities. The current study provides novel findings, indicating that continuous growth
of TNBC cells with the two cytokines has led to potentiation of metabolic activities in
the tumor cells. Particularly, following persistent TNFα + IL-1β stimulation, the ability
of TNBC cells to perform glycolysis and oxidative phosphorylation (OXPHOS) was sig-
nificantly increased. Moreover, glycolysis has increased the activation of NF-κB, and the
transcription and protein expression of proinflammatory mediators that are typically con-
nected to elevated aggressiveness of tumor cells, e.g., by their ability to recruit deleterious
myeloid cell types to tumors. Accordingly, when TNBC cells were continuously stimulated
by TNFα + IL-1β, their ability to secrete factors that induce the recruitment of monocytes
and neutrophils to matrigel plugs in vivo was reduced by treating the tumor cells with a
glycolysis inhibitor.

These observations suggest that chronic presence of proinflammatory cytokines
such as TNFα + IL-1β at the tumor microenvironment (TME) drives TNBC cells into
a prometastatic phenotype, in a manner that has not been reported previously; such a
persistent proinflammatory stimulation can modify through metabolic upregulation the ex-
pression of inflammatory mediators that indirectly, through the recruitment of deleterious
monocytes and neutrophils, may increase the prometastatic phenotype of TNBC cells. The
findings of this current study—demonstrating that a persistent inflammatory stimulation
of TNBC cells leads to a hybrid metabolic state with increased glycolysis as well as of
OXPHOS activities—emphasize the need to perform extensive research in this direction in
the future, and suggest that combination therapies that target tumor cell metabolism and
inflammation may apply well in the treatment of TNBC patients.

2. Materials and Methods
2.1. Cell Cultures and Cytokine Stimulation

Human TNBC BT-549 cells and MDA-MB-231 cells (both from ATCC) were grown in
DMEM (4.5 g/L glucose) and RPMI-1640 (2 g/L glucose) media, respectively. To generate
“complete media”, the media were supplemented with 10% fetal bovine serum (FBS), 2%
L-glutamine and 1% penicillin-streptomycin solution (all from Biological Industries, Beit
Ha’emek, Israel).
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TNFα and IL-1β concentrations were selected based on doses used in other studies
and on titration analyses that were previously performed in the lab. Recombinant human
(rh) TNFα was used at 10 ng/mL (#300-01A, PeproTech, Rocky Hill, NJ, USA) and rhIL-1β
was used at 0.4 ng/mL (#200-01B, PeproTech), at two different regimens: (1) Continuous
stimulation: TNBC cells were grown for ~6 weeks in the presence of the two cytokines
together (replaced twice a week). (2) Short stimulation: TNBC cells were stimulated by
TNFα + IL-1β (similar concentrations as in continuous stimulation) for 48 h only. In both
stimulatory conditions (continuous and short) control cells were grown with the vehicle of
the cytokines.

The process of continuous stimulation was done three times for each cell type. Each
process of continuous stimulation was considered a separate “set”, and the cells of each set
were frozen at the end of the continuous stimulation process. To be used in experiments,
the cells were thawed and brought back to culture in the presence of cytokines or vehicle
(as appropriate), in parallel. In each type of experiment, similar findings were obtained
with at least two different sets of cells, in BT-549 and MDA-MB-231 cells alike.

Monocytic THP-1 cells were grown in suspension, in RPMI-1640 medium supple-
mented with 20% FBS, 2% L-glutamine, 1% penicillin-streptomycin solution, 1% MEM
nonessential amino acids (all from Biological Industries) and 0.05 mM 2-mercapthoethanol
(#M6250, Sigma-Aldrich, Saint Louis, MO, USA).

2.2. Morphology Analyses and IN Cell Studies

In morphology studies, TNBC cells that have undergone continuous treatment by
TNFα + IL-1β/vehicle were photographed using light microscopy. In IN Cell analyses,
TNBC cells were cultured for 72 h in complete media containing TNFα + IL-1β/vehicle
under automated high-throughput screening conditions (Freedom EVO 200 robot, Tecan
Group Ltd., Männedorf, Switzerland). The cells were stained and imaged by the IN Cell An-
alyzer 2200 automated microscope (GE Healthcare, Chicago, IL, USA) at 20× magnification.
Cell and nucleus areas were determined by cytoplasmic and nuclear staining using calcein
(#C3100MP, Thermo Fisher Scientific, Waltham, MA, USA) and Hoechst (#H1399, Thermo
Fisher Scientific), respectively. Cellular organelles were stained with MitoTracker-Deep Red
(overall mitochondria; #M22426, Thermo Fisher Scientific), tetramethylrhodamine (TMRE;
active mitochondria; #T669, Thermo Fisher Scientific), lysotracker (lysosome; #L12492,
Thermo Fisher Scientific) or ER-hunt (endoplasmic reticulum; #7305, Setarech biotech,
Eugene, OR, USA). Following image acquisition, high-content image stacks were analyzed
using the IN Cell developer Toolbox 1.9.3 (GE Healthcare) producing an output based on
comparative fluorescence intensity.

2.3. Transcriptome Analyses

To determine transcriptome alterations following continuous TNFα + IL-1β stimu-
lation in TNBC cells, genome-wide expression analysis was performed on BT-549 and
MDA-MB-231 cells in RNAseq experiments. The analysis of each cell type was conducted
on three independent biological repeats of treatment with cytokines/vehicle.

In BT-549 cells, RNA libraries were prepared using NEBNext® Poly(A) mRNA Mag-
netic Isolation Module (#E7490, New England Biolabs, Ipswich, MA, USA), then submitted
to analysis using NextSeq 500/550 v2.5 high output kit (#20024906; New England Biolabs)
for RNAseq at the Genomics Unit of Tel Aviv University. Samples were sequenced on four
lanes of Illumina Nextseq500. The output was ~20 million reads per sample. Trimming
was performed on low-quality reads. In MDA-MB-231 cells, total RNA was isolated using
miRNeasy Mini Kit (#217004, QIAGEN, Hilden, Germany), then submitted to RNAseq
analysis at the Israel National Center for Personalized Medicine (INCPM, Weizmann In-
stitute, Rehovot, Israel). Libraries were prepared at the INCPM from the RNA samples
using in-house protocol. Samples were sequenced on eight lanes of Illumina HiSeq-2500
machine, using the Single-Read 60 protocol.
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The processed reads in each cell type were mapped to human genome, GRCh38,
using STAR v2.6.1d [29] and then the number of reads that were mapped to each gene
was calculated using Partek E/M algorithm. Data of transcriptome analyses of BT-549
and MDA-MB-231 cells were deposited in NCBI’s Gene Expression Omnibus [30] and are
accessible through GEO Series accession number GSE169018. Statistical analyses were
performed by one-way ANOVA statistical test at cutoff of fold change (FC) ≥ 2 or FC ≤ −2;
pFDR was applied on the samples for subsequent analysis, as indicated in Figure legends.
Heatmaps were generated using Partek Genomics Suite (Partek Genomics Suite®; version
7.19.1125), using hierarchical clustering with Pearson’s correlation distance dissimilarity
measures and Ward’s method. For pathway gene enrichment analysis, 985 differentially
expressed genes in BT-549 cells and 779 differentially expressed genes in MDA-MB-231
cells, were analyzed in the Ingenuity software. Protein–protein association networks were
analyzed by STRING v11 [31].

2.4. Cell Counts and XTT Assays

TNBC cells were continuously treated by TNFα + IL-1β/vehicle. To determine cell
proliferation, cytokine- and vehicle-treated cells were plated at similar numbers, and
cells were counted by trypan blue-exclusion assay after 72 h in several replicates for each
treatment. XTT assays were performed (#20-30-1000, Biological Industries) on cells that
were seeded 72 h earlier in the presence of TNFα + IL-1β/vehicle. Doxorubicin (5 µM;
Teva Pharmaceutical, Netanya, Israel; kindly provided by Prof. Peer, Tel Aviv University)
and/or paclitaxel (350 nM; #T7402, Sigma-Aldrich) were added to the final 24 h of the
incubation, in the presence of the cytokines or vehicle. The control for chemotherapy
treatment was the solubilizer of the drugs.

2.5. FACS Analyses

TNBC cells that were continuously treated by TNFα + IL-1β/vehicle have been ana-
lyzed for the expression of the following molecules: (1) CD44 and CD24 (cancer stem cells,
CSCs)—staining with Alexa 488-tagged rat antibodies to human CD44 (#103016, Biolegend,
San Diego, CA, USA) and with PE-tagged mouse antibodies to human CD24 (#560991,
BD Biosciences, San Jose, CA, USA); (2) surface E-cadherin—staining with APC-tagged
mouse antibodies to human E-cadherin (#324107, Biolegend); (3) vimentin—analysis of
cells fixed and permeabilized with 100% methanol (10 min, −20 ◦C), stained by mouse anti-
bodies to human vimentin (#sc-6260, Santa Cruz Biotechnology, Dallas, TX, USA) followed
by Alexa 647-tagged goat antimouse antibody (#115-606-146, Jackson ImmunoResearch
Laboratories, West Grove, PA, USA). In all cases, baseline staining was determined by
relevant isotype-control antibodies. Staining was assessed using Stratedigm S1000EXi flow
cytometry analyzer (Stratedigm, San Jose, CA, USA) and data analysis was performed
using the Flowjo v10 software (BD Biosciences).

2.6. Spheroid Formation

mCherry-expressing TNBC cells that were continuously treated by TNFα + IL-1β/
vehicle were cultured overnight in plates coated by poly-HEMA (#P3932, Sigma-Aldrich)
in DMEM/F12 medium containing 2% B-27 supplement, 0.02% basic fibroblast growth
factor, 0.2% epidermal growth factor and 0.05% insulin to enable spheroid formation.
The spheroids were maintained in a 37 ◦C incubator with 5% CO2. Kinetics of spheroid
formation were tracked using fluorescence microscopy, and representative images were
taken after 3 days for BT-549 cells and after 7 days for MDA-MB-231 cells, respectively, at
4× magnification. Based on fluorescent signals, the size of spheroids was quantified by the
ImageJ program in 10 fields for each treatment, in each experiment.

2.7. Seahorse XF Analysis

TNBC cells were continuously treated by TNFα + IL-1β/vehicle. Oxidative phospho-
rylation and glycolytic rates of the cells were assessed using a Seahorse XFe96 Analyzer
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(Agilent Technologies Inc., Santa Clara, CA, USA). To this end, TNBC cells were cultured in
XF-96-well cell culture plates (Agilent). After 24 h the media were replaced by fresh com-
plete media with TNFα + IL-1β/vehicle for 48 h. For the mito stress test, oxygen consump-
tion rate (OCR) measurements were taken at basal rate followed by injections of oligomycin
(1 µM; #O4876, Sigma-Aldrich), carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP; 1 µM; #C2920, Sigma-Aldrich) and a mixture of rotenone (Rot; 0.5 µM; #R8875,
Sigma-Aldrich) + antimycin A (AA; 0.5 µM; #A8674, Sigma-Aldrich). For the glycolytic
rate assay, extracellular acidification rate (ECAR) measurements were taken at basal rate
followed by injections of mixture of Rot (0.5 µM; #ab143145, Abcam, Cambridge, MA, USA)
+AA (as above), and then 2-Deoxy-D-Glucose (2-DG; 50 mM; #ab142242, Abcam).

Following analysis, the cells were fixed with 4% paraformaldehyde and stained with
Hoechst (#B2261, Sigma-Aldrich). Each well was photographed at different regions and
metabolic signals were normalized to cell numbers.

2.8. Determination of Lactate and ATP Levels

TNBC cells that were continuously treated by TNFα + IL-1β/vehicle were cultured in
complete media supplemented with TNFα + IL-1β/vehicle. Twenty-four hours prior to
the assay, media were replaced by fresh media containing 0.5% FBS (for lactate assays) or
10% FBS (for ATP assays), in the presence of TNFα + IL-1β/vehicle. Extracellular lactate
levels in the CM were determined using L-Lactate Assay Kit (#ab65331, Abcam) according
to manufacturer’s instructions. The results were normalized to cell counts at the time of
CM collection. ATP levels were determined in cell lysates using ATP Assay Kit (#ab83355,
Abcam) according to manufacturer’s instructions. Prior to analysis in the kits, cell CM and
lysates were deproteinized as recommended, using Amicon Ultra-0.5 Centrifugal Filter
Units (#UFC501024, Millipore, Temecula, CA, USA).

2.9. ELISA Assays

TNBC cells that were continuously treated by TNFα + IL-1β/vehicle were cultured
overnight in complete media supplemented with TNFα + IL-1β/vehicle. CCL2, CXCL8
and CXCL1 levels were determined in CM collected after additional 24 h of treatment with
TNFα + IL-1β/vehicle, in the presence of metabolic inhibitors and 0.5% FBS-containing
media. To determine the levels of soluble intercellular adhesion molecule 1 (sICAM-1), the
inhibitors were added 2 h prior the addition of TNFα + IL-1β/vehicle; the inhibitors were
then present during the last 24 h of cell culture. After 24 h, the conditioned media (CM)
were collected, cleared by centrifugation and ELISA analyses were performed.

The metabolic inhibitors included: (1) the glycolysis inhibitor 2-DG that was used at
50 mM (#ab142242, Abcam). (2) OXPHOS inhibitors: Rot (#ab143145, Abcam)—0.1 µM for
MDA-MB-231 cells, 0.05 µM for BT-549 cells + AA (#A8674, Sigma-Aldrich)—0.1 µM for
MDA-MB-231 cells, 0.05 µM for BT-549 cells.

ELISA analyses were performed on cell CM with the following materials (all from
PeproTech): for sICAM-1, human ICAM-1 development ELISA kit #900-K464; for CCL2,
coating antibodies #500-M71, detection antibodies #500-P34BT and rhCCL2 standard #300-
04; for CXCL8, coating antibodies #500-P28, detection antibodies #500-P28BT and rhCXCL8
standard #200-08; and for CXCL1, coating antibodies #500-P92, detection antibodies #500-
P92BT and rhCXCL1 standard #300-11. Following the addition of HRP-conjugated Strepta-
vidin (#016-030-084, Jackson Immunoresearch laboratories) and substrate TMB/E solution
(#ES001, Millipore), the reaction was stopped by addition of 0.18M H2SO4. Absorbance
was measured at 450 nm.

2.10. RNA Extraction and Quantitative RT-PCR

TNBC cells that were continuously treated by TNFα + IL-1β/vehicle were cultured
overnight in complete media supplemented with TNFα + IL-1β/vehicle. Then, the
media were replaced by fresh DMEM containing 0.5% FBS, the glycolysis inhibitor 2-
DG or the OXPHOS inhibitors Rot+AA (concentrations as in ELISA assays), without
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TNFα + IL-1β/vehicle. Control cells were supplemented with the inhibitor solubilizer.
After 2 h, TNFα + IL-1β/vehicle were added to the cells without a wash, for 6 h. RNA
was extracted using EZ RNA extraction kit (#20-400-100, Biological Industries). RNA sam-
ples were used to synthesize complementary cDNA using qScriptTM cDNA synthesis kit
(#95047, Quantabio, Beverly, MA, USA). The samples were analyzed using iTaq™ Universal
SYBR® Green Supermix (#1725124, BIO-RAD, Hercules, CA, USA) in CFX connect real-time
PCR system with primers indicated in Table S1.

2.11. Western Blot Analysis

MDA-MB-231 cells that were continuously treated by TNFα + IL-1β/vehicle were cul-
tured overnight in complete media supplemented with TNFα + IL-1β/vehicle. In specific
experiments (as indicated), the media were replaced with fresh DMEM containing 0.5% FBS
and were supplemented with OXPHOS inhibitors (Rot+AA) or glycolysis inhibitor (2-DG)
(concentrations as in ELISA assays), without TNFα + IL-1β/vehicle. Control cells were
supplemented with the inhibitor solubilizer. After 2 h, TNFα + IL-1β/vehicle were added
to the cells without a wash, and lysates of cells were made after 15 min or 24 h using RIPA
buffer. Total-p65 and phosphorylated p65 (p-p65) were detected using specific antibodies
(#8242 and #3033, respectively; Cell Signaling Technology, Danvers, MA, USA). GAPDH
was used as loading control (detected by antibodies #ab9485, Abcam). The membranes
were reacted with streptavidin-horseradish peroxidase (HRP)-conjugated goat anti-rabbit
IgG (#111-035-003, Jackson Immunoresearch laboratories), and subjected to ECL analysis
(#WBLUR0500, Merck, Darmstadt, Germany).

2.12. Transwell Migration Assay

Migration of TNBC cells: TNBC cells were continuously treated by TNFα + IL-
1β/vehicle. Migration assay of TNBC cells towards 10% FBS were for 11 h using transwell
inserts with 8 µm pores (#3422, Corning, Corning, NY, USA) that were precoated with
fibronectin (20 µg/mL, diluted in serum-free DMEM; #03-090-1; Biological Industries) for
1 h at 37 ◦C.

Migration of THP-1 cells: MDA-MB-231 cells that were continuously stimulated by
TNFα + IL-1β were cultured overnight in complete media supplemented with TNFα + IL-
1β. Then, the media were replaced with fresh DMEM containing 0.5% FBS and were
supplemented with the glycolysis inhibitor (2-DG) (concentration as in ELISA assays),
without TNFα + IL-1β. Control cells were supplemented with the inhibitor solubilizer.
After 2 h, TNFα + IL-1β were added without a wash. After 24 h, the media were washed
and replaced by fresh TNFα + IL-1β-deprived and inhibitor-free DMEM, which did not
contain FBS. After 24 h the CM were collected, filtered through 0.45 µm membrane to
discard of cells and concentrated 2×. Then, migration assay of THP-1 cells towards the CM
were performed for 75–90 min using transwell inserts with 5 µm pores (#3421, Corning).

In both analyses, the migrated cells were fixed and stained using Hemacolor (#111661,
Merck), were photographed and counted at multiple fields.

2.13. In Vivo Plug Assay

MDA-MB-231 cells that were continuously stimulated by TNFα + IL-1β were cultured
overnight in complete media supplemented with TNFα + IL-1β. Then, the media were re-
placed with fresh DMEM containing 0.5% FBS and supplemented with glycolysis inhibitor
(2-DG) (concentrations as in ELISA assays), without TNFα + IL-1β. Control cells were
supplemented with the inhibitor solubilizer. After 2 h, TNFα + IL-1β were added without
a wash. After an additional 24 h, the media were washed and replaced by fresh TNFα + IL-
1β-deprived and inhibitor-free DMEM, which did not contain FBS. After 48 h the CM
were collected, filtered through 0.45 µm membrane to discard of cells and concentrated 2×.
The media were mixed with growth factor reduced-matrigel without phenol red (#356231,
Corning) in ratio 1:4. 200 µL of CM+matrigel mixture was injected to the mammary fat
pad of female Balb/C mice. Procedures involving experimental animals were approved by
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Tel Aviv University Ethics Committee (Approval no. 04-20-034, dated 18 August 2020), and
were performed in compliance with local animal welfare laws, guidelines and policies.

The plugs were removed after 7 days and were solubilized in 1ml HBSS (Biological
industries) containing 5 mg/mL collagenase type IV (#C5138; Sigma-Aldrich) and DNase I
(#D5025, Sigma-Aldrich) for 1 h at 37 ◦C. Recovered infiltrating cells were washed three
times in PBS and filtered through a 70-µm cell strainer. The recovered cells were counted
and incubated for 10 min with TruStain FcX™ (#101320, Biolegend) in order to block non-
specific binding to Fc receptors. The cells were then subjected to flow cytometry analysis
using the following antibodies: APC-Cy7-tagged antibodies to mouse CD45 (#103116,
Biolegend), FITC-tagged antibodies to mouse F4/80 (#123107, Biolegend) and Brilliant
Violet-421-tagged antibodies to mouse Ly6G (#127627, Biolegend). Staining was assessed
using Stratedigm S1000EXi flow cytometry analyzer (Stratedigm) and data analysis was
performed using the Flowjo v10 software (BD Biosciences).

2.14. Statistical Analyses

Statistical analyses of transcriptome studies were described in their relevant sections.
Statistical analyses of all other assays were performed by two-tailed unpaired Student’s
t-tests. p < 0.05 was considered statistically significant.

3. Results
3.1. Continuous Stimulation by Proinflammatory Cytokines Induces Morphological Alterations in
TNBC Cells

To reveal the effects of continuous stimulation by TNFα + IL-1β on TNBC cells
we determined the morphology of BT-549 and MDA-MB-231 cells that were stimulated
with the cytokines for ~6 weeks, termed herein “continuous stimulation”. In parallel,
TNBC cells were exposed to “short stimulation” of 48 h by TNFα + IL-1β. The images of
Figure 1A indicate that short stimulation by the cytokines did not induce modifications in
cell morphology, in both cell types; in contrast, the continuous stimulation by TNFα + IL-1β
has changed TNBC cell morphology. In both BT-549 cells and MDA-MB-231 cells, following
persistent cytokine stimulation cells with a flattened morphology could be detected; in
parallel, cells with extended cellular protrusions were noted in BT-549 cells, but not in
MDA-MB-231 cells.

To provide a quantitative indication to changes in cell morphology following continu-
ous TNFα + IL-1β stimulation, IN Cell analyses were performed on TNBC cells following
persistent cytokine/vehicle treatment. Analyses performed with calcein and Hoechst
fluorescent staining have demonstrated definite alterations in morphology in both BT-
549 and MDA-MB-231 cells following continuous TNFα + IL-1β stimulation (Figure 1B),
which were quantitatively identified by significantly increased cell and nuclear areas after
continuous cytokine stimulation (Figure 1B).

3.2. Continuous Stimulation by Proinflammatory Cytokines Modifies Gene Expression in
TNBC Cells

To further investigate the impact of persistent stimulation by proinflammatory factors
that are chronically present at the TME such as TNFα + IL-1β [13,14,18], TNBC cells
that have undergone continuous treatment by the cytokines/vehicle were subjected to
RNAseq analysis. The findings of Figure 2 indicate that following the persistent stimulation
by TNFα + IL-1β, the expression of hundreds of genes was changed in both TNBC cell
types. ANOVA statistical analysis, using cutoff of pFDR < 0.05 and fold change FC ≥ 2 or
FC ≤ −2 between cytokine-stimulated cells and their vehicle-treated controls, revealed that
the expression of 985 genes was modified in BT-549 cells (455 genes were upregulated and
530 were downregulated) (Figure 2A1) and 779 genes were differentially expressed in MDA-
MB-231 cells (338 genes were upregulated and 441 were downregulated) (Figure 2A2).

Ingenuity pathway analyses of “Diseases and Functions” that were performed on
the transcriptome data revealed similarities but also differences between the two TNBC
cell types, following continuous stimulation by TNFα + IL-1β. The findings presented in



Cells 2021, 10, 1356 8 of 25

Figure 2B demonstrate major cancer-related categories of ingenuity-defined upregulated
annotations (activation Z score > 2) that were identified in each cell type; Tables S2 and S3
demonstrate the specific annotations included in each category and the number of genes
included in each annotation. Overall, the cancer-related annotations included genes that
are involved in general in tumor progression, angiogenesis, myeloid cell activation, inflam-
mation, leukocyte migration and/or lipid metabolism, depending on the cell type. The
two cell types shared upregulation in annotations that include genes generally involved
in tumor progression and lipid metabolism (Figure 2B, Tables S2 and S3). Annotations
typical of “inflammation” and “leukocyte migration” were enriched in MDA-MB-231 cells,
demonstrating that these cells were particularly skewed into a proinflammatory phenotype
(Figure 2B and Table S3).

Figure 1. Continuous TNFα + IL-1β stimulation leads to morphology changes in TNBC cells.
TNFα (10 ng/mL) + IL-1β (0.4 ng/mL) were used to continuously stimulate BT-549 and MDA-
MBA-231 cells for ~6 weeks (“continuous” stimulation) or to stimulate the cells for 48 h (“short”
stimulation); control cells were treated for the same time periods by the vehicle of the cytokines.
Cytokine concentrations were selected based on the considerations described in the materials and
methods section. (A) Tumor cell morphology determined by light microscopy. (A1) BT-549 cells.
(A2) MDA-MB-231 cells. Phase-contrast images from a representative experiment of n > 3 are
presented. Bar, 50 µm. (B) Determination of cell morphology (images), cell area and nuclear area by
the IN Cell technology, using calcein (green) and Hoechst (blue) staining. (B1) BT-549 cells. (B2) MDA-
MB-231 cells. Images of cell morphology are accompanied by quantification of cell characteristics by
the IN Cell technology. Bar, 50 µm. The results of a representative experiment of n = 3 are presented.
*** p < 0.001.
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Figure 2. Continuous TNFα + IL-1β stimulation leads to changes in transcriptional programs
in TNBC cells. BT-549 and MDA-MB-231 cells that were continuously stimulated by TNFα + IL-
1β, or treated by a vehicle control (as described in Figure 1) were subjected to RNAseq analysis.
(A) Heatmaps of all genes in (A1) BT-549 and (A2) MDA-MB-231 cells. (B) Differentially expressed
genes that passed the cutoff FC ≥ 2 or FC ≤ −2 with pFDR < 0.05 were analyzed in Ingenuity
program for pathway enrichment analyses. Significantly upregulated (Z-score > 2) annotations that
were classified in cancer-related categories are presented in (B1) BT-549 cells and (B2) MDA-MB-231
cells. Each dot represents a category, whose detailed annotations and the number of genes in each
annotation are demonstrated in Table S2 (BT-549 cells) and Table S3 (MDA-MB-231 cells).

We then analyzed the characteristics of the genes that were modified by persistent
TNFα + IL-1β stimulation in both TNBC cell types alike, namely: 24 protein-coding
genes that were upregulated (pFDR < 0.05, FC ≥ 2) in both BT-549 and MDA-MB-231
cells (Table S4A), and 23 protein-coding genes that were downregulated (pFDR < 0.05,
FC ≤ −2) in these two cell types (Table S4B). When we categorized these shared genes
based on currently published information, we found that the shared upregulated genes
were enriched by genes coding for proteins that are proinflammatory in nature, as well
as by metabolism-related genes (Figure 3A1). The shared downregulated genes included
mainly tumor-suppressor genes and genes coding for proteins that are involved in ac-
quired immunity and inhibition of inflammation, as well as metabolism-related genes
(Figure 3A2).

Then, we performed protein–protein association network analysis (STRING) on the top
30 upregulated genes in each of the TNBC cell types (Table S5A,B for BT-549 and MDA-MB-
231 cells, respectively). In cytokine-stimulated BT-549 cells we noted associations between
15 of the proteins, with 11 of these proteins known as promoting inflammatory processes
(Figure 3B1 and Table S5A). The proinflammatory genes that stood in the core of the network
in BT-549 cells were CXCL6 and IL-1β itself, associated with other typical proinflammatory
mediators such as IL-24, IL-26, CSF-3 and others (Figure 3B1). In cytokine-stimulated MDA-
MB-231 cells, the STRING analysis also provided evidence to an inflammatory network:
out of the 30 top upregulated genes, 21 genes were involved in a protein–protein network
and 13 of the genes could be associated with inflammatory processes (Figure 3B2 and
Table S5B). Here, the proinflammatory chemokine CXCL1 and SAA1 were at the center
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of the network, with other mediators that regulate inflammation directly or indirectly
also being involved, such as OLR1, C3 and others. Of note, similar analysis of the 30 top
downregulated genes in the two cell types (Table S6A,B) did not reveal any particular
connections or shared characteristics of the genes.

Figure 3. Continuous TNFα + IL-1β stimulation skews TNBC cells towards a proinflammatory phenotype. BT-549 and
MDA-MB-231 cells that were continuously stimulated by TNFα + IL-1β, or treated by a vehicle control (as described in
Figure 1) were subjected to RNAseq analysis (as described in Figure 2). (A) This part of the figure describes the categories
to which differentially expressed genes—shared between BT-549 and MDA-MB-231 cells—may belong (differentially
expressed: between cytokine-stimulated and vehicle control cells). (A1) 24 shared upregulated genes. (A2) 23 shared
downregulated genes. The shared genes are indicated in Table S4A (shared upregulated genes) and Table S4B (shared
downregulated genes). (B) Protein-protein association network analysis (STRING). Top 30 upregulated genes that passed
the cutoff FC ≥ 2 or FC ≤ −2 with pFDR < 0.05 (Table S5) were analyzed in STRING. Color codes are provided herein:
https://string-db.org/cgi/input?sessionId=bpw2uCSzWy2E&input_page_active_form=multiple_identifiers [31]. (B1) BT-
549 cells. (B2) MDA-MB-231 cells. The names of 30 top upregulated genes are provided in Table S5 (Table S5A: BT-549 cells;
Table S5B: MDA-Mb-231 cells). The names of 30 top downregulated genes are provided in Table S6 (Table S6A: BT-549 cells;
Table S6B: MDA-MB-231 cells).

Thus, in the two TNBC cell types, continuous TNFα + IL-1β stimulation has led to
elevation in proinflammatory mediators that are connected to each other, with different
proinflammatory networks established in BT-549 and MDA-MB-231 cells. A particularly
strong proinflammatory phenotype was gained by MDA-MB-231 cells following persistent
TNFα + IL-1β stimulation, as indicated by the Ingenuity analysis (Figure 2B2).

https://string-db.org/cgi/input?sessionId=bpw2uCSzWy2E&input_page_active_form=multiple_identifiers
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3.3. Continuous Stimulation by Proinflammatory Cytokines Promotes TNBC Cell Dispersion but
Does Not Have a Consistent Impact on Stemness, Chemoresistance and Tumor Cell Proliferation

To determine if persistent TNFα + IL-1β stimulation modifies invasion-related func-
tions in TNBC cells, we analyzed the ability of the cancer cells to undergo epithelial-to-
mesenchymal transition (EMT). Gene expression studies (included in the RNAseq analyses)
did not reveal a consistent pattern of upregulated expression of EMT-related genes such
as snail, slug, zeb1 and zeb2 in BT-549 or MDA-MB-231 cells (data not shown). Moreover,
analyses of vimentin and E-cadherin at the protein level did not provide evidence to EMT-
related alterations in the cells (Figure S1); of note, in line with the fact that TNBC cells are
mesenchymal in nature, vehicle-treated BT-549 and MDA-MB-231 cells did not express
E-cadherin at all (Figure S1), therefore E-cadherin could also not be downregulated by the
persistent cytokine stimulation.

In line with the formation of cellular protrusions by BT-549 upon persistent stimulation
by TNFα + IL-1β (Figure 1A1), these cells demonstrated elevated migratory potential
in response to serum proteins (Figure S2A); MDA-MB-231 cells did not acquire higher
migratory functions following continuous cytokine stimulation (Figure S2B). However,
both cell types demonstrated high dispersion abilities upon persistent cytokine stimulation
(Figure 4A). Following continuous TNFα + IL-1β stimulation, the two TNBC cell types
formed fewer cell-to-cell contacts, remained dissociated from each other and generated only
small tumor cell aggregates (Figure 4A). The difference between the cytokine-stimulated
cells and the vehicle-treated cells was evident by the quantitative analyses, whose findings
(in a logarithmic scale) are demonstrated in Figure 4A.

As tumor spheroids are formed primarily by cancer stem cells (CSCs) [32,33] and
require the formation of cell-to-cell contacts, we next determined the stemness of TNBC
cells that have been persistently stimulated by TNFα + IL-1β. The major characteristic of
CSCs in breast cancer is that they express high CD44 levels and low/none CD24 levels
and thus are identified as CD44high/CD24low/-cells [32,33]. As expected from their TNBC
phenotype, more than 90% of the BT-549 and MDA-MB-231 cell population consisted of
CSCs (Figure 4B); continuous TNFα + IL-1β stimulation had no effect on the proportion of
the CSC sub-population in either of the TNBC cells (Figure 4B).

Taken together with the spheroid studies, these data indicate that stemness was not
disrupted in TNBC exposed to persistent TNFα + IL-1β stimulation; rather, they revealed
the preference of persistently cytokine-stimulated TNBC cells to remain scattered and dis-
persed. This phenotype may testify for increased spreading ability and metastatic potential.

Because CSCs stand in the basis of chemoresistance [34], we also determined whether
the consistent stimulation of TNBC cells by the cytokines has altered their sensitivity to
chemotherapies that are routinely administered to TNBC patients, namely doxorubicin and
paclitaxel. In these studies, we determined tumor cell sensitivity to each drug alone and
to both of them together (Figure 5A). The data of Figure 5A indicate that each of the two
chemotherapies downregulated tumor cell survival in both BT-549 and MDA-MB-231 cells.
Both TNBC cell types did not demonstrate modified resistance to paclitaxel upon persistent
cytokine stimulation; also, cytokine-stimulated MDA-MB-231 cells were as sensitive to
doxorubicin and to the combination of both drugs together as did the vehicle-treated
cells. The exception was identified in BT-549 cells, were we noticed reduced resistance to
doxorubicin following consistent TNFα + IL-1β stimulation, which was standing in the
basis of their increased sensitivity to the combined treatment by doxorubicin + paclitaxel
together (Figure 5A).

Then, we determined the effects of continuous TNFα + IL-1β stimulation on tumor
cell growth. Cell count studies revealed that continuous cytokine stimulation has down-
regulated cancer cell proliferation in BT-549 cells and did not affect tumor cell growth in
MDA-MB-231 cells (Figure 5B). In contrast, XTT-based assays, which are conventionally
used to determine cell viability, demonstrated that in both TNBC cell types the XTT signals
were significantly higher in the persistently cytokine-stimulated cells than in their control
vehicle-treated cells (Figure 5C).



Cells 2021, 10, 1356 12 of 25

Figure 4. Continuous TNFα + IL-1β stimulation leads to tumor cell dispersion and does not affect stemness in TNBC
cells. (A) mCherry-expressing TNBC cells were continuously stimulated by TNFα + IL-1β, or treated by a vehicle control
(as described in Figure 1), and then have been tested for formation of tumor spheroids. (A1) BT-549 cells. (A2) MDA-MB-231
cells. The photos demonstrate the representative patterns of spheroid formation by the cells, at 3 days or 7 days after
seeding, for BT-549 cells and MDA-MB-231 cells, respectively. Bar, 200 µm. The results of a representative experiment out of
n = 3 are presented. Spheroid size was quantified by the ImageJ program in 10 fields for each treatment, in each experiment.
*** p < 0.001. (B) Incidence of CSCs, determined as CD44+/CD24low/-cells. (B1) BT-549 cells. (B2) MDA-MB-231 cells.
The figure presents flow cytometry plots of a representative experiment, and the graphs demonstrate the average ± SD
of normalized values of CD44+/CD24low/-cells in n = 3 experiments; the levels of CSCs in vehicle-treated cells that were
identified in the different experiments were given the value of 1. NS, not significant.

3.4. Continuous Stimulation by Proinflammatory Cytokines Leads to Increased Glycolysis and
OXPHOS in TNBC Cells

Unlike the cell count-based analyses that we have demonstrated in Figure 5B, the
results of the XTT assays of Figure 5C detect the level of active mitochondrial enzymes in the
cells. The significant increase in XTT signals in both BT-549 and MDA-MB-231 cells upon
continuous stimulation by TNFα + IL-1β (Figure 5C) suggested that cytokine stimulation
has modified the metabolic properties of the cells. This possibility was supported by the
Ingenuity results of Figure 2B and the analyses of shared genes demonstrated in Figure 3,
indicating that metabolism-related pathways were affected by the persistent stimulation of
TNBC cell types by TNFα + IL-1β.

To determine this possibility, we evaluated in BT-549 cells the status of cellular or-
ganelles that take part in cell metabolism using the IN Cell technology (MDA-MB-231 cells
have detached from the designated IN Cell plates and therefore could not be studied in
this type of analysis). Staining overall mitochondria by MitoTracker-Deep Red and active
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mitochondria by TMRE has revealed about twofold increase in mitochondria area and
activity (Figure 6A,B, respectively). Moreover, a general elevation in the metabolic activity
of the cells was reflected by elevated areas of the ER (ER-hunt staining) and of the lysosome
(lysotracker staining) (Figure 6C,D).

These findings were followed by determining the ability of BT-549 and MDA-MB-231
cells to exert glycolysis and OXPHOS, the two major metabolic pathways that provide
energy sources to the cells [35,36]. Using the seahorse technology, we found that persistent
stimulation of TNBC cells with TNFα + IL-1β augmented the glycolytic ability of the two
TNBC cells, increasing basal glycolysis as well as compensatory glycolysis (Figure 7A)
which reflects the ability of the cells to produce energy under stress conditions. Our
transcriptome analyses of the BT-549 and MDA-MB-231 cells indicated that the increase in
the glycolytic activity was not accompanied by elevated transcription of key enzymes that
take part in glycolysis (Figure 7B; PKM stands for PKM1 and PKM2).

Figure 5. Continuous TNFα + IL-1β stimulation does not consistently affect chemoresistance and proliferation of TNBC
cells, but leads to increased levels of mitochondrial enzymes in the tumor cells. BT-549 and MDA-MB-231 cells were
continuously stimulated by TNFα + IL-1β, or treated by a vehicle control (as described in Figure 1). (A) Chemoresistance of
BT-549 cells (A1) and of MDA-MB-231 cells (A2). The cells were grown for 24 h in the presence of the cytokines/vehicle,
with doxorubicin (dox; 5 µM) and/or paclitaxel (pac; 350 nM). Control cells were grown in the presence of the solubilizer of
the drugs. The results of a representative experiment of n > 3 are presented, where the OD values of the vehicle control
group were given the value of 1. *** p < 0.001. NS, Not significant. (B) Cell counts, determining the numbers of BT-549 cells
and MDA-MB-231 cells 72 h after seeding in similar numbers (cytokine- vs. vehicle-treated cells). Average ± SD values of
n = 3 is presented for each cell type.* p < 0.05. NS, not significant. (C) XTT signals of BT-549 cells and MDA-MB-231 cells
grown for 72 h after seeding in similar numbers (cytokine- vs. vehicle-treated cells). The XTT values of a representative
experiment of n = 3 are presented, where the values in the vehicle control group were given the value of 1. *** p < 0.001. NS,
not significant.
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Figure 6. Continuous TNFα + IL-1β stimulation increases the area of metabolism-associated organelles in TNBC cells.
BT-549 cells were continuously stimulated by TNFα + IL-1β, or treated by a vehicle control (as described in Figure 1), and
the organization and alterations in metabolism-associated organelles were determined. (A) Mitochondria area, determined
by MitoTracker-Deep Red staining. (B) Active mitochondria area, determined by TMRE staining. (C) Lysosome area,
determined by lysotracker staining. (D) ER area, determined by ER-Hunt staining. Photos of cell morphology are
demonstrated, as well as quantification of cell characteristics by the IN Cell technology. Bar, 100 µM. The results of a
representative experiment of n = 3 are presented. *** p < 0.001.

Figure 7. Continuous TNFα + IL-1β stimulation increases the glycolytic activity of TNBC cells, in a transcription independent
manner. (A) Glycolytic activity. BT-549 and MDA-MB-231 cells were continuously stimulated by TNFα + IL-1β, or treated
by a vehicle control (as described in Figure 1), and the glycolytic activities were determined by the seahorse technology.
(A1) BT-549 cells. (A2) MDA-MB-231 cells. The results of a representative experiment of n = 3 are presented. *** p < 0.001.
(B) Fold change in expression of genes coding for glycolysis enzymes, between cytokine-stimulated and vehicle-treated cells,
determined by the transcriptome analyses (described in Figure 2). *** p < 0.001, ** p < 0.01, * p < 0.05. NS, Not significant.
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In parallel, OXPHOS levels were also increased upon continuous stimulation of BT-549
and MDA-MB-231 cells by TNFα + IL-1β. Under these conditions, significant elevations
were noted in basal respiration rates, maximal respiration rates and ATP production
in both TNBC cell types (Figure 8A). A similar analysis performed for both cell types
under short-term conditions of TNFα + IL-1β stimulation did not reveal alterations in
OXPHOS activities: basal respiration rates, maximal respiration rates and ATP production
(Figure S3).

Figure 8. Continuous TNFα + IL-1β stimulation increases OXPHOS in TNBC cells, accompanied by elevated transcription
levels of mitochondria-encoded OXPHOS genes. BT-549 and MDA-MB-231 cells were continuously stimulated by TNFα + IL-
1β, or treated by vehicle control (as described in Figure 1). (A) OXPHOS-related activities were determined by the seahorse
technology. (A1) BT-549 cells. (A2) MDA-MB-231 cells. The results of a representative experiment of n>3 are presented.
*** p < 0.001, * p < 0.05. (B) A chart demonstrating the numbers of OXPHOS genes encoded in the nucleus genome and
in mitochondria genome, identified in the transcriptome analyses of BT-549 cells and MDA-MB-231 cells (described in
Figure 2). (C) Fold change in expression of mitochondria-encoded OXPHOS genes, comparing between cytokine-stimulated
and vehicle-treated cells, determined by the transcriptome analyses (described in Figure 2). ** p < 0.01, * p < 0.05, # p < 0.06.
NS, not significant. (D) A graph demonstrating the significance values of alterations observed in mitochondria-encoded
OXPHOS genes in BT-549 cells and MDA-MB-231 cells. The alterations in gene expression were determined by the
transcriptome analyses (described in Figure 2).

Unlike the glycolysis process, the increased OXPHOS functions noted upon persistent
cytokine stimulation were accompanied by upregulation in transcription of mitochondria-
encoded OXPHOS genes in both TNBC cell types. Out of 97 genes that participate in
OXPHOS activities, we detected in the transcriptome analysis the expression of 93 genes
in TNBC cells. Eighty of these genes are encoded in the nucleus genome (Figure 8B) and
in general their expression was not affected by continuous cytokine stimulation, in both
BT-549 and MDA-MB-231 cells (data not shown). However, all 13 mitochondria-encoded
OXPHOS genes were upregulated in both cell types (Figure 8C); in BT-549 cells, nine out
of these 13 genes were significantly elevated by continuous cytokine stimulation, and in
MDA-MB-231 the elevation was significant in all 13 genes (Figure 8D).
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Together, these findings indicate that continuous TNFα + IL-1β stimulation increased
the glycolytic activities of TNBC cells in a non-transcription-mediated manner, and in
parallel it elevated the expression of mitochondria-encoded OXPHOS genes and OXPHOS
activity levels in these cells.

3.5. Continuous Stimulation by Proinflammatory Cytokines Leads via Metabolic Transition to
Increased Activation of p65 in TNBC Cells

To determine which advantages may be given to TNBC cells by cytokine-increased
glycolysis and OXPHOS, we measured lactate levels at the extracellular milieu of the cells
and the levels of ATP in the cells. The findings of Figure S4 demonstrate that neither of
these two energetic products were elevated in cytokine-stimulated TNBC cells, suggesting
that the products generated by elevated levels of glycolysis and OXPHOS were exploited
by the cancer cells at other levels.

To determine this possibility, we asked if increased cytokine-induced glycolysis and
OXPHOS levels could promote the ability of TNBC cells to exploit better their TME. The
results of Ingenuity pathway analysis (Figure 2B) proposed that inflammatory pathways
may be highly relevant in this context. Because of the involvement of cancer inflammation
in promoting tumor aggressiveness [3,4], we determined the impact of glycolysis and
OXPHOS on the activation of p65, which is a canonical transcription factor mediating the
proinflammatory activities of TNFα and IL-1β [37,38]. The findings of Figure 9 indicate that
although BT-549 and MDA-MB-231 cells were continuously stimulated by TNFα + IL-1β
for ~6 weeks, they were not refractory to this inflammatory stimulation and at the end
of the persistent stimulatory process responded to 15-min TNFα + IL-1β stimulation (a
typical time point in which p65 activation is noted) by increased p65 phosphorylation
(accompanied by reduced expression of Total-p65; Figure 9A). Here, the averaged results of
all experiments demonstrated significant elevations in p65 activation in cytokine-stimulated
BT-549 cells, but not in cytokine-stimulated MDA-MB-231 cells. Of note, in MDA-MB-231
cells, upregulation of p65 activation due to persistent cytokine stimulation was consistent
in three different independent experiments (Table S7A); it was the variance in the levels
of basal phosphorylation and in the extent of upregulation of p65 activation between the
different experiments, which has led to nonsignificant statistical analysis of the Western
blot densitometry performed to all experiments together (Table S7A).

To determine whether glycolysis or OXPHOS had the ability to regulate p65 activation
upon continuous TNFα + IL-1β stimulation, the cells were persistently stimulated by
TNFα + IL-1β and at the last 24 h of growth they were cultured with 2-DG (glycolysis
inhibitor) or Rot+AA (OXPHOS inhibitors); this time point was selected in order to enable
the inhibitors to act. These studies indicated that 24 h following incubation with the glycol-
ysis inhibitor, p65 activation by TNFα + IL-1β was reduced in both TNBC cells (Figure 9B);
here again, downregulation of p65 by the glycolysis inhibitor (2-DG) in MDA-MB-231 cells
was consistent in three different independent experiments (p = 0.0505; Table S7B); however,
they came out only close-to-significant when considered all together (Figure 9B2) because
of variability that was noted between the different experiments in the levels of phospho-
rylation in cells without inhibitors, and in the extent of decrease in p65 induced by 2-DG
(Table S7B). In contrast to the effects of glycolysis on p65 activation, OXPHOS inhibitors
did not alter the level of p65 activation in both cell types (Figure 9B and Table S7B).

Overall, our findings indicate that continuous TNFα + IL-1β stimulation has led
through upregulation of glycolysis to induction of p65 activation in TNBC cells.

3.6. Continuous Stimulation of TNBC Cells by Proinflammatory Cytokines Leads in a
Glycolysis-Dependent Manner to Increased Release of Proinflammatory Mediators and to Monocyte
and Neutrophil Migration In Vivo

In previous parts of the study we demonstrated by Ingenuity analysis that of the two
TNBC cell types, MDA-MB-231 cells were particularly enriched with proinflammatory
characteristics, following their persistent stimulation by TNFα + IL-1β (Figure 2B2). Within
this proinflammatory phenotype of MDA-MB-231 cells that was indicated by the transcrip-
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tome analyses, we noticed significant elevation in the mRNA levels of key proinflammatory
mediators—many of which are connected to tumor progression—following the continuous
procedure of cytokine stimulation of MDA-MB-231 cells by TNFα + IL-1β (Figure 10A).

Figure 9. Continuous TNFα + IL-1β stimulation induces a glycolysis-dependent process of p65 activation in TNBC
cells. (A) p65 activation. BT-549 and MDA-MB-231 cells were continuously stimulated by TNFα + IL-1β, or treated by
vehicle control (as described in Figure 1). After being continuously treated by cytokines/vehicle, BT-549 cells (A1) and
MDA-MB-231 cells (A2) were washed and treated by TNFα + IL-1β/vehicle for 15 min. The levels of p65 phosphorylation
were determined in Western blot analyses as P-p65/Total-p65; each of the two signals was normalized to GAPDH (loading
control) beforehand. The results of a representative experiment of n ≥ 3 are presented in the blots. The averaged results of
n ≥ 3 are presented in the graphs (±SD), where the values of vehicle-treated cells in the different experiments were given
the value of 1. * p < 0.05. NS, Not significant. The arbitrary phosphorylation values obtained in the three MDA-MB-231
experiments demonstrated in Table S7A indicate that a consistent upregulation of p65 phosphorylation was obtained
following cytokine stimulation. (B) The roles of glycolysis and OXPHOS in inducing p65 activation. BT-549 and MDA-MB-
231 TNBC cells were continuously stimulated by TNFα + IL-1β (as described in Figure 1). Following continuous cytokine
stimulation, BT-549 cells (B1) and MDA-MB-231 cells (B2) were washed and stimulated by TNFα + IL-1β for 24 h (in order
to enable the inhibitors to act) in the presence of a glycolysis inhibitor (2-DG) and OXPHOS inhibitors (Rot+AA), or their
solubilizer (as described in the materials and methods section). The levels of p65 phosphorylation were determined in
Western blot analyses as P-p65/Total-p65; each of the two signals was normalized to GAPDH (loading control) beforehand.
The results of a representative experiment of n ≥ 3 are presented in the blots. The averaged results of n ≥ 3 are presented
in the graphs (±SD), where the values of cytokine-treated cells—without inhibitors—in the different experiments were
averaged and were given the value of 1. * p < 0.05, # p = 0.0505, NS = not significant. The arbitrary phosphorylation values
obtained in the three MDA-MB-231 experiments demonstrated in Table S7B indicate that a consistent downregulation of
p65 phosphorylation was obtained following 2-DG treatment.

To follow up on the involvement of glycolysis in promoting the activation of p65
(Figure 9B2), which is a cardinal transcription factor involved in the regulation of many
proinflammatory mediators [37,38], we determined if glycolysis regulates the transcription
and protein expression of specific proinflammatory mediators in MDA-MB-231 cells that
were persistently stimulated by TNFα + IL-1β. To address this question, we focused on:
(1) soluble ICAM-1 (sICAM-1), whose elevated levels were connected to higher tumor
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aggressiveness in breast cancer patients [39–41]; (2) CCL2, the main inducer of monocyte
migration to tumors, which is strongly connected to higher tumorigenicity in a large variety
of cancers, breast cancer included [42–48]; (3) CXCL8 and CXCL1, two key inducers of
neutrophil migration that are involved in regulating tumor progression [43,46,47,49,50].

Figure 10. Continuous TNFα + IL-1β stimulation upregulates the mRNA and protein expression levels of proinflammatory
mediators in TNBC cells, in a glycolysis-dependent process (A). MDA-MB-231 cells were continuously stimulated by
TNFα + IL-1β, or treated by vehicle control (as described in Figure 1). Fold change in expression of proinflammatory genes
between cytokine-stimulated and vehicle-treated cells was determined by the transcriptome analyses described in Figure 2.
*** p < 0.001, ** p < 0.01, * p < 0.05. (B) mRNA levels and protein levels of proinflammatory mediators. (B1) mRNA levels
were determined by quantitative RT-PCR. The results of a representative experiment of n = 3 are presented. *** p < 0.001,
** p < 0.01, * p < 0.05. (B2) Protein levels were determined by ELISA and are presented relative to cell numbers. The results
of a representative experiment of n = 3 are presented. *** p < 0.001, ** p < 0.01, * p < 0.05. NS, Not significant.

We observed that the expression of ICAM-1, CCL2, CXCL8 and CXCL1 was increased
at the mRNA level by continuous TNFα + IL-1β stimulation (Figure 10B1), agreeing
with the results obtained in transcriptome analyses (Figure 10A). Moreover, the increased
transcription of these proinflammatory mediators has led to their elevated expression at
the protein level (Figure 10B2). In line with the fact that glycolysis elevated p65 activation,
the transcription and protein expression levels of all of these factors were dependent on
glycolysis (Figure 10B). However, OXPHOS—which did not regulate p65 activation in
MDA-MB-231 cells (Figure 9B2)—controlled the protein expression of only two of the
proinflammatory mediators—CXCL1 and CCL2 (Figure S5); moreover, OXPHOS did
not regulate the mRNA levels of the four tested proinflammatory factors in a consistent
manner, and its impact on protein levels did coincide with its effects on mRNA levels (data
not shown).
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In view of the consistent roles of glycolysis in regulating the expression of inflam-
matory chemokines, which are major regulators of leukocyte migration to tumors, we
asked if glycolysis controls the migration of monocytic THP-1 cells. In these assays, we
obtained CM from MDA-MB-231 cells that were persistently stimulated by TNFα + IL-1β
in the absence or presence of the glycolysis inhibitor 2-DG or its solubilizer. The CM that
were used in the migration assay did not include exogenously-added cytokines or 2-DG
(please see more details in the “Materials and methods” section). These CM were then
used in transwell experiments testing the migration of monocytic THP-1 cells. The results
in Figure 11A demonstrate that glycolysis inhibition reduced the ability of the cytokine-
deprived CM to induce the migration of the monocytic cells, indicating that metabolic
processes can regulate the levels of factors that control leukocyte migration.

Figure 11. Continuous TNFα + IL-1β stimulation of TNBC cells leads to a glycolysis-dependent
migration of monocytes and neutrophils in vivo (A) Migration of monocytic THP-1 cells in response
to CM of MDA-MB-231 cells undergoing persistent stimulation by TNFα + IL-1β. MDA-MB-231
cells that were continuously stimulated by TNFα + IL-1β (as described in Figure 1) were treated
with the inhibitor of glycolysis (2-DG) or its solubilizer. CM free of exogenously-added cytokines
or 2-DG were collected (as described in materials and methods section) and were used in transwell
migration assays of THP-1 cells. The figure demonstrates representative images of the migrating cells
and quantitative analyses of migrating cells, in a representative experiment of n > 3. *** p < 0.001.
Bar, 50 µm. (B) Migration of monocytes and neutrophils in vivo. MDA-MB-231 cells that were
continuously stimulated by TNFα + IL-1β (as described in Figure 1) were treated with the inhibitor
of glycolysis (2-DG) or its solubilizer, as described in the materials and methods section. CM free of
exogenously-added cytokines or 2-DG were collected (as described in materials and methods section),
filtered and injected with matrigel to form plugs in female Balb/C mice; Plugs were removed 7 days
later, and infiltrating cells were recovered from the plugs and analyzed by flow cytometry. The
percentage of F4/80+ cells (monocytes) (B1) and of Ly6G+ cells (neutrophils) (B2) out of CD45+ cells
was determined. The results are of 10 mice in each group, obtained in two independent experimental
repeats. Average ± SD of normalized values in n = 10 (in each group) are presented; the percentage
of cells in plugs containing CM of cytokine-treated cells, without 2-DG, were averaged and were
given the value of 1. ** p < 0.01, * p < 0.05.
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To determine the impact of glycolysis inhibition of leukocyte migration in the in vivo
setting, matrigel plugs were generated; the plugs contained CM of TNFα + IL-1β-persistently
stimulated MDA-MB-231 cells that were grown in the presence of the glycolysis inhibitor
2-DG or its solubilizer. Here again, the CM that were used in vivo did not contain
exogenously-added cytokines or 2-DG (please see more details in the materials and meth-
ods section). The plugs were injected to the mammary fat pad of female mice and were
removed 7 days later; then, the levels of monocytes and neutrophils were determined in the
CD45+ leukocyte cell population. By using the F4/80 and Ly6G markers (identifying mono-
cytes and neutrophils, respectively) we found that inhibition of glycolysis has significantly
reduced the recruitment of monocytes and neutrophils to the plugs (Figure 11B).

Together, our observations provide novel evidence to the ability of chronic inflam-
mation (represented by continuous TNFα + IL-1β stimulation) to promote the levels of
glycolysis in TNBC cells; glycolysis, in turn, controlled the transcription and protein expres-
sion levels of factors regulating leukocyte migration, as indicated by reduced recruitment
of monocytes and neutrophils in vivo.

4. Discussion

In the course of chronic tumor inflammation, cancer cells are continuously exposed to
proinflammatory mediators that promote their prometastatic properties. In breast cancer,
the proinflammatory and prometastatic cytokines TNFα and IL-1β are present in tumors
together, from the time of malignant transformation and on, throughout the process of
cancer progression [13,14,18]. Yet, the impact of persistent proinflammatory stimulation
on breast tumor cells was not investigated in depth, leading us to determine the effects of
continuous TNFα + IL-1β stimulation on TNBC cell characteristics and functions.

At first, our findings indicated that persistent TNFα + IL-1β stimulation of TNBC
cells, but not short-term stimulation, has given rise to morphological changes in the cells,
including the appearance of flat cells. The nature of these cells is not clear at this point, and
could reflect senescent cells or alternatively polyaneuploid cells that have been recently
connected to increased malignancy phenotype [51,52]. In either case, the entire cell popu-
lation that was obtained following the consistent cytokine stimulation has demonstrated
changes in gene expression and upregulated metabolic properties; the metabolic alterations
included elevations in glycolysis and OXPHOS, and were mechanistically connected to
increased transcription and production of proinflammatory factors by the cancer cells.

The research of metabolism in cancer has been much intensified during the last several
years, but the interest in this topic goes back as early as the early years of the 20th century.
At that time, Otto Warburg and his colleagues found that in the presence of oxygen, tumor
cells exert increased glycolytic activities and proposed that mitochondrial respiration is
defective in cancer cells [35,36,53]. This well-known “Warburg effect” has set the ground
for the investigation of glycolysis and OXPHOS in cancer; with time, it was found that in
many tumor types the mitochondria are not defective but rather that they are functional
and that their activities are important for tumor establishment and metastasis [35,36].

The findings of our current study illustrate the ability of TNBC cells to exert elevated
glycolytic functions alongside with increased OXPHOS activities, following their continu-
ous stimulation by proinflammatory cytokines. In this case, the tumor cells demonstrate
an important level of plasticity that enables them to respond to exogenous inflammatory
stimuli by undergoing metabolic transition in both directions, towards increased levels of
glycolysis as well as OXPHOS. By exerting elevated levels of both processes, the tumor
cells can gain many advantages: increased glycolytic activities can provide the cancer
cells with higher amounts of byproducts that are necessary for tumor cell growth, and in
parallel increased OXPHOS levels can give the tumor cells high levels of flexibility in using
a variable spectra of energy sources: not only glucose but also fatty acids and glutamine.

Thus, our observations suggest that chronic inflammation enables TNBC cells to
gain the advantage of a hybrid metabolic phenotype that combines the benefits of both
glycolysis and OXPHOS [54]. This hybrid state has been recently connected to a more
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aggressive tumor phenotype by several studies [54]. Most importantly, the research by
Dupuy et al. demonstrated that highly metastatic murine breast tumor cells expressed
increased glycolytic and OXPHOS activities than breast tumor cells with a lower metastatic
potential [55]. In the current study, the heterogeneous nature of the TNBC cells—which
was envisioned by different morphological states but may also take place at other levels
following persistent TNFα + IL-1β stimulation—raises the possibility that some of the cells
gained higher glycolytic activities while others attained increased OXPHOS activities. This
way, different cell types may provide complementing advantages to the entire cancer cell
population, eventually promoting prometastatic characteristics as a whole.

Our findings indicate that the advantages gained by the tumor cells are not at the
levels of increased presence of extracellular lactate or intracellular ATP that could have
been used as a source of energy. Here, it is possible that lactate and ATP have been already
exploited by the cancer cells to support other needs, such as communication with other
cells (as demonstrated for extracellular lactate [56]) or exerting biochemical functions that
depend on transcription and protein synthesis of proinflammatory and tumor-promoting
mediators, which were increased by the persistent proinflammatory stimulation.

In parallel, our data suggest that when TNBC cells acquired an elevated hybrid
metabolic state as a result of chronic tumor-related inflammation, they can express higher
flexibility in facing external stresses and in adapting to their microenvironment. Indeed,
our study has provided novel evidence on the ability of glycolysis to upregulate the
transcription (possibly through p65 activation) and consequently the protein expression
levels of prometastatic inflammatory mediators such as sICAM-1 and chemokines in TNBC
cells. These observations are in line with a recent study of hepatocellular carcinoma (HCC),
demonstrating that glycolysis upregulated in a p65-dependent manner the expression
levels of CXCL8 and CXCL2 in monocytes that were treated with tumor cell-derived
supernatants [57]. Thus, our observations suggest that a metabolism-nuclear connection
may have a major role in potentiating TNBC aggressiveness and add to recent findings
proposing mechanistic connections between key metabolic pathways, gene regulation and
protein activation [36,54,58,59].

Such processes of metabolism-regulated gene expression may control the prometastatic
phenotype of the TME by increasing the presence of deleterious leukocyte subsets in the
tumors. We demonstrated that glycolysis has upregulated the transcription of CCL2,
CXCL8 and CXCL1, chemokines that were causatively connected to increased infiltration
of monocytes and neutrophils to tumors. Accordingly, inhibition of glycolysis has led to
significant reduction in monocyte and neutrophil migration in vivo. As these two leukocyte
subsets are strongly connected to increased tumor progression, our findings propose novel
roles for chronic inflammation in regulating via metabolic plasticity the recruitment of
deleterious leukocyte subsets to TNBC tumors. This possibility is supported by the HCC
study mentioned above, demonstrating that the glycolysis-induced chemokines played key
roles in promoting neutrophil migration to tumors and that neutrophil presence was con-
nected to elevated metastasis in patients [57]. Moreover, similar players, including CCL2
and CXCL8 were found by Sainz and his colleagues to be upregulated when pancreatic
ductal adenocarcinoma cells have been persistently exposed for 14 days to galactose; this
process has shifted the cells towards increased OXPHOS activities and was connected to
immune-evasion [60].

Therefore, our study strongly connects between chronic inflammation and regulation
of metabolism in TNBC, suggesting that such a connection may lead to deleterious impacts
in terms of tumor progression. We demonstrated that in response to continuous proin-
flammatory stimulation, in this case by TNFα and IL-1β, TNBC cells have been skewed
strongly in the direction of proinflammatory phenotype that was connected with metabolic
plasticity. Our research agrees well with other research works that demonstrated the
impact of inflammation-metabolism interaction on tumor progression [57,61,62]. Specifi-
cally in TNBC, our data suggest that a vicious cycle takes place in TNBC tumors through
metabolic transition in the cancer cells: this cycle is driven by chronic inflammation, lead-
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ing through metabolic plasticity in the tumor cells to exacerbated levels of prometastatic
chemokines that can upregulate the recruitment of deleterious leukocyte subsets and
chronic inflammation.

In addition to TME-mediated effects, the chemokines may also regulate the intrinsic
prometastatic activities of the cancer cells, as suggested by recent studies in breast cancer,
demonstrating that the prometastatic chemokine CCL5 promoted the metabolic activity
of the cancer cells; stimulation of the cancer cells by this chemokine has led to increased
glycolysis-dependent tumor growth and invasion in vitro and to elevated ability to form
tumors in vivo [61,62]. Although CCL5 was not regulated in our system of persistent
TNFα + IL-1β stimulation of TNBC cells, it is highly possible that chemokines such as CCL2,
CXCL8 and CXCL1—which were increased due to the continuous cytokine stimulation
and are known as having multiple promalignancy activities that are exerted on the cancer
cells [43,63]—may upregulate tumor-promoting activities in the tumor cells themselves.
Through such an activity, a complete cycle of positive feedbacks can be achieved, in which
inflammation-driven increase in metabolism gives rise to elevated levels of prometastatic
chemokines that then act back on the TME and on the cancer cells, to eventually upregulate
their malignancy potential.

Overall, we believe that our observations may have important clinical implications
because they set the hybrid phenotype of increased glycolysis + OXPHOS activities as a
much better target for therapy than targeting only one of the metabolic processes alone.
The connection of a hybrid metabolic state to elevated tumor aggressiveness suggests that
cancer cells may be deprived more efficiently from their energetic and metabolite sources if
both glycolysis and OXPHOS will be reduced. Moreover, the inflammation-metabolism
connection that we have witnessed in TNBC cells proposes that the influence of metabolic
inhibitors targeting both glycolysis and OXPHOS may be enhanced if they will be joined by
anti-inflammatory drugs. In this respect, nonsteroidal anti-inflammatory drugs (NSAID)
such as aspirin may apply, in view of their strong connection to reduced malignancy risk
in variety of malignant diseases, including breast cancer [64,65].

5. Conclusions

Our study has exemplified the complexity of cancer-TME interactions by demon-
strating that continuous stimulation of TNBC cells by proinflammatory cytokines that are
constantly expressed in breast tumors—such as TNFα + IL-1β—lead to a hybrid metabolic
state that is characterized by elevated glycolysis as well as OXPHOS, and skew TNBC into a
proinflammatory phenotype that is regulated by glycolysis in the cancer cells. This increase
in metabolic pathways, which is gained by TNBC cells upon continuous proinflamma-
tory stimulation, may serve their needs in multiple manners that expand from providing
higher amounts of metabolites, through increased production of prometastatic chemokines,
to elevated levels of deleterious leukocytes at the TME. These findings may have clini-
cal importance in setting up combination therapies that may improve the prognosis of
TNBC patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10061356/s1, Figure S1: Expression of EMT markers by TNBC cells stimulated continu-
ously by proinflammatory cytokines, Figure S2: Migration of TNBC cells that have been continuously
stimulated by proinflammatory cytokines, Figure S3: Short-term TNFα + IL-1β stimulation does
not increase OXPHOS in TNBC cells, Figure S4: Levels of extracellular lactate and ATP in TNBC
cells continuously stimulated by proinflammatory cytokines, Figure S5: OXPHOS activities do not
regulate the expression of inflammatory mediators that are induced by continuous cytokine stimula-
tion in TNBC cells, Table S1: Primers used for quantitative RT-PCR analysis, Table S2: Continuous
TNFα + IL-1β stimulation increases cancer-related annotations in BT-549 cells, Table S3: Continuous
TNFα + IL-1β stimulation increases cancer-related annotations in MDA-MB-231 cells, Table S4: Genes
that are regulated similarly by continuous TNFα + IL-1β in BT-549 and MDA-MB-231 TNBC cells,
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