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1  | INTRODUC TION

The circulatory system contains blood vessels that distribute blood 
with nutrients and oxygen and remove waste products and CO2 
from the tissue. Its normal function is essential for maintaining ho-
meostasis of the organism. The inner layer of blood vessels is made 
of vascular endothelial cells (ECs).1 The endothelium is distinct in 

structure and function, and can be continuous non-fenestrated, 
continuous fenestrated, or discontinuous dependent on the organ 
requirements.2 The brain and spinal cord comprise central nervous 
system (CNS) that controls critical functions of the body. CNS vas-
culature has a unique anatomy and physiology making the CNS a so-
called “immune-privileged” organ, although this idea was challenged 
in the past several decades.3 Located between the CNS tissue and 
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Abstract
The blood–brain barrier (BBB) is an important physiological barrier that separates 
the central nervous system (CNS) from the peripheral circulation, which contains in-
flammatory mediators and immune cells. The BBB regulates cellular and molecular 
exchange between the blood vessels and brain parenchyma. Normal functioning of 
the BBB is crucial for the homeostasis and proper function of the brain. It has been 
demonstrated that peripheral inflammation can disrupt the BBB by various pathways, 
resulting in different CNS diseases. Recently, clinical research also showed CNS com-
plications following SARS-CoV-2 infection and chimeric antigen receptor (CAR)-T cell 
therapy, which both lead to a cytokine storm in the circulation. Therefore, elucidation 
of the mechanisms underlying the BBB disruption induced by peripheral inflamma-
tion will provide an important basis for protecting the CNS in the context of exac-
erbated peripheral inflammatory diseases. In the present review, we first summarize 
the physiological properties of the BBB that makes the CNS an immune-privileged 
organ. We then discuss the relevance of peripheral inflammation-induced BBB dis-
ruption to various CNS diseases. Finally, we elaborate various factors and mecha-
nisms of peripheral inflammation that disrupt the BBB.
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peripheral blood circulation, the blood–brain barrier (BBB) regu-
lates cellular and molecular exchange between the blood vessels 
and brain parenchyma. ECs, pericytes, and astrocytes are the major 
components of the BBB, and basement membrane between them is 
also required for the BBB function and integrity.1

An important function of the BBB is to maintain the homeostasis 
of the central nervous system (CNS). BBB dysfunction is implicated 
in various neurological diseases, such as Alzheimer's disease (AD), 
Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple 
sclerosis (MS), and stroke.4 It was recently reported that in patients 
with autoimmune diseases such as rheumatoid arthritis, treatment 
with tumor necrosis factor (TNF) inhibitor increased the risk of CNS 
inflammation and subsequent BBB breakdown.5 In addition, patient 
infected with SARS-CoV-2 or those using chimeric antigen recep-
tor (CAR)-T cell therapy for lymphocytoma could also develop CNS 
complications, probably due to BBB disruption induced by periph-
eral inflammation, although definitive conclusion is not drawn yet. 
Peripheral inflammation refers to the activation of the innate or 
adaptive immune system and release of proinflammatory cytokines 
against various pathological stimuli outside of the CNS. It is normally 
a kind of protective response of the body against multiple insults. 
Since the BBB is highly susceptible to the inflammatory stimuli, inap-
propriate peripheral inflammation such as lipopolysaccharide (LPS) 
can impact the BBB function via different pathways.6-8

In this review, we briefly describe current understandings on BBB 
structure and functions. Particularly, we elaborate the most recent 
advances in mechanisms of BBB disruption secondary to peripheral 
inflammatory conditions, which have been largely overlooked in the 
research of CNS diseases.

2  | STRUC TURE AND CONSTITUENTS OF 
THE BBB

The neurovascular unit (NVU) usually consists of endothelial cells, 
mural cells (i.e., vascular smooth muscle cells and pericytes), base-
ment membrane, glia cells (astrocytes and microglia cells), and 
neurons, which collectively contribute to BBB integrity.9 ECs form 
the inner lining of all blood vessels. BBB ECs are quite different in 
structure and function from those in other tissues, and the typical 
characteristics that distinguish them from other ECs include the fol-
lowing: (a) paracellular transport of solutes is blocked due to tight 
junctions, (b) fenestrations are absent and transcytosis are reduced, 
limiting transcellular transport of solutes, (c) for transfer of required 
solutes from the blood to parenchymal cells of the brain, specific 
transporters, such as GLUT1 (glucose transporter 1), are expressed, 
(d) to remove toxic substances from CNS parenchymal cells, specific 
pumps, such as P-glycoprotein (P-gp), are expressed, (e) the low ex-
pression level of leukocyte adhesion molecules (LAMs) in BBB en-
dothelial cells helps restrict entry of immune cells into the CNS, and 
(f) ECs of the BBB harbor more mitochondria than of other tissues, 
which might be related to providing the energy that ionic transport 
requires (Figure 1).4,10-13 These features of the CNS ECs contribute 

to highly selected movement of solutes in and out of the CNS paren-
chyma, maintaining a stable microenvironment for proper neuronal 
function.14

Pericytes cover the CNS capillaries and regulate vascular stabil-
ity, diameter, cerebral blood flow, and extracellular membrane pro-
tein secretion.15 Astrocytes span around the vascular endothelium 
and pericytes via end-feet, and they are in contact with neurons and 
regulate BBB permeability.16,17 Microglial cells are a component of 
the NVU, but the link between microglial cells and BBB ECs and its 
effect on formation and regulation of BBB properties remains to be 
fully explored. 18 Furthermore, the BBB is composed of non-cellu-
lar elements, the extracellular membrane (ECM). All of these cellular 
and non-cellular components together maintain the BBB structural 
and functional integrity (Figure 1).

3  | BBB FUNC TION AND ITS REGUL ATION

The complex cellular and non-cellular components of the BBB col-
laboratively maintain the BBB function, and impairment in any one 
of these elements can lead to BBB disruption.3 For example, the 
endothelial tight junctions (TJs) and lack of fenestrae contribute to 
a physical barrier, leaving carriers and/or receptors the only means 
for protein transportation into the CNS.19,20 ECs play an important 
role in vascular biology, such as maintaining permeability, homeosta-
sis, and vessel wall integrity and preventing thrombosis.3 Pericytes 
help preserve the TJs of ECs (e.g., Claudin-5, Occludin, and ZO-1) and 
regulate transcytosis in ECs, maintaining the integrity and normal 
permeability of the BBB.19,21,22 Astrocytes secrete factors that are 
key to maintain BBB properties, including sonic hedgehog (Shh), vas-
cular endothelial growth factor (VEGF), angiopoietins-1 (Ang-1), an-
giotensin-converting enzyme-1 (ACE-1), glial-derived neurotrophic 
factor (GDNF), and apolipoprotein E (ApoE).7 ECM is a dynamic 
component of the BBB, and regulates BBB structure and function 
by impacting cell–cell and cell–matrix interaction within the NVU.23 
Microglia cells are known as the immune cells in the CNS. They can 
be activated and categorized into two opposite types: M1 and M2, 
which produce either cytotoxic or neuroprotective effects.18 Under 
inflammatory conditions, they can be activated to M1 or M2 phe-
notype, thus damaging or protecting the BBB integrity.24-26 These 
cellular and non-cellular components of NVU are affected directly or 
indirectly by peripheral inflammation, resulting in disruption of the 
BBB and CNS alterations.

4  | PERIPHER AL INFL AMMATION AND 
CNS DISE A SES

4.1 | Role of BBB disruption in the effects of 
peripheral inflammation on CNS diseases

Both preclinical and clinical studies have found that peripheral 
inflammation in the form of infection is a common contributing 
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factor for the development and deterioration of CNS diseases, 
such as neurodegenerative diseases AD, PD, MS, and stroke. A 
possible explanation is that BBB disruption in infections increases 
the susceptibility to CNS diseases.27 In AD patients, peripheral 
inflammation increases the level of amyloid beta (β-amyloid) in 
the brain.28 In amyloid precursor protein (APP) transgenic mice, 
peripheral injection of LPS increased BBB permeability, allowing 
for infiltration of peripheral proinflammatory factors such as IL-6 
and TNF-α, and promoting neurological inflammation and disease 
progression.29,30 LPS-induced BBB disruption also plays an im-
portant role in the transmission of Tau, probably in a non-micro-
glia-dependent pathway.31 Aside from AD, evidence also showed 
peripheral inflammation as a potential risk factor for PD and other 
neurodegenerative disease.32,33 Likewise, dysregulated systemic 
inflammation is present in PD, as evidenced by high levels of IL-
1β, IL-2, TNF-α, CD4+ and CD8+ T lymphocytes in both serum and 
cerebrospinal fluid.34 In the pathogenesis of MS, one of the most 
important mechanisms is the infiltration of autoreactive CD4+ T 
cells and other white cells into the CNS, whereas the degree of 
BBB destruction in experimental autoimmune encephalomyelitis 
(EAE) model is strongly correlated with disease severity.35

Ischemic and hemorrhagic stroke also presents with BBB 
disruption, and experimental models and clinical observations 
together have shown that peripheral inflammation (e.g., LPS, ana-
phylaxis, and infection) is more likely to aggravate BBB disruption 
and even worsen the outcome of stroke.36-39 For example, the 
adaptive immune system is activated following cerebral ischemia, 
and the peripheral immune cells, such as T cells and B cells, rap-
idly infiltrate the diseased brain and release various cytokines, in-
cluding pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) leading to 
blood vessels and BBB damage, and anti-inflammatory cytokines 

(IL-13, IL-10, IL-4, TGF-β) extenuating the ischemic injury.40-42 
Moreover, both immune cells and cytokines induce immunode-
pression after stroke, which leads to an increased incidence of 
infections such as pneumonia.43-45 It is not exactly clear whether 
BBB dysfunction induced by inflammation is the cause or compli-
cation of CNS disease, and further study to understand the role 
of peripheral inflammation on BBB function and the influence on 
CNS disease can provide a basis for clinical treatment of the dis-
ease to a certain extent.

4.2 | BBB disruption in COVID-19-related 
CNS symptoms

In December of 2019, a case of pneumonia caused by a novel coro-
navirus, SARS-CoV-2, emerged in Wuhan, China, and rapidly spread 
around the world. This new disease is termed coronavirus disease 
2019 (COVID-19) by the World Health Organization (WHO). The most 
common symptoms of COVID-19 are fever, cough, and tiredness.46 
As for its CNS symptoms, according to a retrospective, observational 
case series of 214 patients, 24.8% of them had CNS manifestations, 
including ataxia, impaired consciousness, dizziness, and headache.47 
The most severe cases were 4 with ischemic stroke and 1 with cer-
ebral hemorrhage who died of respiratory failure.47 Inflammatory 
storm is considered one of the causes of death in severe and criti-
cal COVID-19 cases, with over half of which have lymphopenia and 
a cytokine storm.48 Consistently, an increased release of cytokines 
(IL-1β, IL1RA, IL-6, TNF-α) and chemokines (CCL2, CCL3, CCL5) oc-
curred after infection.49-51 Conceivably, anakinra (IL-1 blockade) and 
tocilizumab (IL-6 receptor blockade) are showing significant survival 
benefits in COVID-19 patients with hyperinflammation.52

F I G U R E  1   Schematic diagram of the physiological characteristics of the BBB. GLUT1, glucose transporter 1; LAMs, leukocyte adhesion 
molecules
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Although the incidence of CNS complications is high in SARS-
CoV-2 infections, the pathogenesis is barely known for now. Some 
researchers believe the cytokine storm during infection persistently 
affects the CNS.53 It is highly likely that BBB disruption might play 
an important role in the CNS complications associated with COVID-
19.54 However, more solid and direct evidence is needed to prove it.

4.3 | BBB disruption in CAR-T therapy-associated 
neurotoxicity

Chimeric antigen receptor (CAR)-T cell therapy is a rapidly develop-
ing novel strategy for acute lymphoblastic leukemia (ALL) or chronic 
lymphocytic leukemia (CLL).55-58 Currently approved CAR-T thera-
pies targeting CD19 showed profound therapeutic effects in ALL.59

However, the toxic effects of CAR-T cells are worrying. The most 
important and common toxic effects are cytokine release syndrome 
(CRS) and the associated neurotoxicity, with the most severe of 
which being lethal cerebral edema.59-64 CD3+ T cells, CD19+ B cells, 
and high levels of cytokines (IFN-γ, IL-6) were detectable in the ce-
rebrospinal fluid (CSF) in ALL patients complicated with cerebral 
edema as soon as a few hours after CD19 CAR-T cell infusion. This 
was accompanied by cerebral CRS, probably due to the cytokines 
produced by BBB-penetrating CAR-T cells.65 Moreover, cytokines 
such as IL-6, IFN-γ, and TNF-α were known to directly activate endo-
thelial cells. Patients with severe neurotoxicity showed evidence of 
endothelial activation, characterized by increased BBB permeability, 
serving as another important mechanism for neurotoxicity in CAR-T 
cell treatment.66,67 More recently, researchers reported high CD19 
expression in human brain mural cells, but not in mouse mural cells, 
and that is a possible on-target mechanism for CD19 CAR-T cell-me-
diated neurotoxicity, meanwhile suggesting limitations in preclinical 
animal models of neurotoxicity.68

Thus far, the mechanisms through which CAR-T cells cause BBB 
dysfunction and neurotoxicity remain enigmatic. Nevertheless, it 
is believed to be closely related to the peripheral inflammatory re-
sponses. More in-depth studies are needed to increase the safety of 
CAR-T cell therapy in clinical applications.

5  | MECHANISMS OF PERIPHER AL 
INFL AMMATION-INDUCED BBB 
DISRUPTION

Peripheral inflammation is basically a protective response for the 
organism. However, excessive and dysregulated inflammation leads 
to adverse effects. For example, various non-neurological systemic 
infections often come with CNS dysfunction, such as pneumonia 
and urinary systemic infection, which may be a result of chronic CNS 
disease.69,70 The BBB protects the CNS from potential peripheral in-
sults; therefore, damaging the BBB is considerably harmful to the 
CNS. Discussed below are mechanisms on how peripheral inflamma-
tion impacts the BBB (Figure 2).

5.1 | Changes in tight junctions (TJs)

TJs are vital components that maintain BBB integrity and normal 
functioning, such that TJ changes directly lead to BBB disruption. 
Lots of bacterial and viral infections cause degradation or disor-
ganization of TJs indirectly through diverse pathways.71-73 For ex-
ample, cytokines including IL-1β, IL-6, IL-9, IL-17, IFN-γ, TNF-α, and 
CCL2, can lead to reduced TJ expression or false TJ allocation.74-79 
Claudin-5 among others is the most important TJ protein responsi-
ble for selective permeability of the BBB, and inflammation leads to 
its downregulation and BBB disruption.80 In old mice, LPS-mediated 
peripheral inflammation resulted in the degeneration of TJ proteins, 
including claudin-5.81 On the other hand, IL-1β led to a discontinuous 
distribution of claudin-5 along the plasma membrane of brain en-
dothelial cells.75 Apart from claudin-5, LPS-induced systemic inflam-
mation was also associated with degradation of occludin.82 Another 
recent study showed that peripheral cytokines reduced expression 
of ZO-1 in mice with pre-existing tumors.83

Nowadays, changes in TJs are usually used as indicators of BBB 
dysfunction. However, there are indirect causes for changes in TJs, 
such as MMPs, nitric oxide (NO), reactive oxygen species (ROS), 
Rho-kinase (ROCK), and NF-κB signaling pathways.84-88 The specific 
mechanisms will be discussed below.

5.2 | Damage to endothelial cells

As the primary component of BBB, EC is another important tar-
get of peripheral inflammation. Research has shown that LPS has 
a direct toxic effect on the BBB endothelium by inhibiting P-gp 
activity and inducing secretion of MMPs, resulting in membrane 

F I G U R E  2   Mechanisms of BBB disruption induced by peripheral 
inflammation. 1 Changes in tight junctions; 2 damage to endothelial 
cells; 3 activation of astrocytes and microglia; 4 alteration of 
multiple transport pathways and receptors; 5 penetration of 
peripheral immune cells
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abnormalities, endoplasmic reticulum (ER) stress, and mitochon-
drial damage, and eventually, cell apoptosis.89,90 MAPK signaling 
also contributes to LPS-induced EC apoptosis.91 EC is breakdown, 
and BBB impairment further facilitates the introduction of neu-
rotoxic substances into the CNS, increasing the risk of other dis-
eases.89,92 Another consequence of peripheral inflammation is 
the upregulated expression of adhesive molecules on ECs, such 
as Vascular Cell Adhesion Molecule 1 (VCAM-1), Intercellular 
Adhesion Molecule 1 (ICAM-1), and E-selectin. This allows for traf-
ficking of peripheral immune cells into the CNS, seen in aging and 
chronic inflammation.71,93-95 In addition, IL-1β is found to induced 
upregulation of α5 integrin-dependent adhesion of EC, which then 
disrupts the integrity of BBB through altering cell–cell junctions 
and cell–matrix adhesion.75

5.3 | Activation of astrocytes and microglia

Astrocytes play a vital role in maintaining BBB integrity and regulat-
ing its function. Depending on the immune trigger or the phase of 
inflammation, they produce either pro- or antiinflammatory media-
tors that affect BBB permeability and infiltration of peripheral im-
mune cells.96 Under an inflammatory condition, astrocytes secrete 
VEGF-A, which activates the eNOS signaling in ECs and downregu-
lates the expression of occludin and claudin-5, resulting in easy entry 
of peripheral lymphocytes into the CNS.97,98 It has been reported 
that during inflammation astrocytes altered claudin-5 expression 
likely by upregulating the immune-related GTPase family M-1 pro-
tein (IRGM-1) in the EAE mouse model.99 In middle cerebral artery 
occlusion (MCAO) model, researchers found high IL-9 expression 
in peripheral blood and IL-9 receptors on astrocytes, and further 
study revealed that IL-9 enhances the permeability of the BBB by 
promoting the secretion of VEGF-A from astrocytes.76 Peripheral 
inflammation induced by LPS can cause proliferation and activation 
of astrocytes, changes in the end-feet structure and altered expres-
sion of other related gene, which collectively and indirectly lead to 
destruction of the BBB.100,101

Microglia cells are part of the NVU, but their interaction with 
BBB ECs and effects on BBB properties are not well known as 
mentioned above. Even so, there is evidence that shows inflam-
mation-activated microglia contribute to BBB disruption.102 There 
are two pathways for microglia activation: the M1 proinflamma-
tory pathway and M2 antiinflammatory pathway.103 M1 microglia 
contribute to BBB dysfunction and vascular “leak” mainly through 
production of proinflammatory mediators, promotion of immune cell 
trafficking, and oxidative stress.18,104 The proinflammatory signaling 
in M1 microglia involves toll-like receptor (TLR)-4,25,105 the IFN-γ 
receptor complex,106 the granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF) receptor,107 and COX2.108-110 The secretion of 
TNF-α, IL-1β, IL-6, IL-12, CCL2, and CXCL10 is shown to change TJs 
(claudin-5, occludin, ZO-1, and ZO-2) and critical BBB transporters 
like P-gp proteins.18,26,102,111-114 Besides, the chemokines CCL2 and 
CXCL10 promote trafficking of immune cells cross the BBB, including 

monocytes and macrophages, which is observed in stroke.115,116 In 
addition to cytokines and chemokines, there is ROS production and 
oxidative stress in M1 microglia, and it is related to increased ex-
pression of iNOS during peripheral inflammation induced by LPS, 
and also stroke.117,118 Different from M1 microglia, M2 microglia 
play protective roles in BBB disruption, including immune regula-
tion, inflammation dampening, and repair/injury resolution.119,120 
The polarization to M2 microglia is mediated by IL-4 receptor, FCγ 
receptor, IL-10 receptor, and VEGFR2 signaling.119,121 M2 microglia 
mainly produce antiinflammatory mediators such as TGF-β1, IL-10, 
and IL-4122,123 Receptors for TGF-β1 are expressed at BBB and TGF-
β1 may have significant positive effects on BBB integrity via activin 
receptor-like kinase (ALK)-1 and −5 signaling.124 IL-10 secretion and 
IL-10 receptor promote inflammation suppression and migration of 
regulatory T cells that alleviate brain injury.119,125 In fact, microglia 
are highly dynamic and their transition from M1 to M2 is compli-
cated and not known clearly. A latest research gave more profound 
evidence that microglia play a dual role in maintaining BBB integrity 
in distinct time course of peripheral inflammation.24 Initially, brain 
microglia migrate to cerebral vessels in response to CCL5 and ex-
press claudin-5, thus maintain BBB integrity, whereafter they trans-
form into another phenotype that contributes to BBB leakage.24

5.4 | Effects of peripheral immune cells

Under normal physiological conditions, the BBB restricts the entry 
of peripheral immune cells into the CNS through low expression 
of LAMs. However, this is interrupted in pathological conditions. 
Indeed, peripheral immune cells can have dual roles in BBB integrity 
depending on different microenvironment and their subtypes, but 
more evidence show that the infiltration of peripheral immune cells 
contributes to the disruption of BBB in several neurodegenerative 
disorders, and even that BBB damage may occur before effector im-
mune cells infiltrate at local sites due to peripheral inflammation-
related or irrelated reasons.126-129 For example, the inflammatory 
factors secreted by immune cells, such ROS, and MMPs (MMP-1 and 
MMP-2), promote their own migration into the CNS and increase 
BBB permeability simultaneously, forming a vicious cycle.74,130,131

Lymphocytes including T cells (CD4+ T helper cells, γδT cells, CD8+ 
cytotoxic T cells), B cells, and NK cells are detrimental to BBB integrity. 
For T lymphocytes, the interaction of myelin-reactive CD4+ T cells and 
cerebrovascular ECs plays an important role in regulating BBB integ-
rity. Decisive events in MS and EAE include activation of myelin-reac-
tive CD4+ T cells which then differentiate into effector (Th1 and Th17) 
and regulatory (Treg) at peripheral tissues, and subsequently transmi-
grate across the BBB.132,133 Th1 and Th17 cells play proinflammatory 
roles through distinct pathways, while Th2 cells perform antiinflam-
matory function in stroke (reviewed in Ref. [38]). Th1 cells mainly re-
lease proinflammatory cytokines (IL-2, IFN-γ, and TNF-α), promote the 
transformation of microglia to M1, and mediate cellular immune re-
sponse.134,135 Th17 cells secret IL-17, IL-21, and IL-22 and promote the 
recruitment of CD4+ T cells.136,137 IL-17A (a member of IL-17 cytokines) 
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activation contributes to BBB disruption by inducing oxidative stress, 
which then activates the endothelium and downregulates TJ protein 
occludin.137 In addition, peripheral CD8+ T cells activation and brain 
infiltration are detrimental to neural tissue after stroke, in which IL-2 
plays a role.138 CD4+ and CD8+ T cells are found in the brain up to 
one month post ischemic stroke, and their prolonged activation may 
affect the outcome of stroke.139 But Tregs, as an important subtype of 
Th2 cells, may be neuroprotective and protect BBB integrity by main-
taining immune tolerance, suppressing the activation of other immune 
cells, or regulating cerebral endothelial function.39 Peripheral B cells 
are a key player in MS on both sides of BBB. They upregulate the ac-
tivated leukocyte cell adhesion molecule (ALCAM) expression in MS 
patients and promote the CNS recruitment of monocytes and CD4+ T 
cells, as ALCAM plays a role in BBB integrity for its cell surface local-
ization and association with junctional proteins.140-142 NK cells are a 
type of innate immune cells and cytotoxic lymphocytes. It is reported 

that in cerebral ischemia NK cells produce cytokines such as IFN-γ, IP-
10, and cause BBB disruption.71,143

Other type of immune cells—myeloid cells such as neutro-
phils, monocytes, dendritic cells (DCs), and mast cells, also influ-
ence BBB function via distinct mechanisms. Neutrophils produce 
a variety of proinflammatory cytokines that affect BBB function, 
including IL-1β, TNF-α, IL-6, IL-12, and IFN-γ, whereas TNF-α can 
further induce the recruitment of neutrophils to the CNS. 144-146 
Additionally, when neutrophils transmigrate into the CNS, they 
secret IL-1 and activate the antigen-presenting cells (APC) locally, 
which subsequently activate endothelial IL-1R1 signaling that in-
duces T cell recruitment and exacerbates CNS inflammation.147 
Monocytes may migrate across the BBB depending on the upregu-
lation of cytokines (IL-1) and junction molecules (ALCAM, JAM-A, 
PECAM-1, and CD99).148,149 As a result, HIV-infected monocytes 
with upregulation of ALCAM, JAM-A, and CCR2 on their surface 

TA B L E  1   Mechanisms of peripheral inflammation causing BBB disruption, and the corresponding examples and references.

Mechanisms of peripheral 
inflammation-induced BBB disruption Examples References

Changes in TJs Expression and/or location changes in claudin−5, 
occludin, ZO−1, etc.

71,72,73,74,75,76,77,78,79,80,81,82,84,83,85,
86,87,88,92,97,98,99,102

Damage to ECs ECs apoptosis, membrane abnormalities, ER stress, 
and mitochondrial damage.

89,90,91

Upregulation of VCAM−1, ICAM−1, and E-selectin 
expression in ECs.

93,94,71,95

Upregulation of α5 integrin-dependent adhesion. 75

Activation of astrocytes and microglia Astrocytes: increased secretion of VEGF-A. 97,98,99,76

Astrocytes: proliferation, activation, and changes 
in the end-feet structure.

100,101

Microglia:
M1 pro-inflammatory microglia;
M2 antiinflammatory microglia.

24,26,102,105,25,106,107,108,109,110,111,112
,113,114,115,116,117,118,119,163

120,121,122,123,124,125

Effects of peripheral immune cells Migration of peripheral immune cells to CNS 
promoted by inflammatory mediators (ROS, MMP, 
etc.).

74,126,130,131

Effects of lymphocytes on BBB:
myelin-specific CD4+ T cells,
Th1, Th17 cells,
CD8+ T cells,
Th2 cells (Tregs),
B cells,
NK cells, etc.

132, 133
38,134,135,136,137
138,139
39
140,141,142
143,71

Effects of myeloid cells on BBB:
neutrophils,
monocytes,
macrophages, DCs,
mast cells, etc.

144,145,146,147
146,148,149,150,127,151
152,153
155,156

Others Changes in transport pathways: efflux and influx 
transporters.

27,159,160,161,162

Peripheral inflammation in CNS diseases (AD, PD, 
MS, stroke, etc.)

28,29,30,31,32,33,34,35,36,37,40,41,43,44,45
,132,133,138

SARS-CoV−2 virus infection-induced peripheral 
inflammation affecting BBB.

46,47,48,49,50,51,52,53, 54

Neurotoxic effects of CAR-T therapy. 59,60,61,62,63,64,65,67,66,68 164
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are more likely to cross the endothelium monolayer than nonin-
fected monocytes in response to CCL2, a chemokine, which is ele-
vated in the CNS and CSF of HIV-infected people.150,151 The bone 
marrow-derived monocytes (BMDMs) can affect the BBB integ-
rity and control immune infiltration by releasing related cytokines 
during stroke, whereby exacerbating BBB injury.127 Macrophages 
and DCs are found in the perivascular space between the endo-
thelial and parenchymal basement membranes under inflamma-
tion, then help to activate lymphocytes that subsequently breach 
the BBB.152-154 The activated mast cells can also produce various 
proinflammatory mediators, such as histamine, chymase, trypt-
ase, TNF-α, IL-6, and IL-13, which activate MMP-2 and MMP-9, 
thus altering BBB permeability.155,156 Actually, myeloid cells, in-
cluding monocytes, neutrophils, macrophages, and activated 
microglia, are highly plastic depending on the environment such 
as interaction with ischemic neurovascular unit during late re-
pair phase of stroke, which can be potential immunotherapeutic 
targets.154,157,158

5.5 | Other changes in the BBB

In addition to the above pathways in which peripheral inflammation 
affects the BBB, it is demonstrated that morphological changes may 
not necessarily occur when peripheral inflammation impacts BBB 
integrity. For instance, TJs may remain intact during inflammation 
while the functional integrity of the BBB is impaired.27

Multiple transport pathways are altered by peripheral inflamma-
tion. Efflux transporters are downregulated, including P-gp on the 
astrocytic end-feet, along with those for anions, amino acids, and 
β-amyloid. Meanwhile, influx transporters are upregulated, including 
those for insulin, monoamine, and lysosomal enzymes.27 In addition, 
the cerebral endothelium expresses IL-1, IL-6, and TNF-α receptors; 
thus, these circulating cytokines can directly activate the endothe-
lium, causing BBB dysfunction.159 This may be associated with nuclear 
transcription factor IκB.160 What is more, LPS, TNF-α, and IL-1β can 
enhance the expression of cyclooxygenase (COX) in the cerebral en-
dothelium.159 It has been reported that a high dose of LPS causes BBB 
damage through COX-dependent pathways.161 Recently, it was identi-
fied that dynamic changes of CD antigens, such as CD54 and CD106 in 
brain vessels, allowed for leukocyte migration with and without alter-
ations of other major functional molecules after LPS injection.162

6  | CONCLUSION AND FUTURE 
PERSPEC TIVE

The BBB is a complex CNS structure that precisely regulates the trans-
port of ions, molecules, and cells between the CNS and periphery. It 
protects the brain from damage and maintains the normal biochemi-
cal microenvironment. Peripheral inflammation is one of the comorbid 
conditions that is involved in BBB breakage and its dysfunction, and its 
mechanisms are extremely complicated (Table 1). Take SARS-CoV-2, 

for example, the recent COVID-19 patients showed ischemic stroke 
and cerebral hemorrhage, highlighting the potentially critical role of 
BBB disruption by peripheral inflammation. Our lacking in knowledge in 
understanding it makes it even harder for treatment and prevention of 
serious CNS complications in COVID-19 patients. More work is needed 
to understand the heterogeneity and signaling mechanisms intrinsic to 
BBB development, maintenance, disruption, and repair. Although some 
of the molecular and cellular pathways have been reported, it is crucial 
to identify how these different signaling pathways collaborate with 
one another during the development and maintenance of the BBB. 
Answers to these questions could help tell the exact mechanisms of 
BBB disruption that lead to various neurological diseases.

Although it is almost certain that peripheral inflammation can 
induce BBB dysfunction, it is not clear whether this serves as an 
etiology for the development of various CNS diseases. Future re-
search to study on this attribute could provide a basis for clinical 
treatment of the disease. It will also hint the identifications of new 
therapeutic strategies in various CNS diseases targeting BBB re-
pair. On top of that, it may also shed lights to develop effective 
strategies for the CNS delivery of drugs to treat a wide range of 
neurological diseases.
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