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Abstract
Background: Chemical named entities represent an important facet of biomedical text.

Results: We have developed a system to use character-based n-grams, Maximum Entropy Markov
Models and rescoring to recognise chemical names and other such entities, and to make confidence
estimates for the extracted entities. An adjustable threshold allows the system to be tuned to high
precision or high recall. At a threshold set for balanced precision and recall, we were able to
extract named entities at an F score of 80.7% from chemistry papers and 83.2% from PubMed
abstracts. Furthermore, we were able to achieve 57.6% and 60.3% recall at 95% precision, and
58.9% and 49.1% precision at 90% recall.

Conclusion: These results show that chemical named entities can be extracted with good
performance, and that the properties of the extraction can be tuned to suit the demands of the
task.

Background
Systems for the recognition of biomedical named entities
have traditionally worked on a 'first-best' approach, where
all of the entities recognised have equal status, and preci-
sion and recall are given roughly equal importance. This
does not reflect that fact that precision is of greater impor-
tance for some applications, and recall is the key for oth-
ers. Furthermore, knowing the confidence (in this paper,
we use "confidence" to refer to a system's estimate of the
probability that a potential named entity is a correct
named entity) with which the system has assigned the

named entities is likely to be useful in a range of different
applications.

Named entities of relevance to biomedical science include
not only genes and proteins but also other chemical sub-
stances which can be of interest as drugs, metabolites,
nutrients, enzyme cofactors, experimental reagents and in
many other roles (see [1] for a discussion of chemical ter-
minology). We have recently investigated the issue of
chemical named entities [2], by compiling a set of manual
annotation guidelines, demonstrating 93% interannota-
tor agreement and manually annotating a set of 42 chem-
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istry papers. In this paper we demonstrate a named entity
recogniser that assigns a confidence score to each named
entity, allowing it to be tuned for high precision or recall.

Our review of the methods of chemical named entity rec-
ognition showed a consistent theme: the use of character-
based n-grams to identify chemical names via their con-
stituent substrings [3-5]. This can be a powerful tech-
nique, due to systematic and semisystematic chemical
names and additional conventions in drug names. How-
ever this technique does not cover all aspects of chemical
nomenclature.

Much current named entity work uses approaches which
combine the structured prediction abilities of HMMs and
their derivatives with techniques which enable the use of
large, diverse feature sets such as maximum entropy (also
known as logistic regression). Maximum Entropy Markov
Models, (MEMMs) [6] provide a relatively simple frame-
work for this. MEMMs do have a theoretical weakness,
namely the "label bias" problem [7], which has been
addressed with the development of Conditional Random
Fields (CRFs). CRFs are now a mainstay of the field, being
used in a high proportion of entries in the latest BioCrea-
tive evaluation [8]. However, despite the label bias prob-
lem, MEMMs still attract interest due to practical
advantages such as shorter training cycles.

The standard strategy for encoding named-entity recogni-
tion in HMMs and similar systems is via BIO coding (or
some variant of BIO coding). In this scheme, the text is
tokenised, and each token is encoded as O ("outside" –
not a part of a named entity), B ("begin") or I ("inside").
Where more than one named entity type exists, the B and
I codes can be extended with an entity type. For example,
in "dissolved in ethyl acetate." the named entity informa-
tion can be represented thus: dissolved_O in_O ethyl_B-
CM acetate_I-CM ._O.

The framework of HMMs and their successors offers three
modes of operation; first-best, n-best and confidence-
based. In first-best NER, the Viterbi algorithm is used to
identify a single sequence of labels for the target sentence.
In n-best operation, the n best sequences for the sentence
are identified, along with their probabilities, for example
by coupling the Viterbi algorithm with A* search. In con-
fidence-based operation, potential entities (with a proba-
bility above a threshold) are identified directly, without
directly seeking a single optimal labelling for the entire
sentence. This is done by examining the probability of the
label transitions within the entity, and the forward and
backward probabilities at the start and end of the entity.
This mode has been termed the Constrained Forward-
Backward algorithm [9]. Where a single unambiguous
non-overlapping labelling is required, it can be obtained,

for example, by identifying cases where the entities over-
lap, and discarding those with lower probabilities. Note
that the set of entities selected in this manner is not guar-
anteed to be optimal; however, more advanced decoding
procedures exist that do guarantee an optimal selection.

Confidence-based extraction has two main advantages.
First, it enables the balance between precision and recall
to be controlled by varying the probability threshold. Sec-
ond, confidence-based NER avoids over-commitment in
systems where it is used as a preprocessor, since multiple
overlapping options can be used as input to later compo-
nents.

The optimum balance between recall and precision
depends on the application of the NER and on the other
components in the system. High precision is useful in
search even when recall is low when there is a large degree
of redundancy in the information in the original docu-
ments. High precision NER may also be useful in contexts
such as the extraction of seed terms for clustering algo-
rithms. Balanced precision/recall is often appropriate for
search, although in principle it is desirable to be able to
shift the balance if there are too many/too few results. Bal-
anced precision/recall is also generally assumed for use in
strictly pipelined systems, when a single set of consistent
NER results is to be passed on to subsequent processing.
Contexts where high recall is appropriate include those
where a search is being carried out where there is little
redundancy (cf [10]) or where the NER system is being
used with other components which can filter the results.

One use of our NER system is within a language process-
ing architecture [11] that systematically allows for ambi-
guity by treating the input/output of each component as a
lattice (represented in terms of standoff annotation on an
original XML document). This system exploits relatively
deep parsing, which is not fully robust to NER errors but
which can exploit complex syntactic information to select
between candidate NER results. NER preprocessing is
especially important in the context of chemistry terms
which utilise punctuation characters (e.g., '2,4-dinitrotol-
uene', '2,4- and 2,6-dinitrotoluene') since failure to iden-
tify these will lead to tokenisation errors in the parser.
Such errors frequently cause complete parse failure, or
highly inaccurate analyses. In our approach, the NER
results contribute edges to a lattice which can (optionally)
be treated as tokens by the parser. The NER results may
compete with analyses provided by the main parser lexi-
con. In this context, some NER errors are unimportant:
e.g., the parser is not sensitive to all the distinctions
between types of named entity. In other cases, the parser
will filter the NER results. Hence it makes sense to empha-
sise recall over precision. We also hypothesise that we will
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be able to incorporate the NER confidence scores as fea-
tures in the parse ranking model.

An example of the improvements that are available by
passing multiple hypotheses from component to compo-
nent is given by Roth and Yi [12,13]. In their system,
results from named entity classification are used in rela-
tion classification. By passing multiple hypotheses
between the systems, using Integer Linear Programming
to perform global inference, they were able to achieve an
improvement in performance for both tasks over a more
traditional pipelined system. Similarly, Finkel et al. [14]
were able to improve the results of Semantic Role Label-
ling and Recognising Textual Entailment systems by using
multiple hypotheses from their underlying named entity
recognition and PCFG parsing components.

One motivation for our focus on high-recall capable NER
is its intended use in the Royal Society of Chemistry's edit-
ing workflows for their Project Prospect system [15], in
which chemical named entity recognition is used to pro-
duce semantically-enriched journal articles. In this situa-
tion, high recall is desirable, as false positives can be
removed in two ways; by removing entities where a chem-
ical structure cannot be assigned, and by having them
checked by a technical editor. False negatives are harder to
correct. A study by Alex et al. [16] on the use of NLP com-
ponents in the curation of biological databases showed a
curator preference for high-recall over high-F score NER.
They speculate that different curators may have different
preferences for precision and recall, and suggest that it
would be useful to develop a system which would allow
curators to filter information dynamically based on confi-
dence values.

The use of confidence-based recognition has been demon-
strated with CRFs in the domain of contact details [9], and
using HMMs in the domain of gene annotation [10]. In
the latter case, the LingPipe toolkit was used in the Bio-
Creative 2 evaluation without significant adaptation.
Although only 54% precision was achieved at 60% recall
(the best systems were achieving precision and recall
scores in the high eighties), the system was capable of
99.99% recall with 7% precision, and 95% recall with
18% precision, indicating that very high recall could be
obtained in this difficult domain.

Another potential use of confidence-based NER is the
potential to rescore named entities. In this approach, the
NER system is run, generating a set of named entities.
Information obtained about these entities throughout the
document (or corpus) that they occur in can then be used
in further classifiers. We are not aware of examples of res-
coring being applied to confidence-based NER, but there
are precedents using other modes of operations. For

example, Krishnan and Manning [17] describe a system
where a first-best CRF is used to analyse a corpus, the
results of which are then used to generate additional fea-
tures to use in a second first-best CRF. Similarly, Yoshida
and Tsujii [18] use an n-best MEMM to generate multiple
analyses for a sentence, and re-rank the analyses based on
information extracted from neighbouring sentences. Ji
and Grishman [19-21] use feedback from coreference res-
olution, relation extraction and event extraction systems
to rescore the output of an n-best HMM Chinese name
tagger.

Therefore, to explore the potential of these techniques, we
have produced a chemical NER system that uses a MEMM
for confidence-based extraction of named entities, with an
emphasis on the use of character-level n-grams, and a res-
coring system.

Methods
Corpus
Previously, we have produced a set of annotation guide-
lines for chemical named entities, and used them to anno-
tate a set of 42 chemistry papers [2]. In that study, inter-
annotator agreement was tested on 14 of these, and found
to be 93%. The annotation guidelines specified five
classes of named entity, which are detailed in Table 1. The
annotation was performed on untokenised text. When
tokenised with our tokeniser, the corpus was found to
contain 129576 tokens (including punctuation) in total.

To test the applicability of the method to a different cor-
pus, we retrieved 500 PubMed abstracts and titles, and
annotated them using the same methods. The abstracts
were acquired using the query metabolism [Mesh] AND
drug AND hasabstract. This produced a diverse set of
abstracts spanning a wide range of subject areas, but
which contain a higher proportion of relevant terms than
PubMed overall. 445 out of 500 abstracts contained at
least one chemical named entity, whereas 249 contained
at least ten. Notably, the ASE class was more common in
the PubMed corpus than in the chemistry papers, reflect-
ing the importance of enzymes to biological and medical
topics. This corpus was found to contain 135197 tokens
(including punctuation) in total.

Table 1: Named Entity Types

Type Description Example nCh nPM

CM compound citric acid 6865 4494
RN reaction methylation 288 401
CJ adjective pyrazolic 60 87
ASE enzyme demethylase 31 181
CPR prefix 1,3- 53 21

nCh = number in Chemistry corpus, nPM = number in PubMed corpus.
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In the current study, we have left out the named entity
type CPR, as it is rare (<1%) and causes difficulties with
tokenisation. This entity type covers cases such as the "1,3-
" in "1,3-disubstituted", and as such requires the "1,3-" to
be a separate token or token sequence. However, we have
found that recognition of the other four classes is
improved if words such as "1,3-disubstituted" are kept
together as single tokens. Therefore it makes sense to treat
the recognition of CPR as an essentially separate problem
– a problem that will not be addressed here.

External Resources
Chemical names were extracted from the chemical ontol-
ogy ChEBI [22], and a standard English word list was
taken from/usr/share/dict/wordson a Linux system. This
dictionary was chosen as it contains inflectional forms of
English words. Our system does not perform stemming,
partly because suffixes are often good cues as to whether a
word is chemical or not. A list of chemical element names
and symbols was also compiled. To overcome the short-
age of entities of type ASE, a list of words from enzyme
names ending in '-ase' was extracted from the Gene Ontol-
ogy [23], and manually sorted into words of type ASE, and
words not of type ASE.

Overview of operation
The text is tokenised before processing; this is done using
the tokeniser described in our previous work [2], which is
adapted to chemical text.

Our system uses three groups of classifiers to recognise
chemical names. The first classifier – the 'preclassifier' –
uses character-level n-grams to estimate the probabilities
of whether tokens are chemical or not. The output of this
classification is combined with information from the suf-
fix of the word, and is used to provide features for the
MEMM.

The second group of classifiers constitute the MEMM
proper. Named entities are represented using a BIO-
encoding, and methods analogous to other confidence-
based taggers [9,10] are used to estimate the conditional
probability of tag sequences corresponding to named
entities. The result of this is a list of potential named enti-
ties, with start positions, end positions, types and proba-
bilities, where all of the probabilities are above a
threshold value. A small set of hand-written filtering rules
is used to remove obvious absurdities, such as named
entities ending in the word "the", and simple violations of
the annotation guidelines, such as named entities of type
ASE that contain whitespace. These filtering rules make
very little difference at recall values up to about 80% –
however, we have found that they are useful for improv-
ing precision at very high recall.

The third group of classifiers – one per entity type – imple-
ment a rescoring system. After all of the potential entities
from a document have been generated, a set of features is
generated for each entity. These features are derived from
the probabilities of other entities that share the same text
string as the entity, from probabilities of potential syno-
nyms found via acronym matching and other processes,
and most importantly, from the pre-rescoring probability
of the entities themselves.

Overview of training
A form of training conceptually similar to cross-validation
is used to train the three layers of classifiers. To train the
overall system, the set of documents used for training is
split into three parts. Two thirds are used to train a
MEMM, which is then used to generate training data for
the rescorer using the held-out last third. This process is
repeated another two times, holding out a different third
of the training data each time. Finally, the rescorer is
trained using all of the training data generated by this pro-
cedure, and the final version of the MEMM is generated
using all of the training data. This procedure ensures that
both the MEMM and the rescorer are able to make use of
all of the training data, and also that the rescorer is trained
to work with the output of a MEMM that has not been
trained on the documents that it is to rescore.

A similar procedure is used when training the MEMM
itself. The available set of documents to use as training
data is divided into half. One half is used to train the pre-
classifier and build its associated dictionaries, which are
then used to generate features for the MEMM on the other
half of the data. The roles of each half are then reversed,
and the same process is applied. Finally, the MEMM is
trained using all of the generated features, and a new pre-
classifier is trained using all of the available training data.
It should be noted that the dictionaries extracted during
the training of the preclassifier are also used directly in the
MEMM.

The character n-gram based preclassifier
During the training of the preclassifier, sets of tokens are
extracted from the hand-annotated training data. A heu-
ristic is used to classify these into 'word tokens' – those
that contain two consecutive lowercase letters, and 'non-
word tokens' – those that do not (this class includes many
acronyms and chemical formulae). The n-gram analysis is
only performed upon 'word tokens'. This is a simple heu-
ristic that excludes many irrelevant tokens from consider-
ation, but it does not aim to be comprehensive.

The token sets that are compiled are chemical word tokens
(those that only appear inside named entities), nonchem-
ical word tokens (those that do not appear in entities),
chemical nonword tokens, nonchemical nonword tokens
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and ambiguous tokens – those that occur both inside and
outside of named entities. A few other minor sets are col-
lected to deal with tokens related to such proper noun-
containing entities as 'Diels-Alder reaction'.

Some of this data is combined with external dictionaries
to train the preclassifier, which uses Markov models of
chemical names and nonchemical words, using 4-grams
of characters and modified Kneser-Ney smoothing, as
described in [5]. In our experience with various n-gram
techniques, using 5-grams and higher offers only a slight
advantage at best and is counter-productive at worst. The
set of 'chemical word tokens' is used as a set of positive
examples, along with tokens extracted from ChEBI, a list
of element names and symbols, and the ASE tokens
extracted from the GO. The negative examples used are
the extracted 'nonchemical word tokens', the non-ASE
tokens from the GO and tokens taken from the English
dictionary – except for those that were listed as positive
examples. This gets around the problem that the English
dictionary contains the names of all of the elements and a
number of simple compounds such as 'ethanol'.

During operation, n-gram analysis is used to calculate a
score for each word token, of the form:

ln(P(token|chem)) - ln(P(token|nonchem))

If this score is above zero, the preclassifier classifies the
token as chemical and gives it a tentative type, based on its
suffix. This can be considered to be a "first draft" of its
named entity type. For example tokens ending in "-ation"
are given the type RN, whereas those ending in "-ene" are
given type CM.

The MEMM
The MEMM is a first-order MEMM, in that it has a separate
maximum-entropy model for each possible preceeding
tag. No information about the tag sequence was included
directly in the feature set. We use the OpenNLP MaxEnt
toolkit [24] for maximum-entropy classification.

The feature set for the MEMM is divided into three types
of features; type 1 (which apply to the token itself), type 2
(which can apply to the token itself, the previous token
and the next token) and type 3 (which can act as type 2
features, and which can also form bigrams with other type
3 features). An example type 1 feature would be 4G=ceti,
indicating that the 4-gram ceti had been found in the
token. An example type 2 feature would be c-1:w=in, indi-
cating that the previous token was 'in'. An example bigram
constructed from type 3 features would be
bg:0:1:ct=CJ_w=acid, indicating that the preclassifier had
classified the token as being of type CJ, and having a score
above zero, and that the next token was 'acid'.

Type 1 features include 1, 2, 3 and 4-grams of characters
found within the token, whether the token appeared in
any of the word lists, and features to represent the proba-
bility and type given by the preclassifier for that token.
Type 2 features include the token itself with any terminal
letter 's' removed, the token converted to lowercase (if it
matched the regex .*[a-z][a-z].*), and a three-character
suffix taken from the token. The token itself was usually
used as a type 2 feature, unless it was short (less than four
characters), or had been found to be an ambiguous token
during preclassifier training, in which case it was type 3
(i.e. licensed to occur as a bigram with other type 3 fea-
tures). Other type 3 features include a word shape feature,
and tentative type of the token if the preclassifier had
classed it as chemical.

A few other features were used to cover a few special cases,
and were found to yield a slight improvement during
development.

After generating the features, the least informative features
are removed by discarding all of those with a G less than
or equal to 0.25, where

This was found during development to have only a very
small beneficial effect on the performance of the classifier,
but it did make training faster and produced smaller mod-
els. This largely removed rare features which were only
found on a few non-chemical tokens.

The rescorer
The rescoring system works by constructing four maxi-
mum entropy classifiers, one for each entity type. The out-
put of these classifiers is a probability of whether or not a
potential named entity really is a correct named entity of
the respective class. The generation of features is done on
a per-document basis.

The key features in the rescorer represent the probability
of the potential entity as estimated by the MEMM. The raw
probability p is converted to the logit score

l = ln(p) - ln(1 - p)

This mirrors the way probabilities are represented within
maximum entropy (aka logistic regression) classifiers. If l
is positive, int(min(15.0, l) * 50) instances of the feature
conf+ are generated, and a corresponding technique is
used if l is negative. We found that 15.0 was a good thresh-
old by experimentation on development data: papers
annotated during trial runs of the annotation process.
Before generating further features, it is necessary to find

G O O Ei i i

i

= ⋅∑2 ln( / )
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entities that are 'blocked' – entities that overlap with other
entities of higher confidence. For example, consider "ethyl
acetate", which might give rise to the named entity "ethyl
acetate" with 98% confidence, and also "ethyl" with 1%
confidence and "acetate" with 1% confidence. In this case,
"ethyl" and "acetate" would be blocked by "ethyl acetate".

Further features are generated by collecting together all of
the unblocked potential entities of a type that share the
same string, calculating the maximum and average proba-
bility, and calculating the difference between the p and
those quantities. It is important to consider only
unblocked entities here, as doing this without regards for
blocking causes problems. In a document containing both
"ethyl acetate" and "ethyl group", it would be detrimental
to allow the low confidence for the "ethyl" in "ethyl ace-
tate" to lower the confidence of the "ethyl" in "ethyl
group".

Some acronym and abbreviation handling is also per-
formed. The system looks for named entities that are sur-
rounded by brackets. For each of these, a list of features is
generated that is then given to every other entity of the
same string. If there is a potential entity to the left of the
bracketed potential abbreviation, then features are gener-
ated to represent the probability of that potential entity,
and how well the string form of that entity matches the
potential abbreviation. If no potential entity is found to
match with, then features are generated to represent how
well the potential abbreviation matches the tokens to the
left of it. By this method, the rescorer can gather informa-
tion about whether a potential abbreviation stands for a
named entity, something other than a named entity – or
whether it is not an abbreviation at all, and use that infor-
mation to help score all occurrences of that abbreviation
in the document.

Results and discussion
The systems were evaluated by 3-fold cross-validation
methodology, whereby the data was split into three equal
folds (in the case of the chemistry papers, each fold con-
sists of one paper per journal. For the PubMed abstracts,
each fold consists of one third of the total abstracts). For
each fold, the system was trained on the other two folds
and then used to generate a list of putative named entities
on that fold. The putative named entities generated in this
fashion were then pooled into a single list.

In this list, the start position, end position, type and con-
fidence score of each putative named entity was recorded.
This list was sorted in order of confidence – most confi-
dent first – and each entity was classified as a true positive
or a false positive according to whether an exact match
(start position, end position and type all matched per-

fectly) could be found in the annotated corpus. Also, the
number of entities in the annotated corpus was recorded.

Precision/recall curves were plotted from these lists by
selecting the first n elements, and calculating precision
and recall taking all of the elements in this sublist as true
or false positives, and all the entities in the corpus that
were not in the sublist as false negatives. The value of n
was gradually increased, recording the scores at each
point. The Mean Average Precision (MAP) was calcuated
as the average of precisions computed after each true pos-
itive in turn (named entities that were not detected at all
were treated as having a precision of zero). This value is
approximately equal to the area under the precision/recall
curve. We also consider some single-point values: the pre-
cision at a threshold that sets the recall to 90%, the recall
at a threshold that sets the precision to 95%, and the pre-
cision, recall and F at a threshold of 0.3. The results of this
evaluation on the corpus of chemistry papers are shown in
Figure 1 and Table 2. The full system achieves 57.6% recall
at 95% precision and 58.9% precision at 90% recall. At a
confidence threshold of 0.3, the system achieves 78.7%
precision and 82.9% recall (F = 80.7%). Also shown are
the results of successively eliminating parts of the system.
"No Rescorer" removes the rescorer. In "No Preclassifier",
the preclassifier is disabled (we disable the preclassifier
rather than the MEMM here, as a preclassifier-only system
would only be able to recognise single-token named enti-
ties that contain consecutive lowercase characters, which
constitute only 55% of the named entities in the corpus.
The MEMM, by contrast, is not fundamentally limited in
this manner), and all of the dictionaries extracted during
the training of the preclassifier are also disabled. Finally,
in "No n-Grams", the 1-, 2-, 3- and 4-grams used directly
by the MEMM are also disabled, showing the results of
using a system where no character-level n-grams are used
at all. These modifications apply successively – for exam-
ple, in the "No n-Grams" case the rescorer and preclassi-
fier are also disabled. These results validate the the cascade
of classifiers, and underline the importance of character-
level n-grams in chemical NER.

We also show comparisons to an HMM-based approach,
based on LingPipe 3.4.0 [25]. This is essentially the same
system as we described in [2], but operating in a confi-
dence-based mode. The HMMs used make use of charac-
ter-level n-grams, but do not allow the use of the rich
feature set used by the MEMM. The line "Customised
LingPipe HMM" shows the system using the custom
tokenisation and ChEBI-derived dictionary used in the
MEMM system, whereas the "Pure LingPipe HMM" shows
the system used with the default tokeniser and no external
dictionaries. In the region where precision is roughly
equal to recall (mimicking the operation of a first-best sys-
tem), the fact that the MEMM-based system outperforms
Page 6 of 10
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an HMM is no surprise. However, it is gratifying that a
clear advantage can be seen throughout the whole recall
range studied (0–97%), indicating that the training proc-
esses for the MEMM are not excessively attuned to the
first-best decision boundary. This increased accuracy

comes at a price in the speed of development, training and
execution.

It is notable that we were not able to achieve extremes of
recall at tolerable levels of precision using any of the sys-
tems, whereas it was possible for LingPipe to achieve
99.99% recall at 7% precision in the BioCreative 2006
evaluation. There are a number of reasons for this. The
first is that the tokeniser used in all systems apart from the
"Pure LingPipe HMM" system tries in general to make as
few token boundaries as possible; this leads to some cases
where the boundaries of the entities to be recognised in
the test paper occur in the middle of tokens, thus making
those entities unrecognisable whatever the threshold.
Other factors that may have had an influence include the
quantity of training data, differences between chemical
and gene names, and the fact that the sentences used in
BioCreative were selected using a classifier to control the
rate at which gene names occurred in that corpus. [8]

Figure 2 shows the results of running the system on the set
of annotated PubMed abstracts described earlier. The full
system achieves 60.3% recall at 95% precision, 49.1% pre-
cision at 90% recall. At a confidence threshold of 0.3, the
system achieves 85.0% precision and 81.6% recall (F =
83.2%). In PubMed abstracts, it is common to define ad-
hoc abbreviations for chemicals within an abstract (e.g.,
the abstract might say 'dexamethasone (DEX)', and then
use 'DEX' and not 'dexamethasone' throughout the rest of
the abstract). The rescorer provides a good place to resolve

Evaluation on PubMed abstractsFigure 2
Evaluation on PubMed abstracts.
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Evaluation on chemistry papersFigure 1
Evaluation on chemistry papers.
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Table 2: F scores (at confidence threshold of 0.3) and Mean 
Average Precision (MAP) values for Figs. 1–5.

Corpus System MAP F

Chemistry Full 87.1% 80.8%
Chemistry No Rescorer 86.8% 81.0%
Chemistry No Preclassifier 82.7% 74.8%
Chemistry No n-Grams 79.2% 72.2%
Chemistry Custom LingPipe 75.9% 74.6%
Chemistry Pure LingPipe 66.9% 63.2%
Chemistry No Overlaps 82.9% 80.8%
Chemistry CM 87.0% 81.2%
Chemistry RN 74.5% 73.4%
Chemistry CJ 90.0% 92.0%
Chemistry ASE 17.4% 36.2%
PubMed Full 86.1% 83.2%
PubMed No Rescorer 83.3% 79.1%
PubMed No Preclassifier 81.4% 73.4%
PubMed No n-Grams 77.6% 70.6%
PubMed Custom LingPipe 78.6% 75.6%
PubMed Pure LingPipe 71.9% 66.1%
PubMed CM 85.6% 82.3%
PubMed RN 95.3% 93.2%
PubMed CJ 78.7% 83.1%
PubMed ASE 83.4% 86.0%
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these abbreviations, and thus has a much larger effect than
in the case of chemistry papers where these ad hoc abbre-
viations are less common. Chemistry papers convention-
ally number compounds and indicate coreference
between compounds with numbers rather than abbrevia-
tions. Since we can retrieve these almost perfectly by
straightforward manipulation of the document structure,
we do not include such references in our annotations and
results. However it is worth noting that the effective per-
formance of NER on chemistry texts is considerably
higher when these coreferences are taken into account. It
is also notable that the maximum recall is lower for the
PubMed abstracts. One system – the "Pure LingPipe
HMM", which uses a different, more aggressive tokeniser
from the other systems – has a clear advantage in terms of
maximum recall, showing that overcautious tokenisation
limits the recall of the other systems.

In some cases the system gives "spikes" of lowered preci-
sion at very low recall, indicating that it can occasionally
be overconfident, and assign very high confidence scores
to incorrect named entities. Neither corpus contains
enough data for the results to reach a plateau – using addi-
tional training data is likely to give improvements in per-
formance.

The "No Overlaps" line in Figure 3 shows the effect of
removing "blocked" named entities (as defined in section
3.6) prior to rescoring. This simulates a situation where an

unambiguous inline annotation is required – for example
a situation where a paper is displayed with the named
entities being highlighted. This condition makes little dif-
ference at low to medium recall, but it sets an effective
maximum recall of 90%. The remaining 10% of cases pre-
sumably consist of situations where the recogniser is find-
ing an entity in the right part of the text, but making
boundary or type errors.

Figure 4 shows the performance of the full system on
chemistry papers, evaluating each named entity class sep-
arately. As expected, the performance of the system on CM
closely mirrors the overall performance, with RN being in
general handled worse and CJ being handled better. The
performance on ASE is very poor. Figure 5 shows the same
analysis for the PubMed abstracts. Here, the performace
on ASE is greatly improved, presumably due to those enti-
ties being much more common in this corpus. RN, too, is
easier to recognise in this corpus; we suspect that this is
due to there being fewer complex reaction names such as
"Diels-Alder reaction".

Conclusion
We have demonstrated that MEMMs can be adapted to
recognise chemical named entities, and that the balance
between precision and recall can be tuned effectively, at
least in the range of 0 – 95% recall. The MEMM system is
available as part of the OSCAR3 chemical named entity
recognition system [26].

Evaluation on chemistry papers, showing performance on dif-ferent named entity classesFigure 4
Evaluation on chemistry papers, showing performance on dif-
ferent named entity classes.
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Evaluation on chemistry papers, showing effects of disallow-ing overlapping entitiesFigure 3
Evaluation on chemistry papers, showing effects of disallow-
ing overlapping entities.
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