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Abstract: Graphene aerogels (GAs) are functionalized with Fe-Co-P alloy using an electro-deposition
method. The Fe-Co-P alloy coated on the graphene nanosheets is found to possess an amorphous
structure and a nanoporous architecture of GAs. The electro-mechanical properties of GAs are
significantly affected by the Fe-Co-P nanoparticles embedded inside GAs. The electro-mechanical
responses of GA/Fe-Co-P nanoporous hybrid structures are sensitive to an applied magnetic field,
demonstrating that they are promising for electro-magneto-mechanical applications. The light-weight,
high-strength and nanoporous GAs functionalized with Fe-Co-P amorphous alloys are desirable
sensors, actuators, and nano-electro-mechanical systems that could be controlled or manipulated by
mechanical, electric and magnetic fields.
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1. Introduction

Although graphene is a two-dimensional (2D) material with extraordinary properties,
an immediate challenge in the applications of graphene is to develop bulk graphene architectures
consisting of graphene nanosheets. Recently, three-dimensional (3D) graphene nanoporous structure,
especially the graphene aerogel (GA), which is an aggregation network of 2D graphene, has attracted
much attention [1–8]. Since GAs exhibit super-elasticity, high electro-mechanical sensitivity, ultra-light
weight (density < 1.0 mg/cm3) and ultra-large surface area (>200 m2/g), they are very promising to be
used as devices and structures in micro-machines and nano-devices, such as sensors, actuators, and
devices for energy storage and water purification [9–18].

Because of their exceptionally large surface areas (as large as 2630 m2/g) and good electrical
conductivity (~102 S/m), GAs are desirable supports for micro- and nano-sized metals, oxides, magnets,
photo-catalysts and electro-catalysts, which have significantly enhanced performances compared
with their pristine counterparts [9–18]. In particular, owing to their super-elasticity (up to 200% in
compression) and stress-dependent electrical conductivity, GAs are suitable nano-electro-mechanical
sensors and devices for various applications, such as micro- or nano-sized strain gauges, stress and
pressure sensors. However, there are two major drawbacks of GAs which will prevent them from
wide-spread applications. First, the high porosity of GAs usually results in significant reduction of
their mechanical strength [1–4]. Second, the graphene nanosheets in GAs are reduced graphene oxides,
which have low electrical conductivity [5–7]. Hence, graphene aerogel with improved mechanical and
electrical performances are urgently needed.

In this work, we investigate GAs functionalized with Fe-Co-P alloys. The nanoporous structures
of samples and the phases of Fe-Co-P embedded inside GAs are characterized. The mechanical
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and magnetic properties of the samples are measured. The relations between the electrical
resistances of samples and the applied stresses and magnetic fields are determined, and the
electro-magneto-mechanical applications of GA/Co-Fe-P hybrid structures are discussed.

2. Experimental Methods

Graphene oxides (GOs) were prepared by a modified Hummers method from natural graphite
flakes. Graphene hydrogels (GHs) were fabricated via a hydrothermal process using GOs as the
starting materials [2,3]. Firstly, 2 mg¨ mL´1 GO solution was hydrothermally treated in a Teflon-lined
stainless-steel autoclave at 180 ˝C for 20 h to obtain the GH. Ammonia solution was then added to the
GHs, which were subsequently treated in another autoclave at 90 ˝C for 1 h. After the hydrothermal
treatment, the GHs were put in a freeze drying machine and were cooled to ´70 ˝C. Supercritical drying
of GHs occurred under a pressure of 10 kPa for 2–3 days. Finally cylindrical graphene aerogels with a
height of ~15 mm were obtained. Those 3D graphene monoliths have a diameter of about 6–12 mm.

The GA/Co-Fe-P hybrid structures were synthesized by electroplating Co-Fe-P alloys into the
GAs. The FeSO4¨ 7H2O (4.171 g), CoSO4¨ 7H2O (2.812 g), C6H5Na3O7¨ 2H2O (14.705 g), H3BO3 (7.729 g),
NaH2PO2¨ H2O (5.3 g) were dissolved into 250 mL deionized water to form an electrolyte. The PH
value of the electrolyte was adjusted to 5–6 using H2SO4. The temperature of the electrolyte was
maintained at 60 ˝C. A GA with a height of about 5–10 mm was mounted on a titanium plate, which
was used as a working electrode operating at a voltage of 1.0 V with respect to the reference electrode
of saturated calomel electrode (SCE). The samples were electroplated for 2, 4, 8, and 14 h, which
were denoted as Sample-h2, h4, h8 and h14, respectively. After the electro-deposition the GAs were
peeled off the titanium plate. The as-prepared GA/Co-Fe-P hybrid structures were then immersed
into deionized water for two days to remove the electrolyte remained inside the GA. The samples were
then dried by freeze drying at conditions of ´50 ˝C and 20 Pa for 72 h.

XRD patterns of the samples were taken by an X-ray diffractometer (Philips PW3040/60, Philips,
Amsterdam, The Netherlands) with nickel filtered Cu Kα radiation (λ = 0.154 nm). Scanning Electron
Microscopy (SEM, JEOL JSM-6490, JEOL Inc., Peabody, MA, USA) operated at 20 kV was utilized to
observe the microstructures of the samples. The SEM was equipped with energy dispersive X-ray (EDX,
Peabody, MA, USA) analysis which was used to determine the samples’ compositions. A surface area and
porosity analyzer (Micromeritics ASAP 2420, Micromeritics Instrument Corporation, Norcross, GA, USA)
was used to analyze the porous nature of the samples. The nitrogen adsorption-desorption isotherms
were obtained at ´196 ˝C and the surface areas were calculated using the Barrett´Joyner´Halenda
(BJH) method. Raman experiments were carried out on a Raman Station 400/400F with a resolution
of 1.0 cm´1.

A mechanical testing machine (Materials Testing, ZWICK Z2.5TH, Zwick Techonology &
Instrument Co. Ltd., Shanghai, China) was used to measure the compressive strength of samples,
which had been polished into cylindrical shape with a height of 5 mm and a diameter of 3–4 mm.
The compressive strain rate was 0.01 min´1. The electrodes of the samples were prepared by coating
silver paste at their top and bottom surfaces. The currents of the sample under the applied voltages
of 0–2 V were measured by the ferroelectric test system (TF2000E, aixACCT, Aachen, Germany)
under the leakage current measuring mode. The electrical resistances of samples under compression
were determined by the Ohm’s law. The magnetic properties of the samples were characterized by
the magnetic hysteresis loops, which were measured by a vibrating sample magnetometer (VSM,
Lakeshore Model 7300, Lake Shore Cryotronics Inc., Westerville, OH, USA). The same procedures were
applied to measure the electro-mechanical responses of the samples under an applied magnetic field
which was supplied by a solenoid magnet.

3. Results and Discussion

3.1. Characterizations of Samples

SEM images of typical GAs and GA/Co-Fe-P samples are shown in Figure 1a,b. The shape
of GA/Co-Fe-P sample is not much different with the cylindrical shape of monolith GA sample,
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as shown in the inset in Figure 1b. It can be seen in Figure 1 that the nanoporous architectures of
GA are preserved in the GA/Co-Fe-P hybrid structures (Sample-h14) and the Co-Fe-P fully coated
on the graphene nanosheets consists of a lot of nanoparticles. Figure 2 shows the SEM images of all
GA/Co-Fe-P samples. The sizes and contents of Co-Fe-P nanoparticles in the hybrid structures can be
found to increase with increasing deposition time. It seems that the Co-Fe-P alloys fully coated on
the graphene nanosheets in Sample-h14 could result from the growth of Co-Fe-P nanoparticles whose
sizes can be as small as 20–30 nm, as shown in Figure 2a for Sample-h2.
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Figure 2. SEM images of GA/Co-Fe-P samples: (a) Sample-h2; (b) Sample-h4; (c) Sample-h8;
(d) Sample-h14.

Figure 3 shows the XRD patterns of GA/Co-Fe-P samples. In comparison with those of GA
and Co-Fe-P foils prepared by the same electrodeposition conditions, the XRD peaks for Sample-h14
demonstrate that the Co-Fe-P alloys coated on the graphene nanosheets is amorphous, as shown in
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Figure 3b. The intensity of the broad peak at 44.7˝ for the amorphous phase of Co-Fe-P indicates
that its content dramatically increases when the electrodeposition time is larger than 8 h, as shown in
Figure 3a for Sample-h2, h4 and h8 and in Figure 3b for Sample-h14.

Micromachines 2016, 7, 117 4 of 8 

 

Figure 3b. The intensity of the broad peak at 44.7° for the amorphous phase of Co-Fe-P indicates that 
its content dramatically increases when the electrodeposition time is larger than 8 h, as shown in 
Figure 3a for Sample-h2, h4 and h8 and in Figure 3b for Sample-h14. 

Figure 3. XRD patterns of GA and GA/Co-Fe-P samples: (a) Sample-h2, Sample-h4 and Sample-h8; 
(b) GA, Co-Fe-P foils and Sample-h14. 

Table 1 lists the results of analysis on the nanoporous structures of GA/CO-Fe-P samples. As 
indicated by the specific surface area (SSA) and volume (Vtotal), the Co-Fe-P nanoparticles embedded 
on the graphene nanosheets significantly reduce the SSA and Vtotal of Sample-h2 and Sample-h4. 
With the evolution of Co-Fe-P nanoparticles throughout the graphene nanosheets, the SSA and Vtotal 
of Sample-h8 and Sample-h14 increase, suggesting that the Co-Fe-P amorphous alloy tends to form 
film-like coating on the surfaces of graphene nanosheets when the content of Co-Fe-P increases. As 
listed in Table 1, the average size of nano-pores of the hybrid structures increases with increasing 
content of Co-Fe-P. 

Table 1. The composition, specific surface area (SSA) and volume (Vtotal), and pore width of GA and 
GA/Co-Fe-P samples. 

Raman spectra of the GA/Co-Fe-P samples are shown in Figure 4. The D-band (1327 cm−1) 
represents the defects in the graphene or amorphous carbon; the G-band (1593 cm−1) is caused by the 
in-plane vibration of graphite with an E2g-symmetry intra-layer mode. The intensity ratio of D-band 
to G-bands (Id/Ig) is higher in Sample-h2 than those of any other samples, suggesting that the 
defective carbon structures can be induced in Sample-h2 where Co-Fe-P nanoparticles with sizes of 
20–30 nm might interact with the graphene nanosheets or their junctions. Becasue the surfaces of 
Co-Fe-P nanoparticles are less active toward the bonding with carbon atoms of the graphene 
nanosheets when the sizes of nanoparticles are increased, therefore the ratio Id/Ig could decrease to 
that of graphene with increasing sizes of nanoparticles. 

Samples Co/Fe/P Mole Fraction SSA (m2·g−1) Vtotal (cm3/g) Pore Width (nm)
GA - 370.9022 0.449374 5.81898 

Sample-h2 - 70.225 0.071297 4.06106 
Sample-h4 - 10.7219 0.020687 7.71771 
Sample-h8 32.5/32.7/33.8 44.9051 0.11327 10.08971 

Sample-h14 31.2/25.7/43.1 55.5464 0.154443 11.12175 

Figure 3. XRD patterns of GA and GA/Co-Fe-P samples: (a) Sample-h2, Sample-h4 and Sample-h8;
(b) GA, Co-Fe-P foils and Sample-h14.

Table 1 lists the results of analysis on the nanoporous structures of GA/CO-Fe-P samples.
As indicated by the specific surface area (SSA) and volume (Vtotal), the Co-Fe-P nanoparticles embedded
on the graphene nanosheets significantly reduce the SSA and Vtotal of Sample-h2 and Sample-h4.
With the evolution of Co-Fe-P nanoparticles throughout the graphene nanosheets, the SSA and Vtotal
of Sample-h8 and Sample-h14 increase, suggesting that the Co-Fe-P amorphous alloy tends to form
film-like coating on the surfaces of graphene nanosheets when the content of Co-Fe-P increases.
As listed in Table 1, the average size of nano-pores of the hybrid structures increases with increasing
content of Co-Fe-P.

Table 1. The composition, specific surface area (SSA) and volume (Vtotal), and pore width of GA and
GA/Co-Fe-P samples.

Samples Co/Fe/P Mole Fraction SSA (m2¨ g´1) Vtotal (cm3/g) Pore Width (nm)

GA - 370.9022 0.449374 5.81898
Sample-h2 - 70.225 0.071297 4.06106
Sample-h4 - 10.7219 0.020687 7.71771
Sample-h8 32.5/32.7/33.8 44.9051 0.11327 10.08971

Sample-h14 31.2/25.7/43.1 55.5464 0.154443 11.12175

Raman spectra of the GA/Co-Fe-P samples are shown in Figure 4. The D-band (1327 cm´1)
represents the defects in the graphene or amorphous carbon; the G-band (1593 cm´1) is caused by the
in-plane vibration of graphite with an E2g-symmetry intra-layer mode. The intensity ratio of D-band to
G-bands (Id/Ig) is higher in Sample-h2 than those of any other samples, suggesting that the defective
carbon structures can be induced in Sample-h2 where Co-Fe-P nanoparticles with sizes of 20–30 nm
might interact with the graphene nanosheets or their junctions. Becasue the surfaces of Co-Fe-P
nanoparticles are less active toward the bonding with carbon atoms of the graphene nanosheets when
the sizes of nanoparticles are increased, therefore the ratio Id/Ig could decrease to that of graphene
with increasing sizes of nanoparticles.
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3.2. The Electro-Mechanical Properties of GA/Co-Fe-P Samples

The compressive strength of Sample-h2, h4, h8 and h14 are determined from the compression
tests to be 0.2, 3.8, 22 and 620 kPa, respectively. Except for Sample-h2 whose fracture strength is smaller
than that of GA (0.6 kPa), the GA/Co-Fe-P samples exhibit much improved strength as compared
with the monolith GA. The small mechanical strength of Sample-h2 might be related with the disorder
graphene nanosheets induced by the embedded Co-Fe-P nanoparticles with sizes of 20–30 nm. When
the Co-Fe-P amorphous alloys fully coat the graphene nanosheets inside GA, as shown in Figure 1b
for Sample-h14, the mechanical properties of GA/Co-Fe-P hybrid structure are mainly determined
by the Co-Fe-P amorphous alloys. Therefore the fracture strength of GA/Co-Fe-P hybrid structure
increases with the increasing content of Co-Fe-P in a non-linear manner.

The GA/Co-Fe-P hybrid structures are placed along the horizontal direction between two copper
plates. Thin copper wires are attached to the two copper plates which are separately contacted with
the top and bottom electrodes of the samples. The copper plates are driven to move horizontally in the
opposite directions, leading to the compression on the samples. When the samples are compressed by
a uniaxial compressive strain ε, the electrical resistances R(ε) of the samples are measured. Figure 5
shows the repeatable change of electrical resistance ∆R = |R ´ R(ε)| of the GA/Co-Fe-P samples
(Sample-h4 and Sample-h8) with ε, which is cyclic between 0 and εm. R is the electrical resistance
at ε = 0. A linear relation between ∆R/R and ε changing from 0 to εm and then back to 0 can be
observed, the ∆R/R~ε relations for Sample-h2 and Sample-h14 are not shown either because they
have εm < 2% (Sample-h2) or the change in ∆R/R is less than 1% (Sample-h14).

The repeatable changes of electrical resistances under applied strains in Sample-h4 and Sample-h8
indicate that they have better electro-mechanical performances or sensitivities compared to monolith
GA. Combined with its high mechanical strength and light weight, Sample-h8 has the best performance
in nano-electro-mechanical applications.

3.3. The Electro-Magneto-Mechanical Properties of GA/Co-Fe-P Samples

The electro-deposited Co-Fe-P alloy foils have been well studied to have excellent soft magnetic
properties [19]. Although in the GA/Co-Fe-P hybrid structures only Sample-h14 is found to exhibit
magnetic properties which are detectable by the VSM, as shown in Figure 6a, other GA/Co-Fe-P
hybrid structures containing Fe-Co-P magnetic materials could be also sensitive to an applied magnetic
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field. Therefore, the repeatable changes of electrical resistances of the GA/Co-Fe-P samples under
applied strains could be affected by the applied magnetic fields.
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Figure 6. (a) Magnetic hysteresis loop of the GA/Co-Fe-P sample; (b) The relative changes of resistances
of GA/Co-Fe-P samples under compressive strains in a loading (from 0 to εm) and un-loading (after
εm to 0) cycle, with and without an applied magnetic field H. εm denotes the maximum applied strain.

Figure 6b shows the ∆R/R~ε relations for Sample-h4 and Sample-h8 with and without a magnetic
field of 10 Oe applied along the compression direction. Both samples have enhanced electro-mechanical
sensitivity when a magnetic field is applied. Remarkably, the electro-mechanical responses under
a magnetic field can be as high as 3 times of those of Sample-h4 without an applied magnetic field.
Although the effects of nanoporous structures of GA/Co-Fe-P and the sizes of Co-Fe-P nanoparticles
embedded on the graphene nanosheets on the electro-magneto-mechanical properties are yet to
be further explored, the results suggest that the GA/Co-Fe-P hybrid structures have outstanding
electro-magneto-mechanical responses and could be promising nano-electro-mechanical systems
controlled or manipulated by multiple applied fields.
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4. Conclusions

We investigate GAs functionalized with Fe-Co-P alloys, which are promising materials for
nano-electro-mechanical systems and nano-devices. The GA/Co-Fe-P hybrid structures synthesized
by electrodeposition are found to have nanoporous structures and contain amorphous Fe-Co-P
nanoparticles embedded on the graphene nanosheets. The relations between the electrical resistances
of samples and the applied strains and magnetic fields are determined. The results demonstrate
that GAs functionalized with Fe-Co-P amorphous alloys are suitable for electro-magneto-mechanical
applications in micro-machine and nano-devices.
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