Research
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Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fun-
damental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether
differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a
genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of
its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ~2.3% of nucleo-
somes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as
single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific
expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of
imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes)
were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the
maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucle-
osomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modi-
fication. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a

mechanistic connection between chromatin organization and genomic imprinting.

[Supplemental material is available for this article.]

Genomic imprinting, an epigenetic phenomenon, primarily oc-
curs in the endosperm of flowering plants in which a subset of
genes is unequally expressed between two alleles depending on
their parental origin (Kermicle 1970; Huh et al. 2008; Jahnke
and Scholten 2009). Extensive transcriptomic studies have led to
the identification of several hundred imprinted genes in a number
of plant species including Arabidopsis thaliana, rice, maize, castor
bean, sorghum, Arabidopsis lyrate, and Capsella rubella (Gehring
et al. 2011; Hsieh et al. 2011; Luo et al. 2011; Waters et al. 2011;
Wolff et al. 2011; Zhang et al. 2011, 2016; Xin et al. 2013; Xu
et al. 2014; Hatorangan et al. 2016; Klosinska et al. 2016). Many re-
ports from several plant species have suggested that allele-specific
epigenetic modifications including DNA methylation (Kinoshita
et al. 2004; Jullien et al. 2006; Tiwari et al. 2008; Hsieh et al.
2011; Wolff et al. 2011; Zhang et al. 2014), active and repressive
histone modifications in endosperm possibly play important roles
in imprinting regulation (Kohler et al. 2005; Haun and Springer
2008; Hsieh et al. 2011; Wolff et al. 2011; Du et al. 2014; Zhang
et al. 2014; Dong et al. 2017). However, it remains unknown
whether differential nucleosome organization is related to the
monoallelic expression of imprinted genes in plants.
Nucleosomes, the fundamental structural units of chromatin,
contain 147 bp of DNA wrapped around eight histone protein
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cores (Luger et al. 1997; Kohler et al. 2005; Haun and Springer
2008; Hsieh et al. 2011; Wolff et al. 2011; Du et al. 2014; Zhang
et al. 2014). Nucleosome positioning in the genome is dynamic
and can modulate the accessibility of DNA to transcription ele-
ments, thus regulating gene expression (Jiang and Pugh 2009;
Bai and Morozov 2010; Chen et al. 2017). It has been demonstrat-
ed that the promoter regions of genes tend to be nucleosome de-
pleted (Lee et al. 2007; Schones et al. 2008; Li et al. 2014). Well-
phased nucleosomes were observed downstream from the tran-
scriptional start site (TSS), particularly the first nucleosome, which
has a close relationship with Pol II binding (Schones et al. 2008; Li
et al. 2014). Although genome-wide nucleosome occupancy maps
have been generated for Arabidopsis thaliana, rice, and maize (Cho-
davarapu et al. 2010; Fincher et al. 2013; Li et al. 2014; Wu et al.
2014; Liu et al. 2015; Rodgers-Melnick et al. 2016; Chen et al.
2017), there has been no report so far on the investigation of al-
lele-specific nucleosome occupancy in any plant species.
Genomic imprinting in plants is involved in the demethyla-
tion induced by DEMETER (DME), which is specifically expressed
in the central cell of the female gametophyte and the vegetative
cell of the male gametophyte (Choi et al. 2002; Schoft et al.
2011; Kawashima and Berger 2014). Several studies identified
thousands of parent-of-origin-dependent differential methylated
regions (pDMRs) where the maternal alleles are hypomethylated
and the paternal alleles are hypermethylated in the endosperm
(Ibarra et al. 2012; Rodrigues et al. 2013; Zhang et al. 2014).
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Figure 1. The identification of parent-of-origin-dependent nucleosomes. (A) Pipeline for identifying
parent-of-origin-dependent nucleosomes. (B) Allele-specific analysis of nucleosomes in maize endo-
sperm. The x-axis and y-axis represent the log, of maternal reads divided by paternal reads for the alleli-
cally analyzed nucleosomes in endosperm from BM (blue lines) and MB (read lines). (C) Regions around
maternal/paternal specifically positioned nucleosomes. Green lines indicate the levels of nucleosomes.
The black, light blue, and pink lines indicate the center position of endosperm nucleosomes, allelically
analyzed nucleosomes, and high-stringency allele-specific nucleosomes. The percentages of allelic reads

of MNase-seq data for specific SNP sites are shown; red lines represent the paternal alleles, and blue lines
represent the maternal alleles.

Results

Identification of parent-of-origin-dependent nucleosomes
in maize endosperm

To obtain the landscape of genome-wide parent-of-origin-depen-
dent nucleosome occupancy, we generated MNase-seq libraries
of 12-d after-pollination (DAP) maize dissected endosperm from
the reciprocal crosses of B73 and Mo17 inbred. More than 700 mil-
lion reads were produced for each sample, and more than half of
them were uniquely mapped to the genome. The insert size distri-
bution of the two libraries were highly similar with the major peak
near the mononucleosomal DNA length (~150 bp), according to
the DNA electrophoretogram (Supplemental Fig. S1A,B), which re-
flected the expected digestion degree for the two libraries (Chen
et al. 2017). In addition, the existence of the 10-bp periodicities
of dinucleotides in two libraries was also observed (Supplemental
Fig. S2), indicating the MNase-seq libraries accurately captured
the mononucleosomal DNA fragment.

A total of 7,949,184 nucleosomes were identified in B73 x
Mo17 (BM) and Mo17 x B73 (MB) endosperm samples all together
by using DANPOS software (Chen et al. 2013). Among these nucle-
osomes identified, 1,475,669 (18.5%) nucleosomes covered SNPs
between B73 and Mo17, and 996,273 (67.5%) nucleosomes cover-
ing SNPs had at least 10 reads on both B73 and Mo17 alleles, which
were used for identifying allele-specific nucleosomes (Fig. 1A). We
first calculated the ratio between the maternal and paternal alleles
at each nucleosome site in endosperm tissue that is a triploid
(2 maternal:1 paternal genomes) product of the double fertiliza-
tion event in plant reproduction. As expected, most of the nucle-
osomes exhibited a maternal-to-paternal ratio of 2:1 in 12-DAP
endosperm tissues (Fig. 1B). Only 14,568 nucleosomes showed sig-
nificantly maternal bias, and 8610 nucleosomes showed signifi-

cantly paternal bias (x? test; P-value <0.05) in both BM and MB
endosperm, which were jointly called low-stringency parent-of-or-
igin-dependent nucleosomes. Using a more stringent criterion
that reads from the favorable allele were at least five times as
many as that from the nonfavorable allele in both BM and MB
endosperm, a total of 880 high-stringency parent-of-origin-depen-
dent nucleosomes were identified, including 680 maternal spe-
cifically positioned nucleosomes (mat-nucleosomes) and 200
paternal specifically positioned nucleosomes (pat-nucleosomes)
(Fig. 1A). Taken together, ~2.3% of allelically analyzed nucleo-
somes showed significant parental bias. Figure 1C showed the re-
gions around one mat-nucleosome and one pat-nucleosome. All
SNPs in the mat-nucleosome and the pat-nucleosome exhibited
significant parental bias, in contrasting to SNPs in the other nucle-
osomes showing a normal 2:1 ratio of maternal allele to paternal
allele. To validate the accuracy of parent-of-origin-dependent nu-
cleosomes identified above, RT-PCR amplicons from 12-DAP BM
and MB endosperm for four parent-of-origin-dependent nucleo-
somes were sequenced. All the selected four nucleosomes exhibit-
ed the expected parental bias (Supplemental Fig. S3).

Most parent-of-origin-dependent nucleosomes are single isolated
nucleosomes scattering along the chromosome

Analysis of the genome distributions showed that pat-nucleosomes
preferentially located in genic regions, whereas most of the mat-
nucleosomes were in intergenic regions (Supplemental Fig. S4).
Similar to the typical open chromatin regions around the promoter
of genes (Chen et al. 2017), parent-of-origin-dependent nucleo-
somes were found to display relative low nucleosome levels (Fig.
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Figure 2. The characteristics of parent-of-origin-dependent nucleosomes. (A) The nucleosome levels around the region of parent-of-origin-dependent
nucleosomes in endosperm (BM). Blue lines indicate the nucleosome levels around the region of maternally specific-positioned nucleosomes. Red lines
indicate the nucleosome levels around the region of paternally specific-positioned nucleosomes. Green lines indicate the nucleosome levels around the
region of 2000 random biallelic nucleosomes. Biallelic nucleosomes are nucleosomes that do not deviate significantly from the 2:1 ratio of maternal allele
to paternal allele in each reciprocal hybrid. (B) Allele-specific analysis of parent-of-origin-dependent nucleosomes and their first upstream and downstream
nucleosomes. The x-axis and y-axis represent the proportion of maternal reads for the nucleosomes that had at least one SNP and had at least 10 allelic reads
in both reciprocal hybrids. The green points represent the allelic status of maternal specifically positioned nucleosomes (mat-nucleosomes) and their first
upstream and downstream nucleosomes. The blue points represent paternal specifically positioned nucleosomes (pat-nucleosomes) and their first up-
stream and downstream nucleosomes. (C) The frequency of allele-specific nucleosomes at each base within 5 kb of mat-nucleosomes (blue lines) or
pat-nucleosomes (red lines) is shown. The gray rectangle represents the region of mat-nucleosomes and pat-nucleosomes.

2A). Nucleosome depletion at promoters is important for the acces-
sibility of transcription factors (Struhl and Segal 2013). Hence,
these parent-of-origin-dependent nucleosomes might locate most-
ly on the open chromatin regions of various regulatory functions
(Song et al. 2011). The intrinsic properties of poly (dA:dT) are im-
portant for nucleosome depletion, promoter accessibility, and
transcriptional activity (Iyer and Struhl 1995; Segal and Widom
2009; Raveh-Sadka et al. 2012; Struhl and Segal 2013). We found
that CG content of sequences around mat-nucleosomes/pat-nucle-
osomes were significantly lower than that of other allelically ana-
lyzed nucleosomes (Supplemental Fig. S5), indicating that the
intrinsic DNA sequence properties could be involved in the occur-
rence of parent-of-origin-dependent nucleosomes.

We then investigated whether the parent-of-origin-depen-
dent nucleosomes occupy as clusters or single isolated nucleo-
somes. We looked at the allelic status of the neighboring nucleo-
somes of the parent-of-origin-dependent nucleosomes identified.
The neighboring (upstream or downstream) nucleosomes around
87.4%/85.9% of low-stringency mat-/pat-nucleosomes exhibited
a typical maternal-to-paternal ratio of 2:1 (Fig. 2B). Similarly, the
neighboring nucleosomes around 86.2%/69.2% of high-strin-
gency mat-/pat-nucleosomes exhibited a maternal-to-paternal ra-
tio of 2:1. In addition, we observed a sharply decreased proportion
of the allele-specific nucleosome around the high-stringency mat-
nucleosomes/pat-nucleosomes (Fig. 2C) and a relatively long aver-
age distance between any neighboring mat-nucleosome (140.2 kb)
and pat-nucleosome (239.4 kb) (Supplemental Fig. S6). These re-
sults together suggested that parent-of-origin-dependent nucleo-

somes tend to be isolated single nucleosomes that scatter along
the chromosomes.

The mat-nucleosomes and pat-nucleosomes have different
allele-specific methylation patterns

Parent-of-origin-dependent nucleosomes can result from either
nucleosome eviction or addition on one specific allele. To explore
a potential mechanism for the occurrence of parent-of-origin-de-
pendent nucleosomes, we compared the nucleosome levels be-
tween endosperm and seedling tissues in the region covered by
the parent-of-origin-dependent nucleosomes identified in this
study. We found that the nucleosome levels in the region of pat-
nucleosomes in endosperm were significantly lower than those
in seedling tissue (Supplemental Fig. S7). On the contrary, the
nucleosome levels in the region of mat-nucleosomes in endo-
sperm are significantly higher than those in seedling tissue
(Supplemental Fig. S7). The results indicated that the occurrence
of pat-nucleosomes might be mainly due to the specific eviction
of nucleosomes positioned at maternal alleles while the occur-
rence of mat-nucleosomes might be mainly due to the specific ad-
dition of nucleosomes positioned at maternal alleles.

Analysis of whole-genome bisulfite sequencing data from BM
and MB endosperm samples revealed that the DNA methylation
levels on the maternal alleles were significantly lower than those
on paternal alleles at the region of pat-nucleosomes (Fig. 3A).
However, most regions of the mat-nucleosomes mainly exhibited
hypermethylation on both alleles, and a small part (~15%) of the
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Figure 3. Relationship between DNA methylation and parent-of-origin-dependent nucleosomes. (A4,B) Heatmaps of CG methylation levels between
alleles of B73 and Mo17 reciprocal crosses at paternal specifically positioned nucleosomes (pat-nucleosomes) and maternal specifically positioned nu-
cleosomes (mat-nucleosomes): (B) B73 allele; (M) Mo17 allele; (BM) B73 x Mo17; (MB) Mo17 x B73. (C) Association of paternal specifically positioned
nucleosomes (pat-nucleosomes) and maternal specifically positioned nucleosomes (mat-nucleosomes) with CG_pDMRs. The proportions of pat-nucle-
osomes, mat-nucleosomes, and all allelically analyzed nucleosomes overlapped with CG_pDMRs are shown on the y-axis. (*) Significant association of
pat-nucleosomes with CG_pDMRs (Fisher’s exact test; P-value <2.2 x 10~'®) compared with that of mat-nucleosomes. (D) The proportion of 6910
CG_pDMRs overlapped with parent-of-origin-dependent nucleosomes. (E) The allelic status of all nucleosomes in 578 CG_pDMRs overlapped with
pat-nucleosomes. (F) The integrated view of nucleosome occupancy in one CG_pDMR. The normalized nucleosome levels of endosperm (BM) are
plotted in green. The black, blue, and purple rectangles indicate the position of endosperm nucleosomes, allelically analyzed nucleosomes, and
high-stringency allele-specific nucleosomes. The percentages of allelic reads of MNase-seq data for specific SNP sites are shown, with red lines for
the paternal allele and blue lines for the maternal allele. The DNA methylation level for specific SNP sites are shown for both maternal and paternal
alleles, with red lines for the paternal allele (P) and blue lines for the maternal allele (M). The dotted rectangle highlights the pDMRs identified in this
region.

region of mat-nucleosomes exhibited hypomethylation on both
alleles (Fig. 3B). About 70% of pat-nucleosomes were significantly
associated with CG_pDMRs (pDMRs at CG context) identified pre-
viously (Zhang et al. 2014), compared with 2.8% of mat-nucleo-
somes and 1.5% of allelically analyzed nucleosomes that
overlapped with CG_pDMRs (Fig. 3C). The result suggested that

the mechanism for the occurrence of the pat-nucleosomes could
be different than that of the mat-nucleosomes. For the pat-nucle-
osomes, it is possible that a DNA methylation-dependent mecha-
nism contributed to the specific eviction of nucleosomes
positioned at maternal alleles, resulting in nucleosomes specifi-
cally positioned at paternal alleles.
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About half of CG_pDMRs were associated with pat-nucleosomes

Although several thousand pDMRs have been identified in maize
endosperm (Zhang et al. 2014), little is known about their status
of chromatin accessibility. Here, we investigated the relationship
between CG_pDMRs and parent-of-origin-dependent nucleo-
somes. As observed, among the 6910 CG_pDMRs, there are 1317
(19.1%) CG_pDMRs including at least one allelically analyzed nu-
cleosome, and 28.6% (377/1,317) of CG_pDMRs included pat-nu-
cleosomes, but only 0.99% (13/1,317) of CG_pDMRs were
associated with mat-nucleosomes (Fig. 3D). If we extended to
the +1 kb regions flanking 1317 CG_

PDMRs, atotal of 578 (43.8%) were found

to be associated with nucleosomes exhib- A

previously (Dong et al. 2017). Because con-MEGs seem to be ex-
pressed in the specific compartments that are underrepresented
in typical endosperm sample (Dong et al. 2017), we did not explore
the relationship between parent-of-origin-dependent nucleo-
somes and con-MEGs. By looking at the distribution of parent-
of-origin nucleosomes around genes, we found that parent-of-ori-
gin-dependent nucleosomes were significantly associated with im-
printed genes, as compared with nonimprinted genes (P-value
<2.2x 1071, Fisher’s exact test) (Fig. 4A), genes expressed in en-
dosperm and genes nonexpressed in endosperm (P-value <2.2 x
1076, Fisher’s exact test) (Supplemental Fig. S8). Further, the
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To investigate the roles of nucleosome
organization in the regulation of geno-
mic imprinting, we investigated the
relationship between parent-of-origin-
dependent nucleosomes and imprinted
transcripts. A total of 142 imprinted
genes, including 28 MEGs and 70
PEGs that were constitutively expressed
(con-MEGs/con-PEGs), 24 MEGs and 20
PEGs that were primarily expressed in
endosperm (endo-MEGs/endo-PEGs) in
12-DAP endosperm have been identified
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Figure 4. Relationship between imprinted genes and parent-of-origin-dependent nucleosomes.
(A) The distribution of parent-of-origin nucleosomes at imprinted genes/nonimprinted genes and its
up and down 2-kb regions. The blue line represents the maternal specifically positioned nucleosome
(mat-nucleosome), and the red line represents the paternal specifically positioned nucleosome (pat-nu-
cleosome). Nonimprinted genes were expressed in endosperm and did not deviate significantly
from the 2:1 ratio of maternal allele to paternal allele in both reciprocal hybrids. (B,C) The investigated
view of expression, DNA methylation, and nucleosome occupancy at GRMZM2G169695 (B) and
GRMZM2G045503 (C). The expression levels of transcribed regions are shown in light blue. The normal-
ized nucleosome levels of endosperm (BM) are plotted in green. The black, blue, pink, and purple rec-
tangles indicate the position of endosperm nucleosomes, allelically analyzed nucleosomes, low-
stringency allele-specific nucleosomes, and high-stringency allele-specific nucleosomes at genes. The
percentages of allelic reads of RNA-seq and MNase-seq data for specific SNP sites are shown, with red
lines for the paternal allele and blue lines for the maternal allele. The DNA methylation level for specific
SNP sites are shown for both maternal and paternal alleles, with red lines for the paternal allele (P) and
blue lines for the maternal allele (M). The dotted rectangles highlight the pDMRs identified in this region.
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parent-of-origin-dependent nucleosomes tend to locate around the
TSS regions of imprinted genes (Fig. 4A). More importantly, nucle-
osomes positioned around TSS of endo-MEGs showed paternal
bias, whereas nucleosomes positioned around TSS of PEGs were
maternal bias, which indicated that stronger nucleosome occupan-
cy exhibited in the nonexpressed allele in promoter of imprinted
genes (Fig. 4A). Indeed, of the 24 endo-MEGs, we could track the al-
lelic status of at least one nucleosome positioned in the promoter
(=300 to +200 bp from TSS) of eight endo-MEGs, and nucleosomes
positioned at the promoter of five (62.5%) endo-MEGs exhibited
paternal bias (Supplemental Fig. S9A,B). We also could track the al-
lelic status of nucleosomes positioned at the promoter of 26 con-
PEGs and seven endo-PEGs. Nucleosomes positioned at the pro-
moter of 14 (53.8%) con-PEGs and five (71.4%) endo-PEGs exhib-
ited maternal bias (Supplemental Fig. S9A,B). In contrast, only
0.66% (3/451) of nonimprinted genes harbored parent-of-origin-
dependent nucleosomes at promoter regions. The extent of the as-
sociation of parent-of-origin nucleosomes and imprinted genes
were underestimated because not all of the nucleosomes in promot-
er could be analyzed allelically. The distance of parent-of-origin-de-
pendent nucleosomes to TSS of imprinted genes is concentrated on
—100 ~ 0 bp, which indicated that parent-of-origin-dependent nu-
cleosomes is the first nucleosome upstream of TSS (-1 nucleosome)
(Supplemental Fig. S9C). In addition, we also looked at the relation-
ship between 35 maternally expressed noncoding RNAs (MNCs)
and the parent-of-origin-dependent nucleosomes. Although we
could not accurately define the TSS of MNCs, we also found that
only pat-nucleosomes were associated with MNCs and these pat-
nucleosomes were located at the 5’ end of MNCs (Supplemental
Fig. $10). Collectively, our results indicated that differential nucle-
osome occupancy between alleles is associated with allelic expres-
sion of imprinted genes and imprinted noncoding RNAs.

Figure 4B,C displayed the profiles of nucleosomes at the
GRMZM2G169695 (MEG) and GRMZM2G045503 (PEG), respec-
tively. As is shown, one pat-nucleosome is located upstream TSS
of GRMZM2G169695. All SNPs within the pat-nucleosome ex-
hibited significant paternal bias. One mat-nucleosome is locat-
ed upstream TSS of GRMZM2G045503. All SNPs within the
mat-nucleosome exhibited significant maternal bias. Results of
RT-PCR amplicons sequencing from 12-DAP BM and MB endo-
sperm for the two parent-of-origin-dependent nucleosomes at
TSS of GRMZM2G169695 and GRMZM2G045503 also exhibited
expected parental bias (Supplemental Fig. S3). Integrating the
allele-specific DNA methylation, nucleosome occupancy, and
gene expression, we found the pat-nucleosome overlapped
with CG_ pDMRs at GRMZM2G169695 (Fig. 4B), but mat-
nucleosomes are positioned in the hypomethylated promoter
of GRMZM2G045503 (PEG) (Fig. 4C).

Discussion

Single nucleosome rearrangements could be correlated
with the chromatin status and transcriptional activity

Nucleosome positioning as a component of overall chromatin or-
ganization is known to be critical for gene transcription. Although
a genome-wide allele-specific chromatin accessibility map had re-
cently been generated using DNase-seq and ATAC-seq in mammal
(Lu et al. 2016; Wu et al. 2016), a global pattern of allele-specific
nucleosome occupancy has not been reported in any other high
eukaryotic species. Here, we reported the generation of MNase-
seq data of maize endosperm from the reciprocal crosses of B73

and Mo17 inbred to obtain a genome-wide allele-specific nucleo-
some occupancy map and an integrated analysis together with al-
lele-specific DNA methylation profiling data and imprinted gene
expression.

It was reported that chromatin remodeling in response to
physiological perturbation was typically associated with the evic-
tion, appearance, or repositioning of one or two nucleosomes in
the promoter, rather than broader region-wide changes (Lu et al.
2016). By comparing nucleosome occupancy in mouse and human
embryonic stem cells, induced-pluripotent stem cells, and differen-
tiated cell types using MNase-seq, a majority of rearrangements
also were observed in a single nucleosome (West et al. 2014).
Consistent with the above studies, we observed that chromatin re-
modeling between two alleles was typically associated with the re-
arrangements of only one/two nucleosomes in the promoter of
imprinted genes. It had also been demonstrated in mouse that
most imprinted genes showed allelically biased DNase I-hypersen-
sitive sites (DHSs) in the promoter regions of genes in preimplanta-
tion embryos (Lu et al. 2016). Therefore, it is reasonable to think
that the rearrangement of only one or two nucleosomes might be
sufficient to alter the chromatin accessibility in the promoter of im-
printed genes. Of note, the majority of parent-of-origin-dependent
nucleosomes existed as isolated single nucleosomes, in promoter
and other genomic regions, and the regions of parent-of-origin-de-
pendent nucleosomes may be the open chromatin regions with
notable lower nucleosomes levels. Thus, single nucleosome gain
or loss could be enough to induce functional chromatin status
change. This type of nucleosomal rearrangement is highly specific,
which must require a dedicated targeting mechanism. The factors
involved in the recognition and remodeling of this type of nucleo-
some rearrangement would be a fascinating topic to address in the
future. Several studies reported that open chromatin regions in-
duced by 5-AzaCdR treatment, regions of DHSs, or distal nucleo-
some-depleted regions (NDRs) were preferentially enriched with
TF motifs (Pandiyan et al. 2013; Lu et al. 2016; Guo et al. 2017).
We speculated that transcription factors could work in conjunc-
tion with other known chromatin remodelers to result in the pref-
erential targeting of remodelers to the regions of parent-of-origin-
dependent nucleosomes, and hence, chromatin opening.

The association between parent-of-origin-dependent nucleo-
somes and the expression of imprinting genes raises a question
about whether differential chromatin accessibility between mater-
nal and paternal alleles is the cause or the consequence of monoal-
lelic expression. As a matter of fact, the relationship of nucleosome
occupancy and transcriptional activity can be quite complex. It
was reported that the dynamic change of nucleosome occupancy
was linked to the transcription process (Huebert et al. 2012).
However, specific nucleosomal rearrangements at promoters were
also observed when there was no apparent transcriptional change
(Shivaswamy et al. 2008). A recent work in mouse indicated that
imprinting information has already been “written” in the form of
chromatin accessibility during early preimplantation development
before the onset of parental allelic expression (Lu et al. 2016).
Hence, whether or not there is causal relationship between paren-
tal-specific nucleosomes in imprinted genes and their monoallelic
expression in plant remains to be resolved in the future.

DNA demethylation induced by DME-like factor plays
an important role in the nucleosome eviction

Many studies have shown that DME or DME-like glycosylase can
induce DNA demethylation in the central cell of higher plants
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and lead to the presence of large number of pPDMRs in endosperm
(Ibarraetal. 2012; Rodrigues et al. 2013; Xu et al. 2014; Zhang et al.
2014). However, the functional consequence of most of pDMRs is
unclear, except for some pDMRs associated with imprinted genes
or imprinted noncoding RNAs (e.g., Zhang et al. 2014). In this
study, we observed that most (70%) of pat-nucleosomes were locat-
ed in pDMRs, whereas only 43.8% of pDMRs contained pat-nucle-
osomes. Moreover, there were no methylation differences between
the two alleles of the mat-nucleosomes we identified. Thus, we
proposed that demethylation of the maternal allele might be re-
quired for the occurrence of pat-nucleosomes, and the demethyla-
tion likely happens before the eviction of maternal nucleosome.
To some extent, our hypothesis is consistent with a previous report
that loss of DNA methylation can lead the loss of nucleosomes
(Pandiyan et al. 2013). Nevertheless, there was also report that
the base excision reaction (BER), the process required for demethy-
lation induced by DME, could be intimately connected with the
structural chromatin changes (Choi et al. 2002; Ooi and Bestor
2008; Gehring et al. 2009). However, our observation that the en-
tire region of pDMRs (with length up to several kilobases) were
overlapped with only one or two pat-nucleosomes, and about
half of pDMRs do not include pat-nucleosomes, again supports
the notion that maternal nucleosomes eviction is more likely oc-
curring after demethylation, rather than induced directly by the
BER. Of course, it is very likely that DNA demethylation by DME-
like glycosylase is not enough for nucleosome eviction. Additional
factor(s) are possibly needed to accurately guide the nucleosome
remodeling factors to specific sites of particular nucleosomes. In
summary, our result demonstrated that DNA demethylation in-
duced by DME-like factor could be functionally linked with al-
lele-specific nucleosome eviction.

Open chromatin regions tend to be genetic regulatory ele-
ments including promoters, enhancers, insulators, and locus con-
trol regions (Boyle et al. 2008). Compared with only <2% of
demethylated regions induced by 5-AzaCdR treatment located
in open chromatin regions (Pandiyan et al. 2013), we found
that about half of pDMRs were associated with pat-nucleosomes
in 12-DAP endosperm, which indicated that the DME-like glycosy-
lase tends to remove methylation in regions with potential regula-
tory elements. We also investigated the difference between the
CG_pDMRs overlapping with pat-nucleosomes and those not
overlapping with pat-nucleosomes. Although the CG_pDMRs
overlapping with pat-nucleosomes and those not overlapping
with pat-nucleosomes have very similar genome distributions
(Supplemental Fig. S11), the average length of the CG_pDMRs in-
cluding pat-nucleosomes is significantly longer than that of
CG_pDMRs not including pat-nucleosomes (Supplemental Fig.
S$12), indicating that longer regions of demethylation might be
more favorable for the access of nucleosome remodeling factors.
Notably, we found only CG_pDMRs including pat-nucleosomes
were associated with the MEGs and MNCs, suggesting that the
CG_pDMRs including pat-nucleosomes are more likely functional
in 12-DAP endosperm. Of course, it is also possible that the
CG_pDMRs nonoverlapping with pat-nucleosomes in 12-DAP en-
dosperm might be overlapping with pat-nucleosomes in the cen-
tral cell or in earlier developmental stages of endosperm.

Maternal specifically positioned nucleosomes might be associated
with the changes of histone modifications

In contrast to the involvement of DNA demethylation for the oc-
currence of pat-nucleosomes, we observed that the occurrence of

mat-nucleosomes was independent of DNA methylation. Interest-
ingly, a recent study in mouse showed that maternal allele-specific
H3K27me3 plays an important role in formation of paternal allele-
specific DNase I hypersensitive sites, rather than maternal allele-
specific DNase I hypersensitive sites (Inoue et al. 2017), consistent
with our result that mat-nucleosomes and pat-nucleosomes are in-
duced by different mechanisms. In the study, we observed that the
mat-nucleosome positioned in the promoter of con-PEGs and
endo-PEGs. In our previous works (Dong et al. 2017), we found
that H3K4me3 modifications at con-PEGs and endo-PEGs showed
significant paternal bias. It has also been suggested that chromatin
modification by H3K4me3 may facilitate nucleosome eviction or
repositioning in the —1 nucleosome region (Schones et al. 2008;
Yang et al. 2012). Thus, we hypothesized that the changes in his-
tone modifications might accelerate one or limited nucleosomes
remodeling in the promoter of PEGs. However, most of the mat-
nucleosomes were shown to be in intergenic regions. We speculat-
ed that other histone modifications or histone variants might
also be involved in contributing to the occurrence of maternally
specific-positioned nucleosomes, which can be tested in the future
when additional allele-specific histone modifications data become
available.

Methods

Tissue collection

The maize (Zea mays) inbred lines B73 and Mo17 were grown in
fields at the experiment station of China Agricultural University,
Beijing. Three ears of reciprocal crosses of B73 and Mo17 were col-
lected after 12 d pollination. Endosperm tissues were collected
from three different ears by manual dissection from whole kernels
and were immediately frozen in liquid nitrogen.

Library construction for MNase-seq

The MNase-seq libraries of BM and MB endosperm were construct-
ed according to the protocol described in our previous study (Chen
etal. 2017). Notably, the appropriate levels of 1 unit of MNase were
chosen for BM and MB endosperm samples, respectively. The
MNase-seq libraries were sequenced to generate 100-nt paired-
end reads on the [llumina HiSeq platform. The samples of recipro-
cal crosses, BM and MB, are serving as internal replicates to identify
the parent-of-origin-dependent nucleosomes.

Defining nucleosome occupancy

The raw reads of MNase-seq data were aligned to the B73 reference
genome (RefGen_v2) allowing two mismatches with Burrows-
Wheeler Aligner (BWA) (Li and Durbin 2010). Only uniquely
aligned paired reads were used for further analysis. The in vivo nu-
cleosome occupancy of shoot and endosperm (BM and MB) was
calculated using DANPOS (Chen et al. 2013), with the parameters
setas-s1,-al,-m1,-p1.0x107>, -t 1.0x 1075

Identification of parent-of-origin-dependent nucleosomes
occupancy in maize endosperm

The number of reads containing the B73 or Mol7 allele was
summed for all SNPs (Schnable et al. 2009; Lai et al. 2010; Jiao
et al. 2012) within the same nucleosomes. The nucleosomes that
contain at least 10 reads that could be assigned to a particular allele
were used to perform y? test (relative to the expected 2 maternal:1
paternal) ratio. The nucleosomes showing significant parental bias
(o test; P-value <0.05) in both BM and MB endosperm were jointly
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called low-stringency parent-of-origin-dependent nucleosomes.
The nucleosomes in which reads from the active allele were
more than five times than that from the silenced allele in both
BM and MB endosperm were identified as high-stringency par-
ent-of-origin-dependent nucleosomes.

Data access

Raw reads as FASTQ files generated in this study have been submit-
ted to the NCBI Sequence Read Archive (SRA; https://www.ncbi.
nlm.nih.gov/sra) under accession number SRP107032.
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