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The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity
of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation
and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and
suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and
insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and
dipeptidyl peptidase-4 inhibitors) are nowwell accepted in themanagement of type 2 diabetes.The levels of glucagon-like peptide-1
are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-
like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on
GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a
great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature
on glucagon-like peptide-1 and related factors affecting its levels.

1. Introduction

Glucagon-like peptide-1 (GLP-1) is intestinal endocrine L
cell-derived peptide. The receptors of GLP-1 are found in
islet beta-cells, brain, cardiovascular system, and lung [1].
GLP-1 decreases blood glucose levels during hyperglycemia
by stimulating insulin secretion and reducing glucose-
dependent glucagon secretion [2–4]. GLP-1 promotes satiety
and delays gastric emptying through central mechanisms,
thereby reducing postprandial glucose levels [4]. The exis-
tence of a diurnal rhythm in GLP-1 secretion in response
to an oral glucose load has been demonstrated in rats [5].
Study also showed a disruption of diurnal GLP-1 levels
in overweight/obese subjects [6]. Two biologically active
forms of GLP-1 exist: GLP-1 (7–37) and GLP-1 (7–36) amide.
Biological activity of GLP-1 decreased soon after secretion
due to decomposition by dipeptidyl peptidase-4 (DPP-4) [4].

Therefore, GLP-1 receptor agonists andDPP-4 inhibitors have
been developed as novel types of antihyperglycemic drugs.
Gastrointestinal taste receptors also regulate GLP-1 secretion
[7–9]. Paracrine, nerve, and factors of neurohormone can
also regulate the secretion of GLP-1 [10–12]. Plasma levels of
GLP-1 were increased rapidly after nutrient ingestion, sug-
gesting the existence of a proximal gut signal regulatingGLP-1
release from the L cells of the distal small intestine [11]. The
GLP-1 secretion is regulated by a complex neuroendocrine
loop (proximal-distal endocrine loop), involving the enteric
nervous system, the afferent and efferent vagus nerves, and
the duodenal hormone glucose-dependent insulinotropic
peptide (GIP) [11]. Overall, there are many factors affecting
GLP-1 levels, including diverse types of nutrients, surgical
procedures, drugs, and eating habits. This paper reviews
factors affecting the levels of GLP-1 and they were showed in
Figure 1.
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Figure 1: Levels of glucagon-like peptide-1 related factors.

2. Diseases Affecting GLP-1 Levels

Low GLP-1 level was an important risk factor for type 2
diabetes mellitus (T2DM) [13]. Fasting and postprandial
GLP-1 levels were significantly lower in patients with T2DM
than those with normal glucose tolerance (𝑃 = 0.02)
[13]. The decreased levels of GLP-1 in obesity and T2DM
are likely due to the reduction of GLP-1 secretion [14,
15]. Additionally, Vollmer et al. [16] suggested that GLP-1
secretion was not impaired in diabetic patients with well
controlled blood glucose, while it was diminished in those
with poor glycemic control or those with a longer duration
of T2DM.The glycated serum (GS) and high levels of glucose
(HG) may directly alter the function of neuroendocrine
cells secreting this hormone by regulating different pathways
of GLP-1 secretion [17]. Overall, it can be summarized
that the levels of fasting GLP-1 and postprandial GLP-1
were reduced in subjects with T2DM compared to subjects
with normal glucose tolerance [18–20]. However, there was
also a study reporting that GLP-1 secretion in response to
nutrient in T2DMpatients was not affected [21]. Additionally,
studies have found that glucose-induced GLP-1 secretion
was remarkably decreased in NAFLD patients compared to
healthy controls [22]. Polycystic ovary syndrome (PCOS)
is related to insulin resistance, and the pathophysiologic
mechanisms of PCOS are similar to those of T2DM [23, 24].
Therefore, patients with PCOS may have alterations in the
incretin hormone response. Study showed that GLP-1 levels
both at fasting and in response to a meal were significantly
blunted in women with PCOS compared to healthy women
(𝑃 = 0.022 and 𝑃 = 0.028, resp.) and AUC for GLP-1 was
also lower in PCOS (𝑃 = 0.012) [25]. GLP-1 concentrations
have no significant difference in PCOS and control healthy
women (CT) in the early phase of OGTT and then reached
significantly lower levels in PCOS than in CT at 180min
(𝑃 < 0.05) which also exhibited a significantly different

time-dependent pattern in PCOS (𝑃 < 0.002 for PCOS
versus time interaction) [26]. These findings provide novel
methods to augment GLP-1 levels for the treatment of obesity,
T2DM, NAFLD, and PCOS, whereas this issue still causes
dispute.

3. GLP-1 Levels and Nutrients

The levels of bioactive GLP-1 in fasting plasma usually range
from 5 to 10 pmmol/L and increase approximately two- to
threefold after meal [14]. Additionally, the postprandial peak
of GLP-1 levels appears 20–30 minutes after a meal according
to size and nutritional composition of it [14].Themechanism
leading toGLP-1 secretionmay include the direct and indirect
pathways. GLP-1 is secreted by the direct actions of luminal
contents on the L cells in distal jejunum and proximal ileum
[27]. Additionally, other mechanisms via “neural” or “upper
gut” signals playing a second fiddle may stimulate GLP-1
secretion even before the luminal contents have reached into
the proximities of L cells [27]. The direct exposure of L cells
to luminal content appears to be the primary route for GLP-1
stimulation. Therefore, GLP-1 secretion is dependent on the
nutrient composition of the meal and digestion of macronu-
trients [28–30]. A previous study has shown that the nutrients
which may directly affect the secretion of GLP-1 after meals
include glucose, triacylglycerol, fructose, and some proteins
[31].The intensity and degree of stimulation vary for different
nutrients. The secretion of GLP-1 stimulated by lipids is
the highest which is followed by glucose and amino acids.
Since the macronutrient composition of a meal affects the
secretion of GLP-1, it may provide novel nutritional alter-
natives of a meal for better management and prevention of
diabetes, obesity, NAFLD, and some other metabolic related
diseases in addition to the conventionally recommendeddiets
[32–34].
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3.1. GLP-1 Levels and Saccharides. Glucose can stimulate the
secretion of GLP-1 in mice in energy-dependent manner
[35]. GLP-1 secretion (total area under the curve (tAUC)
per hour) was increased following oral glucose in human
[36]. A randomized crossover study reported a 57% increase
in plasma GLP-1 concentrations due to 50 g galactose and
2.5 g guar gum in combination with a standard breakfast in
normal-weight women individuals [37]. Chitosan is widely
applied in medical nutrition therapy as a dietary supplement
and may be helpful in improving diabetes. Low molecu-
lar weight chitosan (LMWC) significantly increased GLP-1
secretion in human intestinal endocrine cells (NCI-H716) in
a dose-dependent manner through a p38/MAPK-dependent
signaling pathway [38]. Fructose intake increased plasma
GLP-1 with a lower degree than isocaloric glucose in healthy
humans [39]. Fructose stimulated GLP-1 secretion in a dose-
dependent fashion by inducing ATP-sensitive potassium
channel closure and subsequent cell depolarization in GLU-
Tag cells [39]. Additionally, GLP-1 secretion was enhanced
in rats receiving 𝛼-glucosyl-isoquercitrin (Q3G) plus fruc-
tooligosaccharides (FOS) compared with those receiving
Q3G or FOS alone [40]. Q3G plus FOS also enhanced and
prolonged high plasma GLP-1 level via direct stimulation
of GLP-1 producing L cell indicating that a diet rich in
Q3G and FOS may aid in the management of T2DM [41].
However, Sakamoto et al. [42] investigated the effects of a
moderate sucrose diet (SUC) on incretin secretion in mice
and their results showed that GLP-1 secretion 15min after
oral glucose administration was significantly lower in SUC-
fed (38.5% sucrose) mice than in high-starch- (ST-) diet-fed
or control mice [42]. This result indicated that consumption
of a moderate sucrose diet may impair GLP-1 secretion.

3.2. GLP-1 Levels and Fiber. Nutrients and other intestinal
hormones act as potent stimulants of GLP-1 secretion [43–
45]. Dietary fiber is nondigestible carbohydrate which is
categorized into three main subtypes: soluble (prebiotic,
viscose), fiber, and insoluble fiber. The soluble (prebiotic,
viscose) fiber is easily fermented into biomass, short-chain
fatty acids (SCFA) chiefly acetic, propionic and n-butyric,
lactate, and gases by the microflora of the large intestine.
SCFA contact the intestinal flora and induce systemic effects.
Although they serve as source of nutrients, SCFA also cause
anorexia and induce GLP-1 release from L cells by acting on
the G-protein-coupled free fatty acid receptor 2 in vitro [46].
One study examined the effects of probiotic supplementation
on plasma gut peptide concentrations in healthy subjects and
found that probiotics increased plasma GLP-1 concentrations
while postprandial plasma glucose levels were decreased after
the standardized meal [47]. Therefore, probiotics may be
used as a useful tool in diabetic nutritional therapy because
of the beneficial effects on appetite sensation and glucose
excursion. Reports have also showed that resistant starch (RS)
may increase plasma total GLP-1 concentrations in rodents
although the exact mechanism is not fully understood [32,
48]. Keenan et al. [48] assessed the effects of nonfer-
mentable and fermentable fibers on GLP-1 expression. Their
results showed that only fermentable high amylose-resistant
cornstarch- (RS-) fed rats had increased plasma GLP-1 levels.

Thus, a bioactive functional food such as RS may be a
natural approach for the treatment of obesity as it may affect
overall energy balance through its ability to stimulate GLP-
1 expression. Dietary fiber (DF) is an essential constituent of
a healthy diet with high satiety. A recent study investigated
the effect of DF on hormonal responses and found that solid
meals enrichedwith soluble fiber, psyllium, stronglymodified
postprandial GLP-1 level in healthy subjects [49]. High cereal
fiber intake (wheat fiber) also increased GLP-1 secretion. In
hyperinsulinaemic patients, plasma GLP-1 concentration was
1.3 pmol/L higher than at baseline (about a 25% increase)
and 1.4 pmol/L higher after 12 months compared with control
[50]. Continuous ingestion of resistant maltodextrin (RMD)
(a water-soluble nondigestible saccharide) increased GLP-1
secretion in normal rats is stimulated by its direct and indirect
(enhanced gut fermentation) effects on GLP-1-producing
cells [51]. Overall, probiotics and high-fiber diets have poten-
tial beneficial effects on gut hormones which can be used in
the medical nutrition therapy of obesity and diabetes.

3.3. GLP-1 Levels and Protein. Dietary intake of protein may
be an effective therapy to improve the glycemic response
due to its ability to increase GLP-1 secretion [52–54]. The
pathways involve peptide transporter-1 (PEPT1) and calcium-
sensing receptor (CaSR) which is highly expressed in L cells.
Oligopeptides stimulate GLP-1 secretion through PEPT1-
dependent electrogenic uptake and activation of CaSR in
mice [55]. Indeed, the proportion of protein in the diet has
been shown to have an effect on GLP-1 secretion. Lejeune
et al. [56] investigated levels of related hormones during a
high-protein (HP) diet in 12 healthy women and found that
GLP-1 concentrations were higher during consumption of
the HP diet (30%, 40%, and 30% of energy from protein,
carbohydrate, and fat, resp.) than during the adequate-
protein diet (AP: 10%, 60%, and 30% of energy from protein,
carbohydrate, and fat, resp.) after dinner. Different kinds
of proteins and amino acids are not all similarly effective
in stimulating GLP-1 release. Chen and Reimer [57] tested
whether branched-chain amino acids (BCAAs) and dairy
proteins had the same efficiency in regulating satiety hor-
mone secretion in a human intestinal cell line (NCI-H716).
Their results suggested that leucine, isoleucine, skim milk,
and casein stimulated GLP-1 release at different levels. Skim
milk, casein (not whey), 2% leucine, and isoleucine stimu-
lated GLP-1 secretion by 1.6-fold, 2.5-fold, 4.7-fold, and 2.6-
fold, respectively [57]. Dairy based products may therefore
induce GLP-1 secretion due to the high proportion of BCAAs
(21%) found in dairy. Another study in pigs also showed that
adding dairy protein, a-casein or b-casein, to waxy maize
starch increased GLP-1 release [58]. Meat hydrolysate (MH)
and essential amino acids (EAAs) are powerful activators of
GLP-1 secretion via activating extracellular signal-regulated
kinase (ERK1/2) and p38 in the NCI-H716 cell line [59].
However, 14-day L-carnitine L-tartrate oral supplementation
(LC) (3 g LC/day) has no effect on the total GLP-1 levels
in response to oral glucose tolerance test (OGTT) in lean
and overweight/obese males [60]. L-Arginine is an insulin
secretagogue which increases GLP-1 levels and improves
glucose clearance with this effect being ablated in Glp1r
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knockout mice indicating that L-arginine requires GLP-1
signaling in order to improve insulin signaling [61]. Thus, L-
arginine-based nutritional or pharmaceutical therapies that
improve glucose tolerance by increasing postprandial GLP-1
secretion may be used in diabetes and obesity. Collectively,
nutritional strategies such as increased protein and other
nutritional supplements such as L-arginine may be used to
enhance postprandial GLP-1 secretion and may provide an
alternative therapeutic approach in obesity and diabetes.

3.4. GLP-1 Levels and Glutamine. L cells are sensitive to
changes in the glutamine content of meals and glutamine-
based nutritional therapy may enhance GLP-1 secretion in
diabetic and obese individuals. Reimann et al. [62] found
that glutamine can act as a more potent GLP-1 secretagogue
than glucose or other amino acids, increasing GLP-1 release
7.1 ± 0.7-fold at 10mmol/L in GLUTag cells. Additionally,
circulating GLP-1 concentrations were increased in healthy
normal-weight volunteers (LEAN), obese individuals with
T2DM or impaired glucose tolerance (OB-DIAB), and obese
nondiabetic control subjects (OB-CON) after glutamine
intake (peak concentrations at 30min: LEAN: 22.5±3.4; OB-
CON: 17.9 ± 1.1; OB-DIAB: 17.3 ± 3.4 pmol/L), which may
represent a novel therapeutic approach to stimulating insulin
secretion in obesity and T2DM [63]. A study showed that 30 g
glutamine (Gln-30) augmented postprandial active GLP-1
responses comparedwith control (water) in 15T2DMpatients
and suggested that glutamine may be a novel agent for
stimulating GLP-1 concentration and limiting postprandial
hyperglycemia in T2DM [64]. Overall, these data suggest
that single amino acid supplementation such as glutamine
might be used as a potential nutritional therapy for T2DM
and obesity.Thismethod also requires further research on the
long-term effects.

3.5. GLP-1 Levels and Fatty Acids. Free fatty acids act
as signaling molecules and natural ligands for GPR [65].
Monounsaturated fatty acids (MUFAs), polyunsaturated fatty
acids (PUFAs), and saturated fatty acids may alter the
production of GLP-1. Tanaka et al. [66] examined the
effects of acute and long-term administration of the natural
ligand alpha-linolenic acid (alpha-LA) on plasma GLP-1
levels in rats with alpha-LA being able to increase GLP-1
levels. Several kinds of G-protein- coupled receptors (GPCR)
have been identified in L cells including GPR119 [67]. The
long-chain fatty acid derivate oleoylethanolamide (OEA) (10
micromoles/L) increased GLP-1 secretion from intestinal L
cells through activation of the GPR119 fatty acid derivate
receptor. Furthermore OEA-induced GLP-1 secretion was
significantly reduced in mGLUTag cells transfected with
GPR119-specific small interfering RNA [67]. Administration
of 2-oleoyl glycerol (2OG) to healthy human volunteers
activated GPR119 and caused plasma GLP-1 (0–25min) to
increase significantly when compared to the controls receiv-
ing oleic acid or vehicle [68]. Thus, GPR119 expressed in
pancreatic islets and intestinal L cells has emerged as a
new target for the treatment of T2DM as it may promote
the secretion of GLP-1. Single administration of a novel
GPR119 agonist (HD0471953) showed increased GLP-1 that

may be a potentially promising antihyperglycemic agent for
the treatment of patients with T2DM [69]. Additionally,
an omega-3 unsaturated fatty acid metabolite, 5-hydroxy-
eicosapentaenoic acid (5-HEPE), was a potent agonist for
GPR119 and enhanced glucose-dependent insulin and GLP-
1 secretion in mouse and it may play a protective role against
diabetes [70]. GPR120 is abundantly expressed in the pan-
creas and intestine [71]. GPR120-mediated GLP-1 secretion
induced by dietary free fatty acids (FFAs) may be effective in
the treatment of diabetes as GPR120 is abundantly expressed
in the intestine acting as a receptor for unsaturated long-chain
FFAs [72]. Gpr40 is expressed in endocrine cells and beta-
cells and Gpr40 mediates FFA-stimulated insulin secretion
from beta-cells not only directly but also indirectly through
regulation of GLP-1 secretion [73]. GPR40 agonists may rep-
resent a novel therapeutic strategy for the treatment of T2DM.
One study found that administration of a novel GPR40
agonist (AS2575959) can increase GLP-1 levels [74]. Ingestion
of a virgin olive oil-based breakfast (monounsaturated fat,
MUFA; Mediterranean diet) increased GLP-1 concentration
as compared with an isocaloric carbohydrate- (CHO-) rich
diet in insulin-resistant subjects [75]. Docosahexaenoic acid
(DHA) also has potential as an antidiabetic agent. Shida et al.
[76] found that the plasma GLP-1 concentration of diabetic
KK-A(y)mice increased after long-termDHAadministration
and this had a significant hypoglycemic effect. Colon target-
ing of DHA may provide a strategy for improving impaired
glucose tolerance in T2DM by augmenting GLP-1 release.
However, intake of abundant saturated fatty acids induces
endoplasmic reticulum (ER) stress in the mouse intestinal L
cell line (GLUTag cells) and decreases GLP-1 secretion [77].

3.6. GLP-1 Levels and Food. There are some alternatives for
intake of some foods containing other dietary ingredients
which increase endogenous GLP-1 secretion from intestinal
L cells. Huang et al. [78] provided evidence that wild bitter
gourd (BG) stimulated GLP-1 secretion involving certain bit-
ter taste receptors and/or PLC 𝛽 2-signaling pathway in vitro,
which in part contributes to the antidiabetic activity of BG
through an incretin effect. Additionally, study found that a
yellow pigment isolated from the rhizomes of Curcuma longa
L. (curcumin) increases GLP-1 secretion in GLUTag cells
through the Ca(2+)-Ca(2+)/calmodulin-dependent kinase
II pathway and was independent of extracellular signal-
regulated kinase, PKC, and the cAMP/PKA-related pathway
[79]. Oral administration of the ZeinH (dietary protein
hydrolysate prepared from corn zein) (2 g/kg) significantly
increased plasma GLP-1 level and reduced glycemic response
under the oral glucose tolerance test in normal Sprague-
Dawley male rats and diabetic Goto-Kakizaki (GK) male rats
[80].

3.7. GLP-1 Levels and Stimulation: Eating Habit. Factors
beyond nutrients could contribute to the regulation of GLP-1
secretion. The combination of electrical stimulation (E-stim)
and nutrient infusion significantly increased plasma GLP-1
levels when compared to nutrient infusion alone in either
the ileum or the duodenum. And mechanical stimulation
(M-stim) plus nutrient infusion significantly increasedGLP-1



International Journal of Endocrinology 5

over nutrient infusion or M-stim alone in the duodenum,
but not the ileum [81]. Additionally, there was a relationship
between mastication and GLP-1 secretion. Sonoki et al. [82]
compared the levels of plasma active GLP-1 concentrations
after young healthy volunteers ate a test meal either by usual
eating (control), unilateral chewing, quick eating, or 30-time
chewing per bite.The results showed that plasma activeGLP-1
concentrations did not change by unilateral chewing or quick
eating but did increase with increasing chewing per bite.They
also tested chewing 30 times per bite on plasma active GLP-1
concentrations in 15 patients with T2DM but there was no
significant difference compared with usual eating. Further
studies are needed to explore the long-term effects of eating
habits and other life style modifications on GLP-1 secretion
and plasma levels.

4. GLP-1 Levels and Drugs

4.1. GLP-1 Levels and Hypoglycemic Drugs. Some kinds of
oral hypoglycemic drugs except for DPP4-inhibitors and
GLP-1 receptor agonists affect plasma GLP-1 levels. The
benefits of the alpha-glucosidase inhibitor (AGI) acarbose on
cardiovascular risk may be associated with its stimulation of
GLP-1 secretion. A 24-week treatment with acarbose led to
significantly increased levels of both fasting and postprandial
GLP-1 as well as significantly increased nitric oxide (NO)
levels and nitric oxide synthase (NOS) activity for those
patients in whom postprandial GLP-1 levels were increased
in 24 newly diagnosed patients with T2DM [83]. Another
AGI, miglitol, has the ability to influence bile acids (BAs)
metabolism and improve insulin resistance and obesity.
Miglitol enhanced active GLP-1 secretion into the portal
blood and there was a positive correlation between active
GLP-1 levels in diabetic mice [84]. The mechanism of the
effects of AGI on GLP-1 secretion is that it has the inhibitory
effects on the proximal carbohydrate absorption, allowing
the distal gut to be exposed to unabsorbed carbohydrates,
where L cells are densely distributed potentiating GLP-1
secretion [85]. Animal experiment showed that miglitol also
activates duodenal enterochromaffin (EC) cells, possibly via
sodium-glucose cotransporter (SGLT) 3, andmediates GLP-1
secretion through the parasympathetic nervous system [85].
Metformin was also reported to increase plasma intact GLP-1
concentrations in T2DM subjects [86]. Stimulation of GLP-
1 secretion and reduction of soluble dipeptidyl peptidase-4
activity make contributions to this [86]. A study evaluated
T2DM subjects on and off metformin monotherapy with
results suggesting that metformin withdrawal was related to
a reduction of active and total GLP-1 [87]. PCOS treatment
of 40 women with 8 months of metformin 1000mg twice
daily increases the levels of GLP-1 [88]. Additionally, insulin
therapy also has the ability to improve the GLP-1 concen-
trations in T2DM. One study found that in 26 patients with
T2DM a short-term intensive insulin therapy for 10–14 days
demonstrated significantly increased GLP-1 levels and AUC
[89].

4.2. GLP-1 Levels and Other Drugs. Compound K (CK) has
antidiabetic effects through as of yet incompletely understood

mechanisms. CK has multiple biological functions via GLP-
1 secretion and TGR5 activation. Kim et al. [90] found
that treatment of NCI-H716 cells with 10, 50, and 100 𝜇M
CK significantly increased GLP-1 secretion. However, trans-
fection of NCI-H716 cells with TGR5-specific siRNA sig-
nificantly inhibited CK-induced GLP-1 secretion indicating
the importance of intact TGR5 signaling for the actions
of CK. Bile acids play a well-known role in postprandial
glucose response by stimulating GLP-1 secretion via the
G-protein-coupled receptor. Ursodeoxycholic acid (UDCA)
is a widely used therapeutic agent in liver diseases which
may increase bile-induced GLP-1 secretion. Murakami et
al. [91] investigated incretin and insulin secretion after a
meal with or without UDCA in 7 nondiabetic Japanese
subjects and found thatUDCA intake resulted in higherGLP-
1 secretion (AUC of 0–60min after meal without UDCA,
450 ± 162mmol⋅min/L; with UDCA, 649 ± 232mmol⋅min/L,
𝑃 = 0.046). Mosapride citrate is a selective agonist of the
5-hydroxytryptamine (5-HT)

4
receptor, which is typically

used to treat heartburn, nausea, and vomiting associated with
chronic gastritis or to prepare for a barium enema X-ray
examination and it may also have an antidiabetic effect by
increasing GLP-1 secretion. Aoki et al. [92] examined the
effect of the administration of mosapride citrate on plasma
incretin levels in men with normal glucose tolerance (NGT)
or impaired glucose tolerance (IGT) and showed that the
AUCs of the plasma active and total GLP-1 levels were
significantly higher in theM (mosapride citrate 20mg) group
than in the control (no drug) group. Ma et al. [93] evaluated
GLP-1 responses to intraduodenal glucose in T2DM with
results showing that the small intestinal glucose load is
critical in determiningGLP-1 responses.TheGLP-1 responses
to 120min intraduodenal glucose infusions at 1 kcal/min
(G1) and 2 kcal/min (G2) were minimal while responses to
4 kcal/min (G4) were much greater (𝑃 < 0.05 for each)
[93]. Therefore, we deduced that the effect of mosapride
on postprandial GLP-1 response may be secondary to its
action on acceleration of gastric emptying. Additionally, Yu
et al. [94] found that oral administration of gatifloxacin
(100mg/kg/day and 200mg/kg/day) in rats for 3 and 12 days
led to amarked increase in GLP-1 levels. Additionally, hexane
fractions of Bupleurum falcatum (HFBF), which had been
used as a medicinal herb, may activate the secretion of GLP-
1 in NCI-H716 cells through the G 𝛽𝛾 pathway [95]. GLP-1
levels both while fasting and in response to ameal are blunted
in women with PCOS, which may contribute to the risk of
impaired glucose tolerance and T2DM in polycystic ovary
syndrome (PCOS) [74]. Hormone therapy may also have an
effect on the GLP-1 levels. Women with PCOS who were lean
and had normal glucose tolerance were treated with ethinyl
estradiol 30 𝜇g/drospirenone 3mg (EE/DRSP) for 3 months
and had significantly reduced fasting and postprandial levels
of GLP-1 and a decreased AUC for GLP-1 [25].

4.3. Other Factors Related to GLP-1 Levels. Obese adipose
tissues are hypoxic and express hypoxia-inducible factor-
(HIF-) 1𝛼. However, deletion of HIF-1𝛼 in adipocytes may
improve glucose tolerance by enhancing insulin secretion
through the GLP-1 pathway. Kihira et al. [96] suggested that
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serum GLP-1 levels were increased in the adipocyte-specific
HIF-1𝛼 knockout (ahKO), which demonstrated increased
GLP-1 secretion from intestinal L cells. Vesicle-associated
membrane protein 2 (VAMP2) also plays an important role
in GLP-1 exocytosis from the GLUTag, and an improved
understanding of themechanisms governing GLP-1 secretion
may lead to new approaches to enhance GLP-1 levels in
T2DM [97]. Additionally, skin secretions of several frog
species contain a component which can increase insulin
secretion.Ojo et al. [98] suggested that frog skin peptide scans
act as potential therapeutic agents for the treatment of T2DM
by stimulating GLP-1 release and directly increase insulin
secretion. There is abundant expression of prostanoid E type
receptor (EP4) on mouse enteroendocrine GLUTag cells and
administration of EP4 agonists tomice significantly increased
plasma GLP-1 levels secreted from L cells [99]. Additionally,
enteral progesterone administration can increase plasma lev-
els of GLP-1 and intestine-restricted activation of membrane
progesterone receptors may suggest a potential therapeutic
approach for stimulation of incretin hormone secretion
and control of glucose homeostasis [100]. Interestingly, an
independent peripheral clock exists in the L cells which
drives a circadian rhythm governing GLP-1 secretion in
rats and thyrotroph embryonic factor and protein tyrosine
phosphatase 4a1 altered GLP-1 secretion [5].Thus, increasing
GLP-1 levels by modifying these factors may represent novel
approaches for themanagement and treatment of obesity and
T2DM.

5. GLP-1 Levels and Bariatric Surgery

5.1. GLP-1 Levels and Roux-en-Y Gastric Bypass. GLP-1 has
multiple effects on metabolism including increased insulin
secretion and reduced food intake. Some bariatric surgery
can serve to increase postprandial secretion of GLP-1 signifi-
cantly which leads to the beneficial effects of reducing dietary
intake, decreasing weight, and improving blood glucose.
Roux-en-Y gastric bypass (RYGB) improves glycemic control
in part through increased GLP-1 release. Severely obese
glucose-tolerant individuals underwent RYGB with results
indicating that GLP-1 secretion increased during postoper-
ative OGTT at 3 months [101]. Mimicking the duodenal
component of RYGB by implantation of a 10 cm endoluminal
sleeve device (ELS-10) in diet-induced obese (DIO) rats
also induced enhanced postprandial GLP-1 secretion and
improved glucose tolerance and insulin sensitivity out of pro-
portion to the effects of weight loss alone [102]. Additionally,
plasmaGLP-1 concentrationswere increasedwith RYGB after
8 weeks in Sprague-Dawley rats [103]. After RYGB, food
passes without hindrance into the small intestine and the
rapid exposure of the gut epithelium leads to the enhanced
GLP-1 secretion in RYGB patients compared to control sub-
jects [104]. The anatomic explanation for RYGB augmenting
secretion of GLP-1 is an observed 4.9-fold increase in GLP-1
cell density in the jejunum of eighteen nondiabetic patients
with obesity 12 months after RYGB [105]. Exaggerated GLP-
1 secretion is likely to be the main mechanism in the weight
loss after RYGB.However, GLP-1 receptor (GLP-1R) signaling
is not necessarily for weight loss after RYGB in rodents. Obese

GLP-1R-deficient mice lost the same amount of body weight
and fat mass compared with wild-type mice [106].The effects
of RYGB on energy and glucose metabolism still exist in two
mouse models of functional GLP-1 deficiency which showed
that GLP-1, acting through its classical GLP-1 receptor or its
bioactive metabolites, does not seem to be associated with
the effects of RYGB on weight loss and glucose homeostasis
[107]. However, [107] demonstrated that RYGB utilizes taste
receptor signaling via 𝛼-gustducin to increase peripheral
GLP-1 secretion. It also demonstrated that RYGB-induced
weight loss in the absence of enhanced GLP-1 secretion is
enough to render the effects of RYGB on antidiabetic aspects.
It is thought that the beneficial effects of RYGB are expressed
through complex mechanisms that require comprehensive
methods for identification.

5.2. GLP-1 Levels and Sleeve Gastrectomy. Sleeve gastrectomy
is a relatively new operation that has shown benefits on
T2DM and weight loss. Vertical sleeve gastrectomy (VSG)
is a common type of bariatric surgery for weight loss in
obesity and T2DM. Direct infusion of liquid nutrients into
the duodenum has been shown to significantly increase GLP-
1 release in VSG, indicating that increase in GLP-1 secretion
after VSG is the result of both greater gastric emptying
rates and altered responses at the level of the intestine [108].
Additionally, increased GLP-1 release has been suggested
as a possible mechanism underlying the improvement in
T2DM after laparoscopic sleeve gastrectomy (LSG). LSG led
to increased GLP-1 secretion during OGTT and markedly
increased intestinal motility at 15 and 30min during OGTT
at 3 months after the surgery in 12 obese patients with a
body mass index >35 kg/m2 [109]. One study found that
SG and BPD markedly enhanced GLP-1 responses levels in
patients [110]. Pylorus-preserving pancreatoduodenectomy
in 10 overweight patients without T2DM also resulted in a
remarkable increase in GLP-1 levels in response to a mixed
meal [111].

6. GLP-1 Levels and Duodenal-Jejunal Bypass

Expedited biliopancreatic juice flow to the distal gut was
associated with increased GLP-1 secretion which may partly
explain the metabolic benefits of duodenal-jejunal bypass
(DJB) [112]. DJB-operated diabetic rats exhibited higher
glucose-stimulated GLP-1 secretion than the duodenal-
jejunal anastomosis (DJA) group postoperatively [112]. Over-
all, metabolic surgeries are effective in improving glucose
metabolism and weight loss may in part be due to the
enhanced GLP-1 levels.

7. Conclusion

Multiple factors are related to the secretion of GLP-1. Using
various methods to increase the secretion of GLP-1 may
provide alternative therapeutic options to treat metabolic
disorders such as obesity, diabetes, and NAFLD which may
be due to the lack of GLP-1. Modifying eating habits, food
components, and some other factors to regulate GLP-1 levels
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may promote better management and treatment of these
disorders. The mechanism and long-term effectiveness of
factors affecting the regulation of GLP-1 are still not fully
understood.Thus, further researches are still needed to assess
the therapeutic potential of GLP-1 mediated therapies.
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