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Introduction
Vasculogenic mimicry (VM) is an adaptive cell behavior which 
defines the formation of fluid-containing channel-like micro-
vascular structures by certain metastatic cancer cells.1,2 VM is a 
complex system consisting of many interacting molecular pro-
cesses which exhibit characteristics such as emergence, self-
organization, criticality, and nonlinear dynamics.3 As such, the 
equations modeling complex systems often do not have ana-
lytical solutions and require computational approximations.4 In 
simple terms, a complex system denotes a system in which the 
collective whole cannot be defined by the sum of its interacting 
parts.5 Classic statistical methods may therefore be insufficient 
in describing and quantifying the complex biology involved in 
such emergent structure formation processes. Whereas drug 
targeting of VM is currently arising in the therapeutic oncol-
ogy field, new computational algorithms allowing to model 
such complex systems and extract relevant features to per-
form classification or regression methods must therefore be 

developed to optimize drug design strategies that would lead to 
the development of efficient drug-mediated targeting of VM.6

In a previous study, the relationship of green tea-derived 
catechins against transforming growth factor (TGF)-β-
mediated epithelial-mesenchymal transition (EMT) in an 
ovarian clear cell carcinoma model was investigated, wherein 
the inhibitory effects of catechins carrying a galloyl moiety 
were demonstrated.7 Specifically, (-)-epigallocatechin-3-gal-
late (EGCG), epicatechin gallate (ECG), catechin gallate 
(CG), and gallocatechin gallate (GCG) inhibited the TGF-β 
receptor-mediated downstream signaling cascades including 
phosphorylation of Smad3 and P38. These signaling pathways 
are involved in the induction of EMT and, thereby, the selec-
tion of more invasive phenotypes with increased cell chemotac-
tic migration and VM.7 Interestingly, EMT and in vitro VM 
have been shown to share a common molecular signature in 
part responsible for chemoresistance associated to poor cancer 
patients’ survival.8,9 One could try to extract these signatures 
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directly from the captured images of the EMT and in vitro 
VM. Several methods have been shown to be accurate on image 
compression and embedding, allowing extracting relevant fea-
tures that can be used to classify these images or to identify 
relevant patterns. The success of this process relies on the 
capacity of modeling the complex system embedded in the 
images and transforming such networks in series of numerical 
indicators.

Here, we explored three approaches to assess in vitro capil-
lary-like structure formation which mimics VM in 2 ovarian 
cancer cell models, the SKOV3 and ES2 cells. Such a proce-
dure consists of 2 steps: first, the image processing steps to 
embed the 3D VM, transform it into a structure which allows 
the extraction of numerical features that represent best the 
capillary-like structure; second, the use of classification meth-
ods trained to recognize such structures into the embedded 3D 
VM.

In the first step, we used the 3 following main approaches: 
Fractal dimension, wavelet analysis, and percolation. (1) Fractal 
dimension allows the extraction of box-counting statistics 
based on the fractal analysis measure which recursively divides 
a complex structure on the image into smaller and smaller 
boxes to measure the self-similarity between them. The higher 
the fractal dimension, the greater the self-similarity and rough-
ness of the structure in higher dimensions of space.10,11 (2) 
Wavelet analysis represents the cumulative structures distribu-
tion of the characteristic coefficients of the image using a his-
togram that shows the frequencies and their location for a 
given image.12,13 Haar wavelets are conceptually the simplest 
wavelet basis. Using continuous wavelet analysis, one can then 
study the way spectral features evolve over time, identify com-
mon time-varying patterns in between signals, and perform 
time-localized filtering. To transform a signal into wavelets, at 
each resolution the signal is convolved using a series of wavelet 
coefficients. The continuous wavelet transform could also be 
used for multifractal analysis if 3D imaging was made available 
(not performed); and (3) Percolation scores are the critical 
exponents in a site-lattice percolation model computed based 
on the Newman-Ziff algorithm.14 It allows to study the phase 
transitions in a network when a certain number of nodes or 
links are removed.15,16 In principle, percolation algorithms can 
characterize the connectivity of clusters (branching networks) 
and predict their emergence during VM. Critical scaling expo-
nents quantitatively characterize the geometrical phase transi-
tion (ie, emergence of VM structures).

In the second step, the extracted features from the image 
processing algorithms can be applied to train classification and 
regression learners to distinguish between the different drug-
treated groups. There exists several types of machine learning 
approaches that could be applied to either classify images into 
discrete classes (eg, assess whether 3D capillary-like structure 
is present or not) or perform regression analyses (allowing to 
project the emergence of patterns during time). Methods such 
as support vector machines (SVM) are shown to perform well 
in such tasks.

In this study, we highlight that the structural complexity of 
the collective system regulating in vitro 3D capillary-like struc-
ture formation can be modeled using fractal dimension, wave-
let analysis, and percolation, allowing the quantification of the 
catechins-mediated structural changes in in vitro VM. This 
could further be envisioned to be exploited in the future devel-
opment and characterization of drugs targeting VM.

Materials and Methods
Materials and cell culture

Matrigel and all catechins were purchased from Sigma-Aldrich 
Canada (Oakville, ON). Human SKOV3 ovarian adenocar-
cinoma cells as well as human ES2 ovarian clear cell carci-
noma cells were purchased from the American Type Culture 
Collection (ATCC), and monolayers cultured as previously 
described with McCoy’s 5a Modified Medium for ES2 cells 
(Wisent, 317-010-CL), and DMEM medium (Wisent, 319-
005-CL) for SKOV3 cells both containing 10% fetal bovine 
serum (Life Technologies, 12483-020), 100 U/mL penicillin, 
and 100 mg/mL streptomycin (Wisent, 450-202-EL).7 This 
study was exempted from institutional review board (IRB) as 
no human participants or cells derived from them were used.

In vitro vasculogenic mimicry assay

In vitro vasculogenic mimicry (VM) of ES2 and SKOV3 
ovarian cancer cells was assessed by Matrigel tube formation 
as previously described.17 In brief, each well of a 96-well plate 
was precoated with 50 μL of Matrigel. After gel solidification, 
cell suspension in culture media (1.8×104 cells/200 μL) was 
seeded into the wells. Various gallated and ungallated cate-
chins (30 µM) were added to the cell culture media and incu-
bated at 37°C in a CO2 incubator. Optimal capillary-like 
structures were formed upon 24 hours, and pictures were taken 
using a digital camera attached to a phase-contrast inverted 
microscope.

Data sets

A duplicate of 48 images were collected from gallated- and 
ungallated catechins-treated cells, where each image in dupli-
cate sets was divided into 4 quadrants to increase the training 
set sample size.

Features extraction

Features are extracted from images using the 3 approaches 
implemented in MATLAB. For fractal dimension analysis, 
box-counting statistics are computed using the Boxcount toolbox 
(add-on feature in MATLAB).18 For the wavelet approach, the 
maximal 2D wavelet coefficients are computed with the Haar 
basis using the Wavelet Analyzer feature. Finally for the 
Percolation approach, the percolation scores are computed from 
percolation clusters using a modified Newman-Ziff algorithm. 
Additional details of this algorithm can be found in Kruk et al.19



Uthamacumaran et al	 3

Regression/classif ication analyses

For each of the extracted features, a SVM regression model was 
trained with the wavelet coefficients from the ungallated cate-
chins-treated cells, where each image in duplicate sets was 
divided into 4 quadrants to increase the training set sample 
size. During the training, we used an 80% training set, a 20% 
testing set model, and a 5-fold cross-validation. Two SVM ker-
nels have been tested in this study: a linear SVM kernel and 
Gaussian SVM that had a Gaussian kernel with different scales 
presented in results section. To assess the accuracy of the 
regression of the response curve, R-square and the root mean 
square error (RMSE) were computed between the true and the 
regressed values. A small RMSE corresponds to high predic-
tion accuracy of the algorithm.

Statistics

Statistical significance testing and graphical analyses were per-
formed using Origin Pro version 8.5, Graphpad Prism v. 8.4.3, 
XLSTAT add-in for Microsoft Excel and MATLAB.

Results and Discussion
In vitro  vasculogenic mimicry (VM) was triggered as described 
in the Methods section by ES2 and SKOV3 cells cultured on 
top of Matrigel, and representative pictures of capillary-like 
structures taken (Figure 1A). Figure 1B shows the number of 
boxes as a function of the box sizes used by the algorithm to 
compute the fractal dimension. The fractal dimension (Df ) 
would correspond to the slope of the log-log plot of function, 
as indicated by the red dashed arrow. In the case of both 

Figure 1.  (A) In vitro VM in 2 ovarian cancer cell models. Representative capillary-like structure formation at time 0 hour and time 24 hours from ES2 and 

SKOV3 ovarian cancer cells. (B) Fractal dimension analysis on SKOV3 and ES2 in vitro VM. Fractal dimension, Df = 2 ± 8.0825e-16 was computed for 

both models. The box-count plots are shown, where the space-filling (red dashed line) denotes the fractal curve filling a 2D unit box to map the recognized 

VM structures. The actual box-count (blue line) adjusts the space-filling curve to the measured local scaling exponents computed by the algorithm. Here, 

n(r) is the number of boxes and r is the box size of the structures in the box-counting algorithm. VM indicates vasculogenic mimicry.
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SKOV3 and ES2 cell models, the fractal dimension was 
Df = 2 ± 8.0825e-16 and showed no difference between the 
two ovarian cancer models, indicating identical self-similarity 
in the VM molecular processes involved across these models. 
However, there is a limit imposed on the fractal dimension 
algorithm, since 2D images are used to study a dynamic 3D 
structure formation process. That is, in general, the box-count-
ing algorithm imposes a Df of 2.00 as its maximum limit of 
stratification when processing 2-dimensional (2D) images. 
When the algorithm converges to a Df of 2.00 with an uncer-
tainty, it implies that the fractal dimension can be higher than 
computed. Multiple fractal dimensions may also be needed to 
characterize the complexity of the VM structures. When more 
than one fractal dimension exists, a set of statistical approaches 
known as multifractal analysis is required. As such, our find-
ings indicate that multifractal analysis algorithms may be 
exploited upstream in the experimental design and in quantify-
ing texture features with 3D imaging techniques.

Structure-to-function impact of 8 diet-derived catechins 
was next explored experimentally to describe their pharmaco-
logical effect on VM. Given the observed similar response in 
forming capillary-like structures between the 2 cell models, 
we decided to focus on the ES2 cells only to further apply the 
fractal dimension algorithm to compute images of the various 
catechin-treated cells. We found that all molecules bearing 
the galloyl moiety, CG, ECG, GCG, and EGCG demon-
strated a general decline in fractal dimension indicating 
these drug molecules reduced the fractal characteristics of 
the structures by lowering branching complexity and self-
similarity (Table 1). The impact of the galloyl moiety on the 
tested catechins was analyzed statistically and the findings 
confirmed to be significant, with a 2-tailed P value <.0001 
from a 2-sample t test.

We next went on with 2D wavelet analysis of in vitro VM 
using sample images comparing, for a proof-of-concept pur-
pose only, C- and CG-treated cells (Figure 2A, upper panels). 
The original images are contrasted with the wavelet decompo-
sition using the Haar basis at level 3 (Figure 2A, lower panels). 
In wavelet analysis, the signal is decomposed into low and high 
frequencies which, at each stepwise, integer increase in decom-
position level, half the frequencies of the previous level are dis-
carded. For analytical purposes specific to the studied model, 
level 3 was shown sufficient for the convolution and appears to 
globally well represent and preserve the statistical features of 
the branching structures. The latter mean branching clusters 
were identified by the 2D wavelet analysis on the original 
images (all of identical size input: 1280 × 1024 pixels; Table 2). 
Comparison between the ungallated- and gallated catechins-
treated cells confirmed that the mean cluster sizes were lower 
in the gallated catechins-treated groups (Figure 2B). Statistical 
analysis with 2-sample t test shows a t value of 9.395 (degrees 
of freedom = 30) in comparing the gallated groups and non-
gallated groups, and a P value <.0001.

The globally largest 2D, horizontal level 3 wavelet coeffi-
cients for the various tested molecules were next explored. 
Vertical and diagonal coefficients are not shown since the hori-
zontal component was dominant which resulted in a global 
coefficient many-fold larger in absolute value for the ungal-
lated molecules in comparison to the gallated ones (Figure 3). 
This indicates that the frequency modes corresponding to 
the observed branching from capillary-like structures have 
been specifically reduced in the gallated catechins groups. 
Accordingly, the 2-sample t test had a 2-tailed P value <.0001, 
implying the observed structural differences between the gal-
lated and ungallated samples are statistically significant.

Next, percolation clustering analysis was performed on the 
VM images from the various tested molecules. The 2D percola-
tion scores show an incline in the gallated catechins-treated 
groups (Table 2; critical exponents). The lower the percolation 
score, the more complex the network structures are. Thus, the 
percolation invasion becomes less complex when cells are 
treated with molecules bearing the galloyl moiety. The interpre-
tation for the higher critical exponents in the gallated mole-
cules-treated groups is 2-fold: (1) the critical threshold for 

Table 1.  Fractal dimension analysis on ES2 model.

Molecules Fractal dimension (Df)

C1 >2.00

C2 >2.00

CG1 1.93

CG2 1.93

EC1 >2.00

EC2 >2.00

ECG1 1.91

ECG2 1.87

EGC1 >2.00

EGC2 >2.00

EGCG1 1.86

EGCG2 1.80

GC1 >2.00

GC2 >2.00

GCG1 1.77

GCG2 1.81

The fractal dimension (Df) computed using the Box-counting algorithm on ES2 
images from all 8 catechin groups. A fractional value indicates the shape of the 
structures is best defined as pertaining to a dimension in between 1D  
(a line) and 2D (a flat surface). As explained in the Discussion section, Df > 2.00 
indicates the structures are best defined using 3D multifractal analysis (not 
performed).
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randomly distributed cells to phase transition to orderly net-
work structures is higher, and (2) the cells tend to form random 
clusters rather than self-organizing into network structures (ie, 
emergence). The Mann-Whitney 2-tailed test between ungal-
lated and gallated molecules-treated groups percolation scores 
computed a P value of .012, where P < .05 indicates there is a 
significant difference between the 2 groups of molecules.

To assess the predictive power of the extracted features in 
combination with a classifier, we performed several regression 
and classification analyses. First, a linear SVM regression model 
was trained with the wavelet coefficients from the ungallated 
catechins-treated cells, where each image in duplicate sets was 
divided into 4 quadrants to increase the training set sample size 

(n = 48 images). The linear SVM is a supervised learning algo-
rithm available in both regression and classification tasks. It 
attempts to cluster the data into 2 separate groups, ungallated and 

Figure 2.  (A) Sample images of 2D wavelet analysis of ES2 cells. The 

wavelet analyses on the C and CG VM images (upper panels) are shown 

as decomposed by the MATLAB wavelet analyzer application (lower 

panels) from the original images, where the axes correspond to the pixel 

sizes. The wavelet decomposition images were analyzed with the Haar 

wavelet basis at level 3 where the axes correspond to the wavelet 

coefficients (diagonal coefficient not shown). (B) Mean branching clusters 

assessed by 2D wavelet analysis of ES2 VM. Histogram statistics from 

2D wavelet analysis in ES2 model showing the mean percolation clusters 

observed with all 8 catechins tested (P < .0001, r2 = 0.999 when 

comparing gallated vs ungallated groups). VM, vasculogenic mimicry; C, 

catechin; CG, catechin gallate; EC, epicatechin; ECG, epicatechin 

gallate; EGC, epigallocatechin; EGCG, epigallocatechin-3-gallate; GC, 

gallocatechin; GCG, gallocatechin gallate.

Table 2.  Percolation clustering statistics in ES2 model.

Molecules Score (x) Score (y)

C1 0.4554 0.5102

C2 0.4405 0.5244

CG1 0.4761 0.5438

CG2 0.4748 0.5426

EC1 0.4403 0.5102

EC2 0.4349 0.5238

ECG1 0.4785 0.5625

ECG2 0.5031 0.5426

EGC1 0.4432 0.5222

EGC2 0.4502 0.5104

EGCG1 0.5178 0.5597

EGCG2 0.4785 0.571

GC1 0.4534 0.5291

GC2 0.4502 0.5288

GCG1 0.4784 0.5485

GCG2 0.4642 0.5459

The 2D critical exponents for phase transition in ES2 model from random cell 
distributions to branching clusters.

Figure 3.  Horizontal wavelet coefficients. Higher coefficients generally 

imply greater levels of cluster connectivity. The globally largest level 3 

horizontal mean coefficients of each catechin-treated group observed in 

the 2D wavelet analysis of ES2 cells. The coefficients are a global 

measure of the level of convolution at which the branching clusters 

identified in Figure 2B can be reconstructed using the Haar wavelet 

basis. C, catechin; CG, catechin gallate; EC, epicatechin; ECG, 

epicatechin gallate; EGC, epigallocatechin, EGCG, epigallocatechin-3-

gallate; GC, gallocatechin; GCG, gallocatechin gallate.
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gallated, by drawing a hyperplane of maximum-margin which 
divides them. When the treatment group-trained SVM was pre-
sented with ungallated molecules coefficients, poor prediction 
performance was observed with the greatest deviation caused by 
the EGC1/2 groups (Figure 4A). The resultant response curve 
had an R-squared value of 0.12, indicating the SVM predictions 
did not have a linear correlation (ie, poor estimation).

However, when gallated catechins-treated group coeffi-
cients were presented from a new set of 24 images, the linear 
SVM had a high prediction performance with an R-squared 
value of 0.99 and a RMSE of 0.0013489 ± 0.1209e-5 (n = 24; 
P < .01; Figure 4B). Interestingly, the prediction speed increased 
from 79 observations/second (Figure 4A) to 920 observations/

Figure 4.  (A) Linear SVM regression predictor on VM by images from ungallated catechin-treated cells. Response curve for prediction of a control data 

set using linear SVM trained on 2D wavelet coefficients (from Figure 3) of treatment groups. Only ungallated catechins were used to train the SVM. (B) 

Linear SVM performance curve. Prediction curve of treatment groups’ Wavelet coefficients—trained linear SVM on 6 of the 8 catechin-treated groups. (C) 

Gaussian SVM model on wavelet clusters. Fine Gaussian SVM performance on wavelet analysis mean cluster scores in all 8 catechin-treated groups. 

Analysis was performed in 2 independent data sets for each catechin tested in (A) and (C). C, catechin; CG, catechin gallate; EC, epicatechin; ECG, 

epicatechin gallate; EGC, epigallocatechin; EGCG, epigallocatechin-3-gallate; GC, gallocatechin; GCG, gallocatechin gallate; SVM, support vector 

machine; VM, vasculogenic mimicry.

second (Figure 4B). As seen in Figure 4A and B, the data min-
ing analysis for the wavelet coefficients were restricted to 6 of 
the 8 catechin groups only. The GCG catechin had globally 
largest wavelet coefficients very similar to the EGCG and 
ECG catechin (Figure 3). Similar values resulted in poor train-
ing of the linear classifier on wavelet coefficients since it could 
not find a distinction between these catechins. However, the 
mean branching clusters show significant difference in these 
catechin groups (Figure 2B), and this observation is in good 
agreement with the chemical structures of these 4 gallated cat-
echins. When the mean branching cluster statistics from 2D 
wavelet analysis of all 8 catechins (n = 32) were used to train a 
Gaussian SVM regression (Figure 4 C), there was good 
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prediction performance (RMSE of 2.469 ± 0.0078 and r2 of 
0.98). Linear SVMs showed poorer performance in compari-
son to the Gaussian SVM kernel. These findings highlight that 
the wavelet clustering scores can be used to train data mining 
algorithms in VM pattern recognition.

Finally, the percolation scores of the ungallated and gallated 
catechin-treated groups were subjected to a fine Gaussian SVM 
classifier with identical training conditions as defined for the 
linear SVM. The fine Gaussian SVM had a Gaussian kernel 
scale of 0.35, with a one-vs-one multiclass method. When pre-
sented with a new set of images (n = 32; ie, 1 image for each of 
the 8 catechin groups split into 4 quadrants), a perfect predic-
tion was found each time with prediction speed of 200 observa-
tions/second (Figure 5A). However, a linear SVM was found to 
be a poor classifier of the data with a 56.9% accuracy. Following, 
the SVM classifier was assessed on the fractal dimension analy-
ses. As shown, the SVM classifier’s performance on the fractal 
analyses failed due to the ambiguity of the FD scores for the 
gallated groups as indicated by the greater than sign > 2.00 
(Figure 5B). The FD scores were too close to each other amid 
the different groups leading to a poor classification. When pre-
sented with a new set of images (n = 32), the Gaussian SVM had 
0% classification accuracy, whereas the linear SVM had 6.3% 
accuracy (Figure 5B). These findings demonstrate the Box-
counting algorithm’s lack of predictive power in assessing drug-
mediated changes in VM structures. Multifractal analysis 
techniques such as the calculation of Hölder exponents or Hurst 
indices (with time-series analysis) are suggested as a direction 
required to assess the performance of classifiers or other machine 

learning algorithms on this fractal dimension feature extractor. 
Alternately, other types of fractal dimension estimators such as 
the sandbox method can be attempted.

One can notice that, it is important to choose the appropri-
ate kernel according to whether the data are linearly separable 
or not. Although the performance is high, the quality of the 
data sets and its design do not reflect the overall landscape of 
3D VM embeddings. The results for image classification of 
gallated and ungallated catechins could deteriorate with the 
addition of more data sets. Further studies could be performed 
with large and more heterogeneous data sets. This deteriora-
tion of SVM-based approaches could be compensated by clas-
sification algorithms with greater predictive outcomes such as 
artificial neural networks based on random forests.20,21 Neural 
networks are a set of algorithms capable of pattern recognition 
from complex data sets.22,23

Conclusion
The presented findings collectively highlights, in 2 independ-
ent ovarian cancer cell models, that the galloyl moiety is a spe-
cific structural feature which can be quantified and which 
associated features can be extracted through computational 
techniques. These features can provide high predictive power, 
in part, highlighting the chemopreventive properties of diet-
derived catechins by characterizing their ability to inhibit in 
vitro branching networks involved in VM processes. Most 
importantly, our study suggests that the prior discussed chemo-
preventive activities of galloylated catechins can be computa-
tionally corroborated using the following 3 image processors 

Figure 5.  (A) Classification predictive performance chart on Percolation scores. To assess whether the data fed to the classifiers are correctly spotted 

(predicted value) with the actual data label (true value), SVM classification on percolation statistics was done as described in the Methods section. Positive 

predictive values for the Fine Gaussian SVM classifier on percolation scores with 5-fold cross-validation was performed in 2 independent data sets for each 

catechin tested. (B) Linear SVM’s poor performance on fractal dimension scores. This demonstrates the fractal dimension is not enough to capture the 

predictive power of VM structures. C, catechin; CG, catechin gallate; EC, epicatechin; ECG, epicatechin gallate; EGC, epigallocatechin; EGCG, 

epigallocatechin-3-gallate; GC, gallocatechin; GCG, gallocatechin gallate; SVM, support vector machine; VM, vasculogenic mimicry.



8	 Cancer Informatics ﻿

and feature extractors: fractal dimension analysis, wavelet anal-
ysis, and percolation clustering. Fractal dimension analysis, at 
least using a 2D box-counting algorithm, was shown to be an 
ineffective method in assessing drug-mediated changes in VM 
structures. Wavelet analysis and percolation clustering outper-
formed the predictive power of the fractal dimension as VM 
feature extractors. These findings have been verified with sim-
ple classification and regression algorithms. The problem of 
overfitting by the machine learning algorithms has been chal-
lenged by the lack of the fractal dimension’s performance in 
classifying the treatment groups in comparison to the other 2 
feature extractors.

Furthermore, the assessment of VM targeting highlights the 
critical and specific structural features dictating efficient inhibi-
tion of other gallated catechins numerous intracellular targets, 
including HuR, MT1-MMP, and the kinase activity of the 
TGF-βR.7,24-26 A reduction in the fractal dimension and 2D 
wavelet coefficients in the gallated catechins-treated ES2 cells 
strongly support these conclusions. Furthermore, a higher set of 
critical exponents in the percolation statistics of the treated 
groups also confirmed it was more difficult for the ungallated 
catechins to alter in vitro VM structures. Distinctive patterns 
(differences) amid the ungallated- and gallated-catechins-
treated groups that can be captured with the extracted features 
show how they can be predictive assets on future drug design 
strategies. Collectively, our findings suggest that the metastatic 
and chemoresistant phenotypes responsible for the emergence of 
complex systems such as those observed in VM processes can be 
suppressed by the gallated catechins. Furthermore, our study 
demonstrates image-based classification methods could be pow-
erful tools in the emerging field of computational oncology.

In the future, these findings must be reproduced using larger 
data sets allowing to test heterogeneity and performance of 
state-of-the-art image classification approaches and pattern 
recognition including deep learning architectures.23,27 These 
deep learning architectures are known to perform better than 
SVM, suggesting a predictive power improvement with larger 
image data sets or time-lapse imaging, of structural features 
in drug molecules that target VM processes. Whereas the 
studied system consists of dynamic 3D structures analyzed as 
2D images, computational algorithms will next require to be 
extended to 3D computational analysis ideally using 3D time-
lapse imaging. For instance, multifractal analysis and 3D wave-
let analysis are pertinent algorithms for such prospective studies 
and would allow for more precise strategies in drug design and 
development. It will also be important to assess the predictive 
power of such computational algorithms on inputs from VM 
data sets from different experimental conditions.
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