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Fine-scale modelling finds that breeding site
fragmentation can reduce mosquito population
persistence
Clare P. McCormack 1, Azra C. Ghani1 & Neil M. Ferguson 1

Fine-scale geographic variation in the transmission intensity of mosquito-borne diseases is

primarily caused by variation in the density of female adult mosquitoes. Therefore, an

understanding of fine-scale mosquito population dynamics is critical to understanding spatial

heterogeneity in disease transmission and persistence at those scales. However, mathema-

tical models of dengue and malaria transmission, which consider the dynamics of mosquito

larvae, generally do not account for the fragmented structure of larval breeding sites. Here,

we develop a stochastic metapopulation model of mosquito population dynamics and explore

the impact of accounting for breeding site fragmentation when modelling fine-scale mosquito

population dynamics. We find that, when mosquito population densities are low, fragmen-

tation can lead to a reduction in population size, with population persistence dependent on

mosquito dispersal and features of the underlying landscape. We conclude that using non-

spatial models to represent fine-scale mosquito population dynamics may substantially

underestimate the stochastic volatility of those populations.
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Mosquito-borne diseases are a major public health chal-
lenge in many countries worldwide. The year 2017 saw
an estimated 219 million cases of malaria globally1 and

the World Health Organization currently estimates that half of
the world’s population is a risk from infection by dengue, with the
virus now endemic in more than 100 countries2. The transmis-
sion intensity of both dengue and malaria varies geographically,
with spatial heterogeneity evident at broad and fine spatial
scales3–5. Although a wide range of environmental and social
factors including climate6,7, human mobility8, and levels of
urbanization9,10 play an important role in determining trans-
mission intensity, the primary cause of spatial heterogeneity in
transmission intensity is variation in the density of female adult
mosquitoes11,12. Thus, critical to an understanding of the drivers
of spatial heterogeneity in disease transmission and persistence at
fine spatial scales, is an understanding of the fine-scale dynamics
of mosquito populations13,14.

Adult mosquito density in any given environment is largely
determined by two key factors. First, the mortality rate of adult
mosquitoes and, second, the rate at which new adult mosquitoes
emerge from larval breeding sites. The capacity of larval breeding
sites to produce new adult mosquitoes is constrained however by
the availability of resources at those sites. Such resources are
inherently limited, so any one larval breeding site has a limit —
termed the carrying capacity— to the size of the larval population
it can support. Thus, larval populations are constrained and it is
generally assumed that such regulation is dominated by density-
dependent intraspecific competition, whereby larvae in a single
breeding site compete for food and other resources15–19.
Although this has the primary effect of increasing larval mor-
tality, it may also lead to longer development times and a
reduction in the size of adult mosquitoes15,16,18,20,21.

Characteristics of desired breeding sites vary with mosquito
species. Although Anopheles mosquitoes, which transmit malaria,
typically breed outdoors in naturally occurring freshwater habi-
tats such as pools, ponds and marshes22–24, Aedes aegypti, the
primary vector of dengue, are adapted to an urban environment.
Thus, they primarily breed in rain-filled, man-made habitats such
as household containers and discarded tyres15,25,26, and there can
be several breeding sites per household. Larval breeding sites for
both species are therefore often highly fragmented15,22,23,25, with
mixing among the population determined by the dispersal27,28

and oviposition behaviour29,30 of the mosquito.
This fragmented structure leads to both temporal and spatial

variation in the availability, size and quality of larval breeding
sites across any given landscape15,22,23,25. Empirical research has
found that A. aegypti exhibit considerable spatial variation in
abundance, even at the individual household level, with clustering
among households of similar levels of carrying capacity often
occurring25,26,31–34. Furthermore, recent analysis of the spread of
the bacterium Wolbachia among local A. aegypti populations in
northern Australia has shown that both the pattern and speed of
spatial spread of Wolbachia is highly heterogeneous, largely
owing to environmental factors, including fine-scale variation in
A. aegypti population density35. Empirical evidence suggests
that abundance of Anopheles mosquitoes is also spatially het-
erogeneous at fine spatial scales, owing to the availability and
productivity of larval habitats, and proximity to human
settlements23,36–38.

Whether and how the underlying fragmented structure of
larval populations is accounted for in mathematical models of
mosquito population dynamics is governed by assumptions made
with respect to the spatial structure of larval breeding sites and
how the dynamics of density-dependent competition are repre-
sented. Owing to the fragmented structure of larval breeding sites,
the intensity of density-dependent competition will vary across a

landscape, with more densely populated habitats subject to a
greater degree of competition. However, currently, mathematical
models of dengue and malaria transmission, which consider
larval population dynamics39–43, tend to adopt a very simple
representation of density-dependent competition. Namely, the
entire larval population is treated as a well-mixed population
coming from a single large breeding site and the larval mortality
rate is assumed to increase linearly with larval population size. In
reality, however, the dynamics of density-dependent competition
across a fragmented landscape are likely to be much more com-
plex. Moreover, density-dependent competition is a nonlinear
process, and hence it cannot be assumed that modelling a single
large well-mixed larval population will generate the same
dynamics as a model which explicitly represents a network of
fragmented local populations.

Ecological research has shown that habitat fragmentation can
lead to increased population instability and decreased population
persistence, as a combination of demographic and environmental
stochasticity places small local populations at continual risk of
extinction44–47. If similar results hold for mosquito populations,
this could have important implications for mathematical models
of dengue and malaria, which consider larval population
dynamics, particularly in the context of estimating vector popu-
lation persistence at fine spatial scales. Hence, to explore the
impact of accounting for the fragmented structure of larval
populations when modelling the fine-scale dynamics of mosquito
populations, we developed a stochastic metapopulation model of
mosquito population dynamics and considered the effects of
habitat fragmentation on the dynamics observed by modelling the
same mosquito population at different levels of spatial granular-
ity, corresponding to different levels of fidelity in representing the
true underlying spatial structure of mosquito populations. We
explored how habitat fragmentation, features of the underlying
landscape and the level of spatial granularity affect the dynamics
observed, with the overall aim of understanding the role and
importance of spatial structure in shaping the dynamics of
mosquito populations at fine spatial scales. We find that failing to
account for larval habitat fragmentation may substantially
underestimate the vulnerability of local mosquito populations to
extinction and conclude that how spatial structure is represented
in our model strongly influences our understanding of fine-scale
mosquito population dynamics.

Results
Impact of fragmentation. We first considered the dynamics of an
established mosquito population in a homogeneous landscape.
We observed that fragmentation may lead to a reduction in both
total population size and patch occupancy levels, compared with
the single-patch model (Fig. 1a, b). The magnitude of this effect
depended on the carrying capacity of each patch (represented as
the deterministic equilibrium larval population size in Fig. 1). For
the non-spatial single-patch model, population size scaled linearly
with carrying capacity as expected, whereas the relationship was
nonlinear for the metapopulation model, especially in the absence
of dispersal. As expected, the largest differences occurred when
the carrying capacity of individual patches in the metapopulation
was low, as the probability of stochastic extinction is then highest.

Adult mosquito dispersal counteracted these effects by
enabling extinct local populations to be reseeded, thereby
rescuing these populations and increasing population persistence
and patch occupancy. For patches with low carrying capacity and
hence an unstable local population, this recurring cycle of
extinction and recolonization leads to a continuous fluctuation in
patch occupancy at the local level. However, at the global level,
patch occupancy levels remained stable, indicating that a balance
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between extinction and recolonization across the metapopulation
is maintained, allowing the overall population to persist. Further
stabilizing mechanisms of the metapopulation were evident from
exploring the relationship between the degree of dispersal and the
variability of local larval populations. Indeed, dispersion can
make individual patch populations more stable than isolated
patches. Examining the variance to mean ratio of the larval
population in individual patches, we observed a move from over-
dispersion to under-dispersion as the rate of dispersal increased
(Fig. 2).

Next, we examined the effect of landscape fragmentation on
population invasion, while accounting for seasonal variation in
carrying capacity. In the single patch model, we observed fast
population growth, with almost all model runs resulting in
population persistence (Fig. 3). However, in a fragmented
landscape, a different picture emerges, with fragmentation
hindering population persistence and growth, particularly when
the dispersal rate is low and movement beyond the seeded patch
is limited. When patches have a low carrying capacity, the risk of
extinction from stochastic effects is high, which in turn reduces
the likelihood of sustained invasion upon seeding (Fig. 3a) and
the speed of population spread across the landscape (Fig. 3b, c).
Moreover, for model runs that were successful in achieving
population persistence, fragmentation reduced the level of
population growth and increased the amount of variability in

the population, prior to the population stabilizing, compared with
the single patch model (Fig. 3b–d). Seasonal troughs in carrying
capacity posed a larger barrier to spatial spread during the early
stages of population growth in a fragmented landscape, further
slowing the speed of spread (Figs. 3b and 4). However, the speed
of spread across the landscape was highly dependent on mean
dispersal length, with an increased range of dispersal across the
landscape accelerating the speed of invasion, even at a low rate of
dispersal (Fig. 4).

When modelling the dynamics of an established mosquito
population or those of a newly seeded population, the dynamics
observed were highly dependent on the level of spatial granularity
assumed in the model. As spatial granularity is reduced, this
increases patch size and thus the carrying capacity of individual
patches. This in turn reduces the probability of stochastic
extinction in individual patches. Thus, in a context where
dispersal rates were low to moderate, a reduction in the level of
spatial granularity largely resulted in increases in long-term mean
population sizes, population persistence, and patch occupancy,
with the behaviour of the metapopulation largely tending towards
that of the single-patch model as the level of granularity is further
reduced (Fig. 4).

A notable exception to this pattern was observed when
examining the effect of spatial granularity on invasion dynamics,
as the dynamics observed depend heavily on the level of spatial
granularity, and the dispersal rate and kernel, and thus a more
complex picture emerges. For both low and high values of single-
patch-carrying capacity, if dispersal across the landscape at the
highest level of spatial granularity is very local then, as granularity
is reduced, movement beyond the seeded patch becomes less
likely. Therefore, at lower levels of granularity, population spread
and growth beyond the seeded patch may not occur, despite a
very low risk of extinction through stochastic effects in
neighbouring patches (Fig. 4c, d). Thus, behaviour tending
towards the single-patch model as granularity is reduced is not
necessarily guaranteed and relies on sufficient movement between
patches at lower levels of granularity.

Landscape heterogeneity. The impact of non-clustered hetero-
geneity in carrying capacity across the landscape on the popula-
tion dynamics observed was dependent both on the mean value of
carrying capacity and the underlying dispersal dynamics.
Increasing inter-patch variability, while keeping the total carrying
capacity fixed, increases the risk of local stochastic extinction as a
higher proportion of patches have low carrying capacities.
However, this can have either positive or negative effects on
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overall population persistence, depending on the mean value of
carrying capacity and the dispersal rate. For landscapes with an
established mosquito population, a low mean patch carrying
capacity and a low dispersal rate, increased spatial heterogeneity
resulted in increases in total population size and patch occupancy
compared with a spatially homogeneous landscape (Fig. 5a, b).
This is because a small fraction of patches now have carrying
capacities high enough to sustain local population persistence
for an extended period. However, for higher values of mean
patch carrying capacity, inter-patch variability increases the
risk of stochastic extinction compared with a homogeneous
landscape (Fig. 5a, b) — due to a higher proportion of patches
having carrying capacities too low to allow local populations to
persist.

Population dynamics also showed non-monotonicity in
relation to the dispersal rate (Fig. 6a, b). For population invasions,
the speed of invasion increased monotonically with the dispersal
rate, but decreased with increasing between-patch variability
(Fig. 6a). For established populations, with low between-patch
variability, local persistence and overall population size was
highest for high dispersal rates (Fig. 6b). However, increasing
between-patch variability resulted in reduced overall population
size, with population size lowest for high dispersal rates due to
dispersal-driven depopulation of patches with high carrying
capacity (Fig. 6b).

More realistic heterogeneous landscapes tend to show a high
degree of local spatial correlation in carrying capacity, namely
patches with similar levels of carrying capacity are clustered
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together. Simulating dynamics on such landscapes, increasing
spatial correlation resulted in increases in the mean equilibrium
population size (Fig. 6c) but decreases in mean patch occupancy
(Fig. 6d). This arises from improved local population persistence
in areas with high patch-carrying capacity, but poorer local
persistence in areas of low carrying capacity. Longer range
dispersal tends to result in lower mean population sizes (Fig. 6c)
but higher levels of patch occupancy (Fig. 6d) due to more
frequent dispersal from high carrying capacity to low carrying
capacity areas.

Single-patch approximations. We explored whether the invasion
dynamics observed under the metapopulation model could be
approximated by varying mean larval-carrying capacity (�K) and
the power on density dependence (Ω) in the corresponding
single-patch model. To approximate the mean equilibrium total
adult mosquito population size and growth rate observed under
the metapopulation model, we first allowed �K alone to vary while
keeping Ω= 1 fixed (i.e., assuming density dependence remained
linear). Reducing mean larval-carrying capacity enabled us to
closely approximate equilibrium population size (Fig. 7a). How-
ever, owing to the rapid speed of population growth in the single-
patch model, this approach led us to overestimate the growth rate
of the population and underestimate the variability in population
size during the early stages of population growth (Fig. 7 and
Supplementary Figs. 1 and 2).

Instead, allowing both �K and Ω to vary resulted in a better
approximation of the growth rate of the population (Fig. 7a, b and
Supplementary Figs. 1a–d and 2a–d), with reduced �K and Ω
giving the best-fitting combination of values for fragmented
landscapes where individual patches have a low carrying capacity
(Supplementary Fig. 3). This is because Ω < 1 (giving sub-linear
density dependence) and reduced K results in higher larval
mortality and thus slower population growth, when larval density
is low during the early stages of population growth following
seeding, compared with single-patch models where Ω= 1 and K

is larger. This in turn allowed us to better replicate the full
temporal curve of population growth observed under the
metapopulation model.

However, we remained unable to capture the increase in
variability during the early stages of population growth (Fig. 7b
and Supplementary Figs. 1c, d and 2c, d). Furthermore, in some
cases where the carrying capacity of individual patches was low,
this led to an overestimate of the variance of the equilibrium adult
population (Fig. 7b and Supplementary Fig. 2c). Approximating
the variance of the equilibrium adult population, in addition to
the mean equilibrium adult population size and the growth rate,
improved our estimate of the variance of the population but at the
cost of then overestimating the speed of growth (Fig. 7c, d and
Supplementary Figs. 1e–h and 2e–h). Similar patterns were
observed when approximating the mean and variance of the
equilibrium adult population only and not taking account of the
growth rate.

As expected, the largest adjustments to the single-patch model
were needed for fragmented landscapes where individual patches
had a very low carrying capacity and where dispersal beyond the
seeded patch was limited (Supplementary Fig. 3). In general,
smaller adjustments to the single-patch model were required to
approximate the dynamics in fragmented landscapes where
changes to parameter values such as increasing the dispersal rate
or mean dispersal length resulted in faster population growth and
increased population size in the metapopulation model.

Discussion
Mathematical models of dengue and malaria, which consider
larval population dynamics, largely treat larval populations as a
well-mixed population coming from a single breeding site, and
thus do not account for the fragmented structure of larval
populations. Here, by adopting a metapopulation approach to
model the dynamics of mosquito populations, we examined the
impact of larval habitat fragmentation and the role of the spatial
structure in shaping mosquito population dynamics at fine spatial
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scales. We found that fragmentation of larval populations may
lead to a reduction in population size and patch occupancy
(compared with a single well-mixed population), with the largest
reductions occurring when individual patches had low carrying
capacities and thus a substantial risk of stochastic population
extinction. Both the dispersal behaviour of adult mosquitoes and
features of the underlying landscape played key roles in driving
the dynamics observed, through both counteracting and ampli-
fying the effects of fragmentation. Moreover, we found that the
population dynamics observed were heavily dependent on the
level of spatial granularity represented in models, as reductions in
granularity reduced the risk of extinction through stochastic
effects, and hence increased population persistence, growth and
patch occupancy across the landscape.

These results suggest that using non-spatial models to repre-
sent the dynamics of mosquito populations may substantially
underestimate the stochastic volatility of those populations and
the frequency at which local mosquito populations go extinct.
However, these effects are greatest for low patch-carrying-
capacity and relatively local adult mosquito dispersal. Assessing
whether such effects are relevant to real-world mosquito popu-
lations therefore requires consideration of what is the appropriate
level of representation of spatial structure in mosquito popula-
tions. The results obtained here suggest that, to capture the
impact of larval habitat fragmentation on fine-scale mosquito
population dynamics in a meaningful way, models should aim to
capture the population dynamics observed when modelling at a
level of spatial granularity such that movement between patches is
representative of the typical dispersal length of the mosquito. If
granularity is reduced such that movement between patches goes
beyond the typical dispersal length, the vulnerability of small local
populations to extinction is masked by the increase in patch size
and consequent reduction in the risk of extinction through sto-
chastic effects, and thus we fail to observe the potential impact of
habitat fragmentation when populations are small.

As typical dispersal length varies between species of mosquito,
the choice of scale will therefore vary according to disease being
modelled. Mark–release–recapture (MRR) experiments suggest
the dispersal range of A. aegypti mosquitoes is in the range
20–100 m48,49, with most released A. aegypti being recaptured in
the house of release49. Thus, modelling at the level of household
would seem appropriate for that species. A. aegypti populations in
dengue-endemic areas range between under 0.5 to over 3 adult
females per person — namely in the range 2 to 20 per household,
depending on household size26,50, with empirical evidence to
suggest considerable spatial heterogeneity in vector population
density at the individual household level25,26,33,34,50,51. Thus, the
effects of local dispersion and landscape fragmentation described
here may be highly relevant to the modelling of A. aegypti — and
thus dengue, Zika and Chikungunya — as mosquito densities at
the household level can drop to very low numbers during sea-
sonal troughs31.

However, measured mean dispersion distances are an order of
magnitude further for Anopheles gambiae— 500 m or greater52,53

— meaning appropriate patch sizes (both in terms of dimension
and population size) can be expected to be considerably larger,
perhaps village level. Thus, the effects of landscape heterogeneity,
local stochastic extinction and re-seeding predicted by our
modelling to be significant for A. aegypti are likely to be less so for
A. gambiae. The exception might be in environments where A.
gambiae density is exceptionally low — e.g., during seasonal
troughs in areas such as the Sahel54.

As density-dependent competition gives rise to nonlinear
dynamics during the larval stage of population growth and the
risk of extinction through stochastic effects is highest for small
local populations, the dynamics observed when the fragmented

structure of larval populations is explicitly represented cannot be
exactly reproduced using a single-patch (non-spatial) model. In a
regime where local stochastic effects are substantial, total mos-
quito population size will be smaller (and population volatility
larger) than predicted by a single-patch model with the same total
carrying capacity.

However, carrying capacity is an unmeasurable and quite
theoretical concept. More typically, modellers calibrate models to
reproduce observed population characteristics, such as population
size. In that context, our results indicate that single-patch models
will underestimate population volatility and overestimate inva-
sion speeds (e.g., following population troughs). Interestingly, we
found that stochastic volatility can be better captured by a single-
patch model if the intensity of density dependence is assumed to
be less than linear, but even this adjustment is unable to capture
the slower invasion dynamics and increased variability associated
with the spatial structuring of the mosquito population.

These fine-scale dynamics are likely to be of particular
importance when modelling the potential impact of novel bio-
logical vector control measures, such as Wolbachia-infected A.
aegypti55 or homing endonuclease genes56. As these methods rely
on the successful establishment and propagation of modified
mosquito populations across a landscape, a strong understanding
of mosquito population dynamics at fine spatial scales is critical
to understanding the likelihood of successful establishment,
persistence and spread. Underestimating the stochastic volatility
of mosquito populations and failing to consider the role of the
underlying spatial structure may make it more difficult to identify
potential barriers to successful establishment and spread,
and thus to estimate the likely impact of these strategies on dis-
ease dynamics.

The work presented here however has a number of limitations.
As we consider the dynamics of mosquito populations alone, the
extent to which our results may affect models of dengue and
malaria transmission, which consider larval population dynamics,
is yet to be explored. A model that incorporates both vector and
disease dynamics would offer much greater insight into the
potential impact of larval population fragmentation on the fine-
scale transmission dynamics of dengue and malaria. We have also
assumed that larval development times and the lifespan of adult
mosquitoes are exponentially distributed. However, the rate at
which mosquito larvae develop is temperature dependent19,57 and
older adult mosquitoes may experience increased mortality58,59.
A further limitation is that we have only studied random land-
scapes here. Work is needed to parameterize spatially explicit
models of mosquito dynamics against data from real landscapes,
such as cities (e.g., Yamashita et al.60 who deterministically
modelled the influence of urban landscapes and wind on mos-
quito dispersion). Last, although appropriate values for model
parameters were sourced where possible from the existing lit-
erature, the model presented was not explicitly fitted to ento-
mological data. Future work will build on the work presented here
by addressing these limitations, with the aim of providing a more
complete picture of the impact of larval habitat fragmentation on
the persistence and control of dengue and malaria at fine
spatial scales.

In conclusion, our study highlights the importance of choices
made concerning representations of the spatial structure of larval
populations when modelling the dynamics of mosquito popula-
tions at fine spatial scales. Our results demonstrate that, for low
mosquito population densities, adopting a single-patch approach
to model the fine-scale dynamics of larval populations may
substantially underestimate the stochastic volatility of mosquito
populations and overestimate the speed of population invasion
and growth. Accounting for the fragmented structure of
larval populations allows us to better capture the dynamics of
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density-dependent competition and therefore to understand how
the level of connectivity between local populations and features of
the underlying landscape drive the population dynamics observed
at fine spatial scales.

Methods
Model structure. We developed a fine-scale stochastic metapopulation model of
mosquito population dynamics, where patches are arranged in an n × n grid and
each individual patch (i, j) represents a local mosquito population (1 ≤ i, j ≤ n).
Local populations comprised an egg, larval and a female adult mosquito popula-
tion, and are connected through adult mosquito dispersal, where adult mosquitoes
can move to and lay eggs in neighbouring patches. The deterministic dynamics of a
local population in patch (i, j) are described by the following set of equations:

dEijðtÞ
dt

¼ bgOijðtÞ � γEEijðtÞ � μEEijðtÞ ð1Þ

dLijðtÞ
dt

¼ γEEijðtÞ � γLLijðtÞ � μL 1þ LijðtÞ
KijðtÞ

 !Ω !
LijðtÞ ð2Þ

dAijðtÞ
dt

¼ MijðtÞ þ γLLijðtÞ � μAAijðtÞ ð3Þ

OijðtÞ ¼ g�1AijðtÞ ð4Þ

MijðtÞ ¼ r
X
ði′;j′Þ

Ai′j′ðtÞqðdðijÞ�ði′j′ÞÞ �
X
ði′;j′Þ

AijðtÞqðdðijÞ�ði′j′ÞÞ
0
@

1
A ð5Þ

Here, Eij(t), Lij(t) and Aij(t) denotes the egg, larval and adult population in (i, j) at
time t, respectively; Kij(t) denotes the larval-carrying capacity of (i, j) at time t;
Oij(t) denotes the number of adult mosquitoes laying eggs in (i, j) at time t; Mij(t)
denotes the net migration of adult mosquitoes into (i, j) at time t; Ω describes the
power on density dependence (with Ω= 1 describing linear density dependence); b
denotes the oviposition rate; γE and γL denote the egg and larval development rate,
respectively; g denotes the length of the gonotrophic cycle of adult female mos-
quitoes. μE, μL and μA denote the egg, larval and adult mosquito mortality rate,
respectively.

For each patch (i, j), we represent density-dependent competition during the
larval stage of development through increasing larval mortality as the size of the
larval population approaches the carrying capacity of the patch. Although density-
dependent competition could have been represented by varying the oviposition or
larval development rate in accordance with larval density (instead of or in addition
to the larval mortality rate), we chose to represent this solely through changes in
larval mortality in accordance with changes in larval population density, as this
approach is most commonly used in models of mosquito population dynamics,
which consider larval populations39,41–43,61.

The basic mosquito reproduction number, RM, is defined as the average number
of adult females produced by a single female mosquito during her lifespan, in the
absence of population regulation. For our model, RM is given by

RM ¼ b
γE

γE þ μE

γL
γL þ μL

1
μA

ð6Þ

Here, b
μA

describes the average number of eggs laid by a female over the course of

her lifetime, whereas the terms γE
γEþμE

and γL
γLþμL

describe the probability of survival

during the egg and larval stages, respectively, when determining the average
number of females produced. Here, the value of b in Eqs. (1)–(5) is assigned so that
RM remains fixed.

Equation 5 above describes the dispersion of adult mosquitoes, where r is the
dispersal rate and q(d) is the probability of moving distance d if dispersal occurs,
otherwise known as the dispersion kernel. Here, d(ij)−(i′j′) is the distance between
the centroids of patches (i, j) and (i′, j′). We set d(ij)−(ij)= 0.5214 (the average
distance travelled between two random points in a unit square). We use a
discretized version of a continuous space negative exponential kernel with a
maximum dispersion distance D, defined as:

qðdÞ ¼ Qeð�
d
aÞ; for d � D

0 for d>D

 
ð7Þ

where Q is a normalization constant defined as

Q ¼ 1

max
ði;jÞ

P
ði′;j′ÞjdðijÞ�ði′j′Þ<D

eð�
dðijÞ�ði′j′Þ

a Þ
� � ð8Þ

and m= 2a describes the mean dispersal length. Mosquitoes are assumed to not
disperse outside the modelled population; therefore, total net dispersion rates are
lower from patches at the edge of the modelled space than from interior patches.

We implemented a discrete time stochastic version of this model. In a time step
of one eighth of a day δt= 0.125, we draw Oij(t), the number of adult mosquitoes

laying eggs in patch (i, j) at time t, from a Binomial distribution

OijðtÞ � BinðAijðtÞ; g�1Þ ð9Þ
and NE

ij ðtÞ the number of eggs laid in (i, j) at time t, from a Poisson distribution

NE
ij ðtÞ � PoissonðbgOijðtÞδtÞ ð10Þ

We then determine NL
ij ðtÞ and DE

ijðtÞ, the number of new larvae and deaths during
the egg stage in (i, j) at time t, respectively, using a competing hazards model as
follows:

hEijðtÞ ¼ γE þ μE ð11Þ

TE
ij ðtÞ � BinðEijðtÞ; hEijðtÞ � δtÞ ð12Þ

NL
ij ðtÞ � Bin TE

ij ðtÞ;
γE

hEijðtÞ

 !
ð13Þ

DE
ijðtÞ ¼ TE

ij ðtÞ � NL
ij ðtÞ ð14Þ

where hEijðtÞ describes the total hazard of leaving the egg population in (i, j) at time

t, and TE
ij ðtÞ denotes the total number of eggs leaving (i, j) at time t.

We use a similar competing hazards approach to determine (i) the number of
new adult mosquitoes and larval deaths in (i, j) at time t and (ii) the number of
adult mosquito deaths and the number of adult mosquitoes dispersing to patches at
each distance within the dispersal range. The total hazard of leaving the larval
population in (i, j) at time t is given by

hLijðtÞ ¼ γL þ μL 1þ LijðtÞ
KijðtÞ

 !Ω !
ð15Þ

The total hazard of leaving the adult population in (i, j) at time t is given by

hAij ðtÞ ¼
X
d

gijðdÞ þ μA ¼ r þ μA ð16Þ

where gij(d) denotes the the hazard (with respect to an individual adult mosquito)
of dispersing to a patch at distance d from (i, j). This is given by

gijðdÞ ¼ rqðdÞnijðdÞ ð17Þ
where r denotes the dispersal rate, nij(d) denotes the number of patches at distance
d from patch (i,j) and q(d) denotes the probability of moving distance d, if dispersal
occurs. For each adult mosquito dispersing a distance d from (i, j), its destination
patch is randomly selected from among the nij(d) neighbours at this distance.

Spatial granularity and parameter values. We vary the level of fidelity we have in
our model in representing the true underlying fragmented structure of larval
mosquito populations by varying the number of patches used to represent the
dynamics of the mosquito population across a given landscape, with more patches
corresponding to greater fidelity. The lowest level of spatial granularity in our
model corresponds to the single patch approach, as here we do not account for the
fragmented structure of larval populations and consider the population as a single,
well-mixed population coming from one large breeding site. Finer levels of spatial
granularity allow us to account for the fragmented structure of larval populations
and spatially heterogeneous mixing among populations, at different levels.

Parameter values were chosen where possible from the literature to represent
the characteristics of A. aegypti. Hence, in choosing the finest level of spatial
granularity in our model, we considered the typical oviposition and dispersal
behaviour of adult female A. aegypti.

MRR studies indicate that, owing to their domestic habitat, A. aegypti typically
disperse very small distances (e.g., 20–100 m49, 56 m62), often only travelling to
neighbouring households, with most mosquitoes released in individual households
during MRR studies recaptured within the house of release49. Thus, mixing of A.
aegypti among households is spatially heterogeneous25,26,63.

Within individual households, mixing among larval populations is also
dependent on the oviposition behaviour of adult females. A. aegypti often lay eggs
from a single batch across multiple breeding sites (skip-oviposition)30,63, and thus
may distribute their eggs across a household. However, empirical field studies
indicate that adult female A. aegypti actively choose oviposition sites and thus do
not distribute eggs randomly among breeding sites30,63. Analysis of the egg-laying
behaviour of A. aegypti suggests that breeding site selection is driven by a variety of
factors including conspecific attraction30, food resources30, and the physical
properties of individual breeding containers63. Therefore, given the variety of
factors that contribute towards oviposition site selection within an individual
household, we make the simplifying assumption that mixing within individual
households is spatially homogeneous as the motivation for this study is not to
develop a highly detailed model of A. aegypti population dynamics at the individual
breeding container level. Rather, we aim to explore how allowing different levels of
spatial heterogeneity in mixing among larval populations, and our choice of
representation of spatial structure (if represented at all) influence our
understanding of mosquito population dynamics at fine spatial scales. Thus, we
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chose the finest level of spatial granularity in our model to correspond to modelling
at the individual household level, as movement between patches at this level of
granularity is characteristic of the typical dispersal length of A. aegypti.

We consider an example urban landscape comprising 1024 households. Thus, at
the finest level of spatial granularity in our model, we have a 32 × 32 spatial grid.
We assume each square of this 32 × 32 grid represents an area of ~20 m × 20 m. We
coarsen the level of spatial granularity in our model by doubling the size of each
patch. Hence, as we move from a 32 × 32 grid to a 16 × 16 grid, each patch now
corresponds to a group of four households and an area of 40 m × 40m. We
examine the effect of further coarsening the representation of space in our model
until we represent the dynamics of the A. aegypti population across the landscape
using a single patch, where the population is assumed to mix homogeneously.

Parameter values. Unless otherwise stated, all parameter values used are as shown
in Table 1. Our choice of parameter values used to represent the typical dispersal
behaviour of A. aegypti at the individual household level was guided by estimates of
the mean dispersal distance derived from MRR studies. As discussed above, MRR
studies indicate that A. aegypti typically disperse very short distances48,49,62.
Although estimates of the mean dispersal distance vary between studies and
locations, a distance of ~50 m is typical of values the mean dispersal distance of A.
aegypti estimated by MRR studies48,49,62.

These estimates however largely correspond to the mean distance travelled over
the course of an adult female’s lifespan, rather than over the course of a single day.
Hence, we sought to choose values of the daily dispersal rate and mean dispersal
length (at the 32 × 32 grid level) to correspond to a mean lifetime dispersal distance
of ~50 m. We chose these parameter values by first using our model to explore the
range of mean lifetime dispersal distances generated by combinations of the daily
dispersal rate (r) and mean dispersal length (m) (keeping the adult mosquito
mortality rate (μA) fixed).

To calculate the mean lifetime dispersal distance for a given combination of the
daily dispersal rate and mean dispersal length in model run n, we first set the
oviposition rate (b) to zero and seed 1000 adult females in the same patch (i′, j′) at
the centre of our 32 × 32 grid. Setting the oviposition rate to zero ensures that no
new adult females enter the population. We then record the cumulative number of
deaths in each patch on the grid at the end of the run and calculate the Euclidean
distance between each patch and the seeded patch. The mean lifetime dispersal
distance for run n (MLDn) is then given by

MLDn ¼ 1
1000

X
ði;jÞ

CijðnÞdðijÞ�ði′j′Þ ð18Þ

where Cij(n) denotes the cumulative number of adult female deaths in patch (i, j) at
the end of run n and d(ij)−(i′j′) denotes the distance between patch (i, j) and the
seeded patch (i′, j′). To get a final estimate of the mean lifetime dispersal distance,
we take the average across 1000 model runs (seeding in the same patch in
each run).

The results of this exercise are presented in Supplementary Fig. 4. We found
that, using a negative exponential kernel, a daily dispersal rate of 0.08 and mean
dispersal length of 5 patches per day gave a mean lifetime dispersal distance of ~50
m. Hence, we chose these values as the default parameter values in our model.
However, we tested sensitivity of our modelling results to different values of these
parameters to explore how the underlying population dynamics are affected by
different dispersal behaviours.

As the level of granularity in our model is reduced, we adjust the daily mean
and maximum dispersal lengths accordingly. For example, as we move from a 32 ×
32 grid to a 16 × 16 grid, we double the size of each patch. Thus, the mean and
maximum dispersal lengths are halved.

Landscape model. Larval-carrying capacity is varied seasonally using a sinusoidal
function of the form

KijðtÞ ¼ �Kij 1þ Δ cos 2π
tδt
365

þ ϕ

� �� �� �� �
ð19Þ

where here Kij(t) denotes larval carrying capacity at time t, Δ and ϕ denote the
amplitude and phase of seasonal variation in carrying capacity, respectively, and �Kij

denotes the mean carrying capacity of patch (i, j) across the year.
Spatial homogeneous landscapes (Fig. 8a) are created by assuming that each

patch had the same initial population, and that the local population is at its
deterministic equilibrium at the start of each simulation. �Kij is thus set as

�Kij ¼
L�ij

γL
μL
ð bγE
μAðγEþμEÞ � 1Þ � 1

8i; j ð20Þ

where L�ij denotes the larval population of (i, j) at deterministic equilibrium.
To create a spatially heterogeneous landscape (Fig. 8b) with a fixed mean larval-

carrying capacity �K� and a specified level of variability σ2 around this mean value,
we first draw a sequence of positive values Xij from a log-normal distribution

Xij � logNð�K�; σ2Þ ð21Þ
To keep the total carrying capacity across the landscape fixed, we apply a
transformation of the form aXb

ij to the generated values, where values of a and b are
such that

E½aXb
ij� ¼ �K� ð22Þ

Var½aXb
ij� ¼ σ2 ð23Þ

and set �Kij ¼ aXb
ij . Values of a and b such that (22) and (23) hold are found

numerically using linear interpolation.
To vary the level of spatial correlation in values of carrying capacity across a

heterogeneous landscape (Fig. 8c), we adopt a similar approach to that used
elsewhere by Hancock et al.64. An n2 × n2 correlation matrix C with entries

Cij ¼ e�αd ð24Þ
is created, where d denotes the distance between a pair of patches and α controls
the degree of correlation between values, with very small values of α giving a high
level of correlation. Taking the Cholesky decomposition of C gives a matrix L such
that C= LLT, and hence for X ~N(0, I), we have that Corr[LX]= C65. Setting Y=
eLX, a similar approach to that described directly above by Eqs. (22) and (23) is
then used to transform the values of Y to give a landscape with a mean larval-
carrying capacity �K� and variance σ2.

We consider both the population dynamics for landscapes where a stable
mosquito population is already established and the invasion dynamics resulting
from mosquitoes being seeded into an otherwise unoccupied landscape. For all
model runs and for each landscape type, the seeded patch was chosen at random
from among the patches on our 32 × 32 spatial grid. We evaluate the effects of
spatial structure and heterogeneity on population size, population persistence, the
level of patch occupancy and speed of population spread across the landscape.

Single patch approximations. We explored whether the invasion dynamics
observed for a homogeneous landscape under the metapopulation model at the
individual household level (32 × 32 grid) could be approximated by varying
parameters in the corresponding single-patch model whose values are not con-
strained by directly observed ecological processes — namely mean larval-carrying

Table 1 Model parameter values

Parameter Definition Value Refs

g Length of gonotrophic cycle 3 Days 66

RM Mosquito reproduction number 2.69 67

b Daily oviposition rate Assigned to match RM –
1
γE

Mean development time of mosquito eggs 4 Days 19

1
γL

Mean development time of mosquito larvae 15 Days 19

μE Egg mortality rate 0.01 Day−1 61

μL Larval mortality rate 0.025 Day−1 61

μA Adult mosquito mortality rate 0.1 Day−1 68

m Mean dispersal length of an adult mosquito 5 Patches day−1 48,49,62

D Maximum dispersal range of an adult mosquito 12 Patches day−1 48,49,62

r Adult mosquito dispersal rate 0.08 Day−1 –
Kij Mean-larval carrying capacity of patch (i, j) Variable –
Ω Power on density dependence 1 –

Definition and values of parameters used in the simulation model. A negative exponential dispersal kernel with a mean dispersal length of 5 was used and a dispersal range of 12 was chosen to aid
computational efficiency
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capacity (�K) and the power on density-dependent larval mortality (Ω). Hence, by
varying Ω, we allow for nonlinear changes in the larval mortality rate as the larval
population grows. We then compared the results obtained using the metapopu-
lation model and adjusted single-patch model and adopted a least-squares
approach to determine the combination of values of �K and Ω best approximating
the metapopulation dynamics. We sought to approximate the mean and variance of
the equilibrium total adult mosquito population and the time until the population
reaches equilibrium (a proxy for the growth rate of the population).

More formally, for a homogeneous landscape where L�ij denotes the
deterministic equilibrium larval population of each patch (i, j) in the
metapopulation model, we allow �K and Ω to vary in the corresponding single-
patch model (irrespective of the value of L�ij and keeping all other parameter values

fixed), denoting these varying parameters �K′ and Ω′. To approximate the mean and
variance of the equilibrium total adult mosquito population observed under the
metapopulation model for example, we define the sum of squared errors associated
with the approximation, ϵðL�ij; �K′;Ω′Þ, as

ϵðL�ij; �K′;Ω′Þ ¼ Mð�K′;Ω′Þ �MðL�ijÞ
MðL�ijÞ

" #2
þ Vð�K′;Ω′Þ � VðL�ijÞ

VðL�ijÞ

" #2
ð25Þ

where MðL�ijÞ and Mð�K′;Ω′Þ denote the mean equilibrium total adult mosquito
population size observed under the metapopulation model and adjusted single-
patch model, respectively, and VðL�ijÞ and Vð�K′;Ω′Þ denote the variance of the
equilibrium total adult mosquito population observed under the metapopulation
model and adjusted single-patch model, respectively. The combination of ð�K′;Ω′Þ,
which minimize this error, is selected as the best-fitting values of �K′ and Ω′.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
No datasets were generated or analysed during the current study.

Code Availability
The source code for the metapopulation model can be found at: https://github.com/
claremccormack/Metapop_Model
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