
Age-related macular degeneration (AMD) is a progres-
sive, neurodegenerative retinal disease causing irreversible 
central vision loss. AMD is the leading cause of legal blind-
ness in the elderly population [1], as approximately one in 
four individuals aged 75 or older has some sign of this disease 
and about one in 15 has the advanced form with visual loss 
[2]. Due to increasing life expectancy, the prevalence of AMD 
is predicted to grow by more than 50% by 2020, substantially 
augmenting the health burden of AMD [1].

The early stage of AMD is characterized by drusen 
formation—white-yellow deposits in Bruch’s membrane 
under the retinal pigment epithelial (RPE) layer and photo-
receptor cells (reviewed in [3]). Advanced AMD can clini-
cally develop in two distinct forms: dry (atrophic) and wet 
(exudative, neovascular). The slowly progressing and more 
frequent dry AMD is characterized by the presence of an 
irregular area of depigmentation as a result of the loss of RPE 
cells, and causes gradual geographic atrophy of the retina. 
Wet AMD, responsible for the majority of legal blindness in 
AMD, is characterized by choroidal neovascularization with 
leakage and bleeding, leading to the irreversible damage of 
photoreceptors (reviewed in [4]).

AMD is a multifactorially determined disease in which 
the interplay of environmental and genetic factors causes the 
disorder. Advanced age is by far the major nongenetic factor 
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Purpose: To investigate the association of age-related macular degeneration (AMD)–high risk alleles of the complement 
factor H (CFH), complement factor B (CFB), complement component 2 (C2), complement component 3 (C3), and age-
related maculopathy susceptibility 2 (ARMS2) genes in a Mexican population for the first time.
Methods: Genotyping was performed for the Y402H variant of CFH, for the L9H, R32Q, and K565E variants of CFB, 
the E318D variant of C2, the A69S variant of ARMS2, and the R102G variant of C3 in 159 Mexican mestizo patients at 
advanced stages of AMD, i.e., CARMS (Clinical Age-Related Maculopathy Staging System) grade 4 or 5. The frequency 
of these variants was also investigated in a group of 152 control subjects without AMD. Genomic DNA was extracted 
from blood leukocytes, and genotyping was performed using PCR followed by direct sequencing. Allele-specific restric-
tion enzyme digestion was used to detect the R102G polymorphism in C3.
Results: There were significant differences in the allelic distribution between the two groups for CFH Y402H (p=1×10−5), 
ARMS A69S (p=4×10−7), and CFB R32Q (p=0.01). The odds ratios (95% confidence interval) obtained for the risk alleles 
of these three variants were 3.8 (2.4–5.9), 3.04 (2.2–4.3), and 2.5 (1.1–5.7), respectively. Haplotype analysis including the 
two most significantly associated alleles (CFH Y402H and ARMS A69S) indicated that the C-T combination conferred 
an odds ratio (95% confidence interval) of 6.9 (3.2–14.8). The exposed attributable risk for this particular haplotype 
was 85.5%.
Conclusions: This is the first case-control investigation of AMD–high risk alleles in a Latino population. Our results 
support that CFH, ARMS2, and CFB AMD-risk alleles are consistently associated with the disease, even in ethnic groups 
with a complex admixture of ancestral populations such as Mexican mestizos.
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[5-7], although traits as smoking [8], gender [9], body mass 
index [9,10], ethnicity [10], and a high-fat diet [11] have also 
been implicated as factors affecting AMD risk.

Genetic factors play a role in disease development, as 
indicated by twin studies and recurrence risks in first-degree 
relatives of patients with AMD [12,13]. The disease has recur-
rence ratios for siblings of a case that are 3–6-fold higher than 
in the general population [14], and estimates of the genetic 
hereditability of AMD range up to 71% [12,15]. However, the 
genetic variants known to date are estimated to account for 
<50% of the heritability of the disease [16,17].

Genome-wide association studies first revealed the 
association between polymorphisms in the complement 
factor H (CFH) gene and susceptibility to AMD [18,19]. Since 
then, risk-associated polymorphisms in complement factor 
I (CFI) [20], complement factor B (CFB) [21], complement 
component 2 (C2) [21], complement component 3 (C3) [22], 
complement factor H-related 3 (CFHR3), complement factor 
H-related 1 (CFHR1) [23], and age-related maculopathy 
susceptibility 2 (ARMS2) [24] genes have been discovered 
and replicated in several ethnic groups worldwide (for recent 
reviews, see [25-27]). Three allelic variants—CFH Y402H, 
ARMS2 A69S, and C3 R102G—account for approximately 
76% of the population-attributable risk of the development 
of AMD [26].

CFH is a serum glycoprotein that regulates the function 
of the alternative complement pathway. CFH binds to C3b, 
accelerates the decay of the alternative pathway convertase 
C3bBb, and acts as a cofactor for complement factor I, 
another C3b inhibitor [28,29]. The CFB, C2, and C3 genes 
encode proteins that play central roles in activating classical 
and alternative complement pathway systems. The ARMS2 
gene (previously known as LOC387715) encodes a 107–
amino acid protein of unknown function with nine predicted 
phosphorylation sites; this gene is expressed in the retina and 
in various other tissues.

To date, most of the studies reporting the association 
between such genetic variants and AMD risk have been 
undertaken in people of Caucasian and Asian origin [30]. 
Conversely, there are none or very few studies on popula-
tions from the African continent or indeed from other 
regions, such as the Middle East, parts of Asia, and South 
America [30]. Independent replication of disease-associated 
alleles in populations that are not traditionally screened is 
important for further delineation of the molecular basis of 
AMD and for the possible identification of ethnic-specific 
differences in the magnitude with which particular genetic 
variants modify disease risk. Up to now, the association 
between AMD risk and genetic polymorphisms has not been 

investigated in Latino populations, which are ethnic groups 
with a considerable genetic admixture. The purpose of this 
study is to present the results of the first association study 
between AMD and complement-related gene polymorphisms 
in a Mexican population.

METHODS

One hundred and fifty-nine nonfamilial patients with 
advanced AMD and 152 normal controls were recruited 
following a standard ophthalmologic examination protocol. 
This investigation was a hospital-based, case-control associa-
tion study undertaken in a Mexican population. The study 
was approved by the Institutional Review Board of the 
Institute of Ophthalmology “Conde de Valenciana,” Mexico 
City. Informed consent was signed by all subjects before they 
participated in the study. Ophthalmic records, stereo fundus 
photographs, and fluorescein angiograms were obtained 
for all patients. Grading was performed using the Clinical 
Age-Related Maculopathy Staging System (CARMS) clas-
sification [5,31]. All the participants were of Mexican mestizo 
origin. A Mexican mestizo is defined as a person who was 
born in the country, has a Spanish-derived last name, and has 
a family of Mexican ancestors back to the third generation 
[32].

Criteria for patient inclusion were as follows: (1) age 55 
years or older, (2) diagnosis by a retina specialist of AMD 
grades 4 or 5 in both eyes or AMD grades 4 or 5 in one eye 
and any type of drusen in the fellow eye, (3) no association 
with other retinal disease, and (4) a negative history of vitreo-
retinal surgery. CARMS grade 4 corresponds to geographic 
atrophy, while grade 5 corresponds to choroidal neovascu-
larization. The AMD stage assigned was based on the most 
severe eye at the time of recruitment. Control subjects—
persons without visual impairment—were recruited from the 
outpatient department during routine ophthalmic examina-
tion. They were aged 60 years or older, had no drusen or RPE 
changes under dilated fundus examination, and reported a 
negative family history of AMD.

Single nucleotide polymorphism genotyping: The regions 
of the CFH gene harboring the single nucleotide polymor-
phisms (SNPs) rs1061170 (Y402H); the CFB gene harboring 
rs4151667 (L9H), rs641153 (R32Q), and rs4151659 (K565E); 
the C2 gene harboring rs9332739 (E318D); the ARMS2 gene 
including rs10490924 (A69S); and the C3 gene carrying 
rs2230199 (R102G) were amplified in independent PCR reac-
tions. Oligonucleotide sequences are available in Table 1. Each 
25 μl PCR amplification reaction contained 1X buffer, 200 
ng of genomic DNA, 0.2 mM of each deoxyribonucleotide 
triphosphate (dNTP), 2U Taq polymerase, 1 mM of forward 
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and reverse primers, and 1.5 mM MgCl2. PCR products were 
analyzed in 1.5% agarose gels, from which the bands with the 
amplified templates were excised and the DNA subsequently 
purified with the help of the Qiaex II kit (Qiagen, Hilden, 
Germany). Genotyping of the variants (except R102G) was 
performed with direct automated sequencing with the BigDye 
Terminator Cycle Sequencing kit (Applied Biosystems, Foster 
City, CA), and using a temperature program that included 25 
cycles of denaturation at 97 °C for 30 s, annealing at 50 °C for 
15 s, and extension at 60 °C for 4 min. Samples were analyzed 
in an ABI Prism 3130 Genetic Analyzer (Applied Biosys-
tems). SNP rs2230199 (R102G) of the C3 gene was analyzed 
with a polymerase chain reaction-restriction fragment length 
polymorphism (PCR-RFLP) approach using the HhaI restric-
tion enzyme. The rs2230199 PCR-RFLP analysis was verified 
with direct nucleotide sequencing of several PCR samples of 
each genotype.

Statistical analysis: Comparisons of continuous variables 
were tested with the Student t test, and corrected chi-
square statistics were applied for categorical variables. 
Uni- and multivariate nonconditional logistic regressions 
were conducted to determine risk magnitude, comparing 
each allele and genotype with the main effect employed as 
the binary variable. Odds ratios (ORs) and 95% confidence 
intervals (95% CIs) were reported, and population and 
exposed attributable risks were calculated when the ORs 
were elevated. The alpha level was 0.05, and the STATA ver. 
10.0 statistical software package was used for calculations. 
Allele frequencies, Hardy–Weinberg equilibrium (H-WE), 
and haplotype association analysis were assessed with Haplo 
View 4.0 software (Daly Lab, Broad Institute, Cambridge, 
MA). For haplotype construction, all genotyped alleles were 
tested, except those showing H-WE deviation. Only haplo-
types that showed statistical significant differences were 
reported.

RESULTS

A total of 311 individuals (159 patients with AMD and 152 
controls) were genotyped. The mean age at recruitment 
was 76.4±8.1 years in cases and 73.5±6.8 years in controls 
(ranges of ages were 60–96 years for cases and 62–90 
years for controls). The gender distribution between cases 
and controls was not significantly different (p=0.8), while 
smoking frequency showed statistically significant differ-
ences between the groups (p=0.04). These and other demo-
graphic variables are shown in Table 2.

Association analysis with individual single nucleotide 
polymorphisms: The allelic and genotypic distributions of 
the AMD-associated SNPs are shown in Appendix 1. All 

genotypic distributions in the control group showed H-WE, 
except variants R32Q and K565E in CFB (p<0.05).

Allelic association analysis indicated that there were 
significant differences in the allelic distribution between 
the two groups for CFH Y402H, ARMS2 A69S, and CFB 
R32Q (p=1×10−5, 4×10−7, and 0.01, respectively). For these 
variants, the ORs (95% CIs) were as high as 3.8 (2.4–5.9), 
3.04 (2.2–4.3), and 2.5 (1.1–5.7), respectively. However, 
as mentioned above, CFB R32Q was not present in H-WE 
(Appendix 1). Alleles L9H and K565E of CFB and E318D of 
C2 did not show significant differences (Appendix 1). The C3 
R102G allele showed a tendency to increase the AMD risk; 
nevertheless, this did not reach statistical significance (OR 
[95% CI] 1.6 [0.9–2.6]).

Genotypic distributions of CFH Y402H and ARMS2 
A69S showed the highest statistically significant differences 
(Appendix 1). Statistically significant differences were 
preserved when genotypic frequencies for CFH Y402H and 
ARMS2 A69S were analyzed adjusting for age, gender, and 
smoking (Appendix 2).

Haplotypes: Haplotype analysis, including the two most 
significantly associated alleles in this study (CFH Y402H and 
ARMS2 A69S), indicated that the C-T combination conferred 
an OR (95% CI) of 6.9 (3.2–14.8), followed by the C-G haplo-
type, which yielded an OR of 2.0 (1.2–3.4). As shown in Table 
3, other haplotypes for these variants were also significantly 
associated with AMD.

Attributable risk percent: Attributable risk percentages 
among exposed (Ae%) were calculated for the CFH-ARMS2 
risk haplotype (C-T). The population attributable risk was 
10.5%, while the exposed attributable risk was 85.5%. Other 
haplotypes for these alleles were also associated with a high 
attributable risk (Table 3).

DISCUSSION

AMD is estimated to affect about 50 million people world-
wide [33,34], and an increase in aging populations makes this 
degenerative disease a significant public health concern. It 
has been recognized for a long time that AMD is a complex 
disease with environmental and genetic factors interacting 
to allow for its development. The strongest identifiable 
risk factors for AMD are age, family history, genetics, and 
smoking [25].

In recent years, great advances have been made in 
recognizing several genetic factors predisposing individuals 
to AMD. Among these, polymorphisms in several proteins 
such as C3, FB, and CFH have been demonstrated to 
strongly influence the risk for AMD with quoted ORs for 
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homozygotes as high as 3.51–7.4 for CFH Y402H [18,35] and 
2.6 for C3 R102G [36]. Remarkably, three SNPs-coding for 
Y402H, ARMS2 A69S, and C3 R80G—account for approxi-
mately 76% of population attributable risk of the development 
of AMD [26,36]. Except ARMS2 A69S, these variants are 
located in complement alternative pathway proteins.

Although these polymorphic alleles have been unques-
tionably associated with AMD in patients from distinct ethnic 
backgrounds, independent replication studies are required to 
accurately assess these alleles’ ethnospecific contribution 
to this complex disease. In this study, we genotyped seven 
common AMD risk-associated SNPs in a cohort of 311 
Mexican individuals, 159 of whom had advanced stages of the 
disease. To the best of our knowledge, this is the first evalua-
tion of the contribution of AMD-related polymorphisms in a 
Latin American population. The Latin American population 
is composed mainly of a mix of indigenous people, Africans, 
and Spaniards (or Portuguese), so it represents an interesting 
genetic pool to compare the effect of risk alleles, which have 
been previously characterized in Caucasian, Asian, and 
African populations. In particular, Mexican mestizos are 
the result of the continuous intermixing between the autoch-
thonous Mexicans and the Spaniards, who came to America 
during the 16th century. Mexicans have an average of 52% 
Native American ancestry, 45% European ancestry, and 3% 
African ancestry [37].

In this work, the most significantly associated variants 
were CFH Y402H, ARMS2 A69S, and CFB R32Q, with ORs 
of 6.3, 5.3, and 2.5, respectively, when the homozygous state 
for the risk allele was considered (Appendix 1). These results 
were practically unchanged in the adjusted analysis. Smoking 
is a major environment risk factor that is strongly and consis-
tently associated with the development of AMD. In our study, 
smoking showed statistically significant differences between 
the groups, being more frequent in cases than in controls; this 
finding supports smoking as a risk factor for the develop-
ment of AMD in our patients. However, when the results were 
adjusted by age, sex, and smoking, the OR tendencies were 
maintained. In our study, only patients who were diagnosed 
as having advanced AMD (grade 4 or 5) were included.

The results of the haplotype analysis in our sample 
disclosed that considering the risk variants for CFH and 
ARMS2 (C-T) together conferred an OR of 7, as well as an 
attributable risk among the exposed of 85.5% for the develop-
ment of AMD (Table 3). These figures are among the highest 
AMD-related risk values obtained in a given population.

In our cohort, homozygosity for the C3 R102G variant 
was associated with a modest OR of 1.6 for AMD, which 
is considerably lower than the risk obtained in Caucasian 
populations from the United States and England [16,22], but 
higher than the observed risk, for example, in the French 
population [38]. However, a recent meta-analysis yielded a 
pooled OR of 1.6 for the C3 R102G variant [39], which is 

Table 2. demOgraphic characTerisTics Of paTienTs wiTh age relaTed macular degeneraTiOn and cOnTrOls.

Variable Cases n=159 Controls n=152 OR (CI 95%) P value
Age (mean±SD, years) 76.4±8.1 73.5±6.8 1.05 (1.01–1.08) 0.001
Gender (Females, n %) 111 (69.8) 105 (69.1) 1.03 (0.6–1.7) 0.8
Smoking (n %) 37 (23.3) 12 (12.9) 2.04 (1.01–4.2) 0.04
Diabetes mellitus (n %) 29 (20.0) 37 (35.9) 0.4 (0.2–0.8) 0.005
Hypertension (n %) 83 (54.9) 60 (50.4) 1.2 (0.7–1.9) 0.4

OR, odds ratio; CI, confidence interval.

Table 3. haplOType analysis resulTs Of cOmplemenT facTOr h (cfh) and age-relaTed macu-
lOpaThy suscepTibiliTy 2 (arms2) in amd fOr mexican cases and cOnTrOls.

Haplotype Case, control frequencies Chi Square P value OR (95%CI) A-e%  A-p%
CFH ARMS2
Y402H A69S
T G 0.339, 0.660 64.059 1.2×10−15 0.3 (0.2–0.4)
T T 0.368, 0.241 11.842 6.0×10−4 1.8 (1.3–2.6) 44.4 16.1
C G 0.136, 0.073 6.405 0.01 2.0 (1.2–3.4) 50 6.5
C T 0.157, 0.025 31.992 1.5×10−8 6.9 (3.2–14.8) 85.5 10.5

OR, odds ratio; CI, confidence interval; A-e%: attributable risk among exposed; A-p%: population attributable risk
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in agreement with our results. The R102G polymorphism 
generates the “fast” and “slow” electrophoretic allotypes of 
C3 (C3F and C3S), showing a differential capacity to bind 
monocyte-complement receptor C3F, which is the risk variant 
for AMD and has been previously reported as associated with 
other immune-mediated conditions [40].

The Y402H polymorphism in the CFH gene, located at 
1q31, is particularly striking because of the strength of its 
association with late AMD. ORs greater than 5 have been 
consistently established for individuals homozygous for 
the Y402H risk allele, making this genetic association one 
of the strongest for a complex disorder yet to be reported 
[18]. Nevertheless, in African populations, it seems that an 
association of the Y402H risk allele with late AMD does 
not exist or is less marked than in other populations [30,41], 
indicating ethnospecific differences in AMD risk associated 
with particular alleles. The Q allele for the R32Q variant 
of CFB was shown to have a protective effect, yielding an 
OR of 0.3 in our study; this is in agreement with previous 
studies demonstrating a protective effect for this particular 
allele [42]. Interestingly, in our study, the protective effect 
of CFB R32Q was improved to 0.2 after controlling for 
gender, age, and smoking. However, given the low number 
of subjects carrying this variant in our study, this finding 
must be confirmed through the analysis of larger groups.  
Our results support the claim that CFH, ARMS2, and to a 
lesser extent, CFB AMD-risk alleles are consistently associ-
ated with the disease, even in an intermixed population such 
as Mexican mestizos. Furthermore, the results support the 
notion that these alleles are the main known genetic factors 
for AMD development. Replication of association studies 
in diverse ethnic groups worldwide, especially those with a 
complex admixture of ancestral populations, such as Latino 
populations [43], would provide a better appreciation of the 
genetic contributions in AMD pathogenesis.

APPENDIX 1. ALLELIC AND GENOTYPE 
ASSOCIATION TESTING RESULTS OF CFH, CFB, 
C2, ARMS2, AND C3 IN AMD FOR CASES AND 
CONTROLS. 

OR, odds ratio; CI, confidence interval. NA, Not available 
(the OR value couldn’t be calculated due to a zero value in a 
cell). To access the data, click or select the words “Appendix 
1.” This will initiate the download of a compressed (pdf) 
archive that contains the file.

APPENDIX 2. GENOTYPIC FREQUENCIES OF 
CFH, CFB, C2, ARMS2, AND C3 IN AMD CASES AND 
CONTROLS.

 *Adjusted by gender, age and smoking. To access the data, 
click or select the words “Appendix 2.” This will initiate the 
download of a compressed (pdf) archive that contains the file.
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